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Identification of necroptosis-
related subtypes and prognosis
model in triple negative
breast cancer

Shengyu Pu †, Yudong Zhou †, Peiling Xie, Xiaoqian Gao,
Yang Liu, Yu Ren, Jianjun He* and Na Hao*

Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
Background: Necroptosis is considered to be a new form of programmed

necrotic cell death, which is associated with metastasis, progression and

prognosis of various types of tumors. However, the potential role of

necroptosis-related genes (NRGs) in the triple negative breast cancer (TNBC)

is unclear.

Methods: We extracted the gene expression and relevant clinicopathological

data of TNBC from The Cancer Genome Atlas (TCGA) databases and the Gene

Expression Omnibus (GEO) databases. We analyzed the expression, somatic

mutation, and copy number variation (CNV) of 67 NRGs in TNBC, and then

observed their interaction, biological functions, and prognosis value. By

performing Lasso and COX regression analysis, a NRGs-related risk model for

predicting overall survival (OS) was constructed and its predictive capabilities

were verified. Finally, the relationship between risk_score and immune cell

infiltration, tumor microenvironment (TME), immune checkpoint, and tumor

mutation burden (TMB), cancer stem cell (CSC) index, and drug sensitivity were

analyzed.

Results: A total 67 NRGs were identified in our analysis. A small number of

genes (23.81%) detected somatic mutation, most genes appeared to have a

high frequency of CNV, and there was a close interaction between them. These

genes were remarkably enriched in immune-related process. A seven-gene

risk_score was generated, containing TPSG1, KRT6A, GPR19, EIF4EBP1, TLE1,

SLC4A7, ESPN. The low-risk group has a better OS, higher immune score, TMB

and CSC index, and lower IC50 value of common therapeutic agents in TNBC.

To improve clinical practicability, we added age, stage_T and stage_N to the

risk_score and construct a more comprehensive nomogram for predicting OS.

It was verified that nomogram had good predictive capability, the AUC values

for 1-, 3-, and 5-year OS were 0.847, 0.908, and 0.942.

Conclusion: Our research identified the significant impact of NRGs on

immunity and prognosis in TNBC. These findings were expected to provide a

new strategy for personalize the treatment of TNBC and improve its clinical

benefit.
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Introduction

Currently, female breast cancer has become the most

common cancer, and its mortality rate ranks fifth among all

cancer deaths (1). About 15-20% of all newly diagnosed breast

cancers are triple-negative breast cancer (TNBC), which has a

worse prognosis and accounts for 5% of all cancer-related deaths

(2). Due to lack ER, PR, and HER2 expression, TNBC is

insensitive to endocrine therapy or anti-HER2 therapy and has

limited benefit from chemotherapy and characterized by early

recurrence and poor outcomes (2). There is a lack of effective

treatment strategies for TNBC. Therefore, it is of great

significance to find new biomarkers for optimal treatment and

prediction prognosis of TNBC, which has become a continuous

hot spot in breast cancer research for many years.

Necroptosis was considered a new programmed form of

necrotizