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Telomere length (TL) represents a promising biomarker of overall physio-

logical state and of past environmental experiences, which could help us

understand the drivers of life-history variation in natural populations. A grow-

ing number of studies in birds suggest that environmental stress or poor

environmental conditions are associated with shortened TL, but studies of

such relationships in wild mammals are lacking. Here, we compare leucocyte

TL from cross-sectional samples collected from two French populations of roe

deer which experience different environmental conditions. We found that, as

predicted, TL was shorter in the population experiencing poor environmental

conditions but that this difference was only significant in older individuals

and was independent of sex and body mass. Unexpectedly, the difference

was underpinned by a significant increase in TL with age in the population

experiencing good environmental conditions, while there was no detectable

relationship with age in poor conditions. These results demonstrate both the

environmental sensitivity and complexity of telomere dynamics in natural

mammal populations, and highlight the importance of longitudinal data to

disentangle the within- and among-individual processes that generate them.
1. Introduction
Understanding how environmental variation shapes organismal physiology

and life history in wild systems is fundamental to evolutionary ecology, but

identifying physiological biomarkers relevant to life history and fitness is chal-

lenging. Recently, telomere length (TL) has emerged as a potential biomarker of

an individual’s physiological state and past environmental experiences [1]. Tel-

omeres are repetitive DNA segments that maintain genomic integrity by

capping the ends of eukaryotic chromosomes and forming complexes with pro-

teins [2]. Telomeres shorten with each cell division and are sensitive to oxidative

damage, and critically short telomeres trigger cellular senescence in vitro [3].

In humans, average TL decreases with age and short TL in adulthood predicts

late-onset disease and mortality [3], while past experience of stressful events is

associated with shortened adult TL [4]. In birds, short TL predicts increased

mortality risk [5], and experimentally induced competition for food or physio-

logical stress accelerates telomere attrition during early life [6,7]. Accordingly,

there is growing interest in how natural variation in environmental conditions
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Figure 1. Changes in relative leucocyte telomere length (TL) with age (a) and size-corrected body mass (b) in two different populations of roe deer. Raw data for CH
(red) and TF (blue) are presented with a linear regression (red and blue lines, respectively) and associated standard errors (grey shading). (Online version in colour.)
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influences telomere dynamics, and recent studies in wild birds

and fishes suggest that populations experiencing physiologi-

cally challenging environments, particularly in early life, have

shorter TL [8–12]. Although associations between TL, age,

sex and survival have recently been reported in wild mammals

[13–15], the relationship between environmental conditions

and mammalian telomere dynamics is currently unknown.

Here, we test how broad differences in environmental con-

ditions influence telomere dynamics in a wild mammal by

comparing patterns of TL variation between two populations

of European roe deer (Capreolus capreolus). These populations

experience markedly different environmental conditions [16],

with consequences for various life-history and demographic

parameters [17], as well as body condition and immune pheno-

type [18]. Based on trends emerging from the recent literature

on humans and birds, we hypothesized that persistent experi-

ence of a poor environment would result in shorter TL at any

given age, owing to lower initial TL in early life and a faster

rate of TL shortening over an animal’s lifetime. Since body

mass at a given age is thought to reflect overall physiological

condition in this species [18], we also predicted a positive

association between body mass and TL within populations.
2. Methods
Blood samples were collected from roe deer at two long-term

study sites that differ markedly in environmental conditions

(January–March 2016). Both deciduous woodland habitats,

the Trois-Fontaines site (TF; 1360 ha) in northeastern France

(488430 N, 48550 E) has more fertile soils, a continental climate and

higher forest productivity than Chizé (CH; 2614 ha) in western

France (468500 N, 08250 W). Poor-quality soils and summer droughts

at Chizé result in low forest productivity [16], and deer living there

consequently have reduced growth rates, adult size and fecundity,

and markers of physiological condition [17,18]. Body mass was

taken at capture, and all individuals were of known age and sex

(TF: 34 females, 39 males; CH: 36 females, 30 males). Buffy coat

fractions, comprising mainly leucocytes, were prepared in the

field and immediately frozen at 2808C until DNA extraction.

Relative TL was measured by quantitative PCR as described

previously [19] and in the electronic supplementary material.

