Data in Brief 14 (2017) 313-319

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on the impact of the blood sample collection methods on blood protein profiling studies

Maria Ilies ^{a,b}, Cristina Adela Iuga ^{a,c}, Felicia Loghin ^d, Vishnu Mukund Dhople ^b, Thomas Thiele ^e, Uwe Völker ^{b,f}, Elke Hammer ^{b,f,*}

^a Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, no. 6 Louis Pasteur st., 400349 Cluj-Napoca, Romania

^b Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, F.-L.-Jahn-Str. 15a, 17475 Greifswald, Germany

^c Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hajieganu University of Medicine and Pharmacy, no. 4-6 Louis Pasteur st., 400349 Cluj-Napoca, Romania ^d Department of Toxicology, Faculty of Pharmacy Iuliu Hajieganu University of Medicine and Pharmacy, no.

6 Louis Pasteur st., 400349 Cluj-Napoca, Romania

^e Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Sauerbruchstr., 17475 Greifswald, Germany

^f DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany

ARTICLE INFO

Article history: Received 25 May 2017 Accepted 11 July 2017 Available online 14 July 2017

Keywords: LC-MS^E method data Proteomics Plasma Serum Proteomics

ABSTRACT

Complete blood protein profiles of 4 different blood sample collection methods (EDTA-, heparin- and citrate plasma and serum) were investigated and the data presented herein is an extension of the research article in Ilies et al. [1]. Specimens were depleted of 6 highly abundant proteins and protein profiling was assessed by nano-LC UDMS^E. Exhaustive protein sets and protein abundances before and after depletion are presented in tables and figures. Also, the core protein set and the unique proteins for each sample collection method previously described [1] are disclosed.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.cca.2017.05.030

http://dx.doi.org/10.1016/j.dib.2017.07.025

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author at: Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, F.-L.-Jahn-Str. 15a, 17475 Greifswald, Germany.

E-mail addresses: ilies.maria@umfcluj.ro (M. Ilies), iugac@umfcluj.ro (C.A. Iuga), floghin@umfcluj.ro (F. Loghin), dhoplevm@uni-greifswald.de (V.M. Dhople), thielet@uni-greifswald.de (T. Thiele), voelker@uni-greifswald.de (U. Völker), hammer@uni-greifswald.de (E. Hammer).

Subject area	Proteomics
More specific subject area	Clinical chemistry, Biomarker analysis, Blood proteome profiling
Type of data	Tables, figures (PDF file format)
How data was acquired	nano liquid chromatography (AQUITY UPLC M-CLASS, Waters Corporation) tandem mass spectrometry (Synapt G2Si mass spectrometer, WATERS Corporation) UDMS ^E data acquisition
Data format	Analyzed and processed data
Experimental factors	24 blood samples were drawn from 6 healthy young volunteers in serum tubes and plasma tubes containing EDTA, heparin, and citrate.
Experimental features	Serum and plasma was obtained after tube manufacturer's instructions and aliquots were stored at -80 °C until analysis. Protein profiles were analyzed before and after samples depletion of 6 high abundant proteins using a commercial MARS6 (Agilent Technologies) immunoaffinity based column. Prior to the mass spectrometric ana- lysis, proteins were digested by trypsin and peptides were further analyzed and protein profiles investigated with respect to the sample collection method influence.
Data source location	Greifswald, Germany
Data accessibility	Data is with article

Specifications Table

Value of the data

- Data shows a comprehensive evaluation of the different blood sample collection methods on 6 high abundant proteins and their depletion efficiency using immunoaffinity MARS6 column which can be used for future investigations on blood high abundant proteins and depleted fractions.
- Individual protein abundances, their presence and variance in the samples collected with different methods after depletion are of potential value to determine which sampling method to be used for proteomics investigations.
- Data presents an all-inclusive set of information on the methods applied to evaluate the impact of different blood sample collection methods on protein profiling studies and can be used as benchmark for future blood protein profiling studies.

1. Data

In this Data in Brief article we provide detailed information on blood protein profiling as an extension of the results reported in Ref. [1], 24 blood specimens were collected from 6 healthy and young volunteers in different sample collection tubes for serum and plasma. Tubes characteristics and the subsequent sample preparation are presented in Table 1. For the blood protein profiling a nanoLC-UDMS^E method

Table 1 Blood sample collection tubes characteristics.

Blood product	Serum	Plasma					
Tube type Plastic SST TM II Advance		Plastic K2EDTA	Glass Citrate	Glass sodium heparin			
Cat. No./NHS code	367954/KFK114	367873/KFK286	367691/KFK186	367876/KFK279			
Additive Silica (clot activator)		Potassium EDTA	Buffered sodium citrate	Sodium heparin (17			
(concentration)	gel		(0,105 M)	IU/mL blood)			
Volume (mL)	5	6	4.5	6			
Mixing recommen-	Gently inverted 180°	Gently inverted 180°	Gently inverted 180° and	Gently inverted 180°			
dation	and back	and back	back	and back			
5–6 times		8-10 times	3-4 times	8-10 times			

Table	2
-------	---

Summary of depletion efficiency.

Mean protein abundance	EDTA plasma		Heparin plasma		Citrate	plasma	Serum		
	Before depletion	After depletion	Before depletion	After depletion	Before depletion After depletion		Before depletion	After depletion	
All proteins	40568018.74	44741390.04	35119594.07	52949084.17	40671622.40	69872,370.90	54995897.89	45191163.47	
α-1-antitrypsin	757196.34	14259.97	584561.17	23153.90	764890.57	22854.17	1006489.65	29692.67	
Haptoglobin	631767.39	18029.34	487822.58	41219.67	596917.79	56161.72	689948.19	41259.85	
Ig A	429327.89	44422.15	380247.33	23957.12	431941.12	51775.29	550978.46	18885.19	
Ig G 1–4	2013660.86	91452.63	1677118.63	101491.82	2145431.99	168092.78	2856603.51	124679.28	
Serotransferrin	2369837.17	213742.01	2096978.58	183333.16	2651548.54	364344.32	3224215.08	202618.47	
Serum albumin	15235797.33	2056072.75	12925303.83	1866019.81	15394810.67	3600066.33	22315530.67	2807855.77	
Other proteins	19130431.76	42303411.19	16967561.94	50709908.69	18686081.72	65609076.29	24352132.33	41966172.25	
Total fibrinogen	1839721.65	7325737.50	1108301.52	6370617.46	1657777.20	9817167.88	0.00	71699.88	

Fig. 1. HAP abundance before and after depletion.

Fig. 2. Total fibrinogen abundance before and after depletion of HAP.

Fig. 3. Global overview on the identified peptides and quantified proteins.

Table 3TOP 10 abundant proteins exclusively identified per sampling method.

Accession	Entry name	TOP10_EDTA plasma Protein names	Secreted/ leakage	EDTA 1	EDTA 2	EDTA 3	EDTA 4	EDTA 5	EDTA 6	Mean	cv
075410	TACC1	Transforming acidic coiled-coil-containing protein 1	Leakage	49174	65077	109984	54229	65833	39035	63889	0.39
Q9P2D6	F135A	Protein FAM135A	Not specified	47425	51140	9049	33084	57915	46010	40770	0.43
Q99683	M3K5	Mitogen-activated protein kinase kinase kinase 5	leakage	37558	44893	34790	36856	52333	37776	40701	0.16
Q9P0W8	SPAT7	Spermatogenesis-associated protein 7	Leakage	21640	32866	28811	17938	32732	19729	25619	0.26
Q9BYW2	SETD2	Histone-lysine N-methyltransferase SETD2	Leakage	22027	26583	21030	22561	30931	20783	23986	0.17
Q15573	TAF1A	TATA box-binding protein-associated factor RNA polymerase I subunit A	Leakage	14671	20078	22199	21065	27359	18243	20603	0.21
P15813	CD1D	Antigen-presenting glycoprotein CD1d	Leakage	13395	17280	13398	14071	20923	15275	15724	0.19
014950	ML12B	Myosin regulatory light chain 12B	Not specified	10508	9974	11784	13291	8753	9291	10600	0.16
Q5TBE3	CI153	Uncharacterized protein C9orf153	Not specified	6183	7639	8439	7543	11014	7128	7991	0.21
Q8N4P6	LRC71	Leucine-rich repeat-containing protein 71	Not specified	10463	8450	5703	7123	6758	6869	7561	0.22
Accession	Entry name	TOP10_heparin plasma Protein names	Secreted/ leakage	Heparin 1	Heparin 2	Heparin 3	Heparin 4	Heparin 5	Heparin 6	Mean	CV
	nume		icunage	•	-			5	•		
Q8WUY3	PRUN2	Protein prune homolog 2	Leakage	160723	206288	192573	306294	247158	283487	232754	0.24
Q15811	ITSN1	Intersectin-1	Leakage	50959	63100	53081	48220	90431	34339	56688	0.33
Q00610	CLH1	Clathrin heavy chain 1	Leakage	15586	14728	18562	20815	22935	20262	18815	0.17
P24043	LAMA2	Laminin subunit alpha-2	Secreted	11392	12288	14534	17688	16610	15376	14648	0.17
Q96RE9	ZN300	Zinc finger protein 300	Leakage	7134	11365	11937	20051	15033	15472	13499	0.33
Q9P0W5	SCHI1	Schwannomin-interacting protein 1	Leakage	17022	10273	10231	14051	10710	10656	12157	0.23
Q5RL/3	RBM48	RNA-binding protein 48	Not specified	5454	8424	11531	14460	8906	21118	11649	0.48
Q9P219	DAPLE	Protein Dapie	Leakage	/162	10200	14/09	10857	0001	10820	10822	0.22
QBIN3K3	DIDOD	I-Cell activation minipitor, minochondrial Bibonucloosido diphosphato reductase	Leakage	13138 E4E2	0100	8905	8022 10250	9601	8057	9914	0.19
Q/LG30	KIK2D	subunit M2 B	Leakage	5452 8109		8708	10250	6332	9255	0304	0.19
Accession	Entry	TOP10_citrate plasma	Secreted/	Cit	rate Citr	ate Citra	te Citrat	e Citrate	Citrate	Mean	CV
	name	Protein names	leakage		1 2	3	4	5	6		
Q9P2M7	CING	Cingulin	Leakage	25	422 200	003 2188	36 23540	5 30961	24534	24392	0.15
P12259	FA5	Coagulation factor V	Secreted	23	814 17	933 1960	60 25752	2 18389	25697	21874	0.17
Q9P2F6	RHG20	Rho GTPase-activating protein 20	Not specifie	ed 23	589 22	007 1602	1285	5 27896	20017	20398	0.26
Q8N4C7	STX19	Syntaxin-19	Leakage	28	854 20	451 1590	02 13099	9 22999	13806	19185	0.32
P01036	CYTS	Cystatin-S	secreted	11	101 15	559 1339	94 13580	5 12003	13467	13201	0.12
Q9UHR6	ZNHI2	Zinc finger HIT domain-containing protein 2	Not specifie	ed 19	443 16	322 490	57 3913	3 10581	11941	11278	0.55
Q96RG2	PASK	PAS domain-containing serine/threonine-protein kinase	Leakage	6	479 5	955 874	49 6900	5 9560	7207	7476	0.19
P82970	HMGN5		Leakage	9	548 8	133 729	95 6810) 7588	5103	7413	0.20

317

Accession	Entry name	TOP10_citrate plasma Protein names	Secreted/ leakage	Citrate 1	Citrate 2	Citrate 3	Citrate 4	Citrate 5	Citrate 6	Mean	cv
Q9Y275 Q8TBF8	TN13B FA81A	High mobility group nucleosome-binding domain-containing protein 5 Tumor necrosis factor ligand superfamily member 13B Protein FAM81A	Secreted Not specified	7560 2397	5901 14042	9552 4879	8230 6685	5887 5055	5013 6287	7024 6558	0.24 0.60
Accession	Entry name	TOP10_serum Protein names	Secreted/ leakage	Serum 1	Serum 2	Serum 3	Serum 4	Serum 5	Serum 6	Mean	CV
P04275 O95602 Q9ULI0 Q96HQ0 P07996 Q9BS31 A6NET4 Q8WXX0 Q7Z443 P0910C	VWF RPA1 ATD2B ZN419 TSP1 ZN649 OR5K3 DYH7 PK1L3 AT11A	von Willebrand factor DNA-directed RNA polymerase I subunit RPA1 ATPase family AAA domain-containing protein 2B Zinc finger protein 419 Thrombospondin-1 Zinc finger protein 649 Olfactory receptor 5K3 Dynein heavy chain 7, axonemal Polycystic kidney disease protein 1-like 3 Derkeble achersbeligied transporting ATDage III	Secreted Leakage Leakage Leakage Leakage Leakage Leakage Leakage	171296 118817 51935 36426 44367 23893 38230 19153 12597 15542	202739 176926 64557 50320 39433 41507 37448 26320 7542	192598 184007 22306 48458 21407 27030 43819 19664 19654	166870 192232 53282 36400 42369 51443 30573 22016 27879	183833 145288 62255 54318 47867 37056 25303 33037 14351	187044 177692 57282 39176 37343 43081 33517 19816 4420	184063 165827 51936 44183 38797 37335 34815 23334 14407	0.07 0.17 0.30 0.18 0.24 0.28 0.19 0.23 0.23 0.59

and standard search parameters were employed. Detailed description of methods can be found in Ref. [1] and its supplementary methods. 6 highly abundant blood proteins, namely serum albumin, immunoglobulin gamma, immunoglobulin alpha, serotransferrin, haptoglobin, and alpha-1-antitrypsin, were depleted by using a commercially available immunoaffinity depletion column. A detailed overview on depletion efficiency based on protein abundances for all sample collection methods is presented in Table 2. The distribution of the high abundant proteins before and after depletion is presented in Fig. 1 and more specific, fibrinogen coverage is shown in Fig. 2. Data regarding number of identified peptides and relatively quantified proteins for all sample types after depletion is shown in Fig. 3. Also, a top 10 list of the most abundant unique proteins for each of the EDTA-, heparin-, citrate plasma and serum samples is given in Table 3. The complete list of all relatively quantified proteins over all samples including their occurrence in the protein core set or as unique proteins interpreted in detail previously [1], can be found in the Supplementary material with data on individual sample abundance, mean abundance for each sample collection method and the abundance based coefficient of variation after depletion.

2. Experimental design, materials and methods

Experimental design and the materials and methods have been reported previously [1].

Acknowledgements

We would like to thank to the European Social Found, Human Resources Development Operational Programme 2007–2013 [Project no. POSDRU/159/1.5/136893], the Deutscher Akademischer Austauschdienst (German Academic Exchange Service) [Programme ID 57130104, Personal number: 91558112], the ERASMUS + Traineeship [Contract no. 06/24/08/2016] and the Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca Romania [Grant no. 7690/57/2016] for the research grants awarded to Maria Ilies.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.07.025.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.07.025.

Reference

 M. Ilies, C.A. Iuga, F. Loghin, et al., Impact of blood sample collection methods on blood protein profiling studies, Clin. Chim. Acta 471 (2017) 128–134.