We ran linear models in R v.3.3.3. We tested our first hypoth-

esis by running a model of TL including sex and population as
two-level factors, age as a linear covariate and all possible two-

way interactions among these terms. A backward elimination

approach was used to remove non-significant terms from the maxi-

mal model. We used a similar approach to confirm previously

established differences in body mass between the two populations,

while accounting for the effects of sex and age (linear and quadratic

terms). Finally, we tested whether a measure of body condition

explained variation in TL, independent of its associations with

age, sex and population, by adding size-corrected body mass

(residuals from a regression of body mass on hind foot length,

see electronic supplementary materials) as a covariate to the

minimal model for TL, and applying the same backward

simplification.
3. Results
There was an interaction between the effects of age and

population on TL (F1,135 ¼ 6.294, p¼ 0.013; electronic sup-

plementary material, table S1): shorter telomere lengths were

observed in the poor environment of CH but only among

older individuals (figure 1a). This was underpinned by a mar-

ginally non-significant increase in TL with age in TF (F1,71¼

3.849, b ¼ 0.012+0.006 s.e., p ¼ 0.054) and non-significant

decline with age in CH (F1,64¼ 2.562, b ¼ 20.011+0.007 s.e.,

p ¼ 0.114). There was no evidence for sex differences in TL, or

interactions between sex and age or population (electronic sup-

plementary material, table S1). Individuals from TF were

heavier regardless of age or sex (electronic supplementary

material, figure S1 and table S2), as has been previously docu-

mented [17]. There was no evidence for a relationship between

size-corrected body mass and TL (figure 1b; electronic sup-

plementary material, table S3), and including size-corrected

mass in the TL model did not alter the magnitude of the age-

by-population interaction (electronic supplementary material,

table S3).
4. Discussion
In this study, we provide, to our knowledge, the first evidence

for contrasting telomere dynamics in wild mammal popu-

lations experiencing different environmental conditions. As

predicted, we found shorter TL in the population experiencing
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a poorer environment, but this difference was only apparent at

older ages and was underpinned by a cross-sectional increase

in TL with age in the population experiencing good environ-

mental conditions. Our study adds to an emerging literature

on wild birds and fishes documenting associations between

TL and environmental conditions, although most studies

have focused on early life. For instance, experimental brood

enlargements, expected to increase competition for parental

provisioning and physiological stress in developing birds, are

associated with shortened TL [7], and being raised in urban

or higher altitude populations reduced TL in nestlings [8,10].

Likewise, in salmon, young-of-the-year from higher average

temperature rivers (i.e. higher thermal stress) had shorter TL

[9]. By contrast, we found no evidence of a difference in TL

among roe deer populations in the youngest age groups,

despite fawns in different locations experiencing marked

differences in climatic conditions and food availability in utero
and during early life [17]. Previous studies in birds have

detected shorter TL in adults experiencing more challenging

environments [11,12]. However, our data encompass the full

natural age range in both populations and imply that the

environmental effect on TL is a cumulative one that is apparent

only later in adulthood at the population level.

We predicted, assuming that increased environmental

stress drives more rapid telomere attrition, that declines in TL

with age should be greater in CH than TF. However, TL actu-

ally increased with age in TF and tended to decline in CH.

There is growing appreciation that within-individual lengthen-

ing of TL can and does occur [20], although the process remains

poorly understood. Cross-sectional changes in telomere length,

however, are not necessarily driven by within-individual

changes, and the selective disappearance of individuals with

short telomeres has been observed to increase average TL

with age in wild mammals [13]. It is possible that both our

study populations are experiencing selective disappearance,

but that poor environment at CH may drive more rapid TL

shortening compared with TF, making the increase in TL in

older individuals not detectable in this population. Overall,

our results highlight the potential complexity of telomere

dynamics in natural systems, and the importance of long-

term longitudinal studies to disentangle the contributions of

within- and among-individual processes to these dynamics.

We found no evidence that size-corrected body mass was

associated with TL in either study population (figure 1b),

despite marked differences in average body mass across

all ages between populations (electronic supplementary
material, figure S1). We predicted a positive relationship

between TL and body mass within populations, but note

that previous studies in birds and mammals have reported

conflicting associations between TL and either early-life

growth rates or body mass [14,15]. A previous study compar-

ing the same two roe deer populations found that while CH

had lower levels of metabolic markers (e.g. haemoglobin and

albumin levels) associated with body condition than TF,

immunological markers were not consistently lower at CH

[18]. In contrast to other vertebrates, mammals have enu-

cleated red blood cells and TL measurements from blood

only include leucocytes, which means immune status could

have a much greater influence on telomere dynamics.

Although a recent study of Soay sheep found little evidence

that leucocyte TL and leucocyte cell composition were associ-

ated [14], the role of infection history and immune phenotype

in the population differences in TL reported here remains to

be determined.

We have presented important evidence for sex and body

mass independent differences in TL among populations

experiencing contrasting environments. The crucial next

step for the application and understanding of TL as a bio-

marker in wildlife ecology will be to understand the

particular aspects of environmental conditions and physio-

logical status that TL responds to and how these in turn

relate to life history and fitness.
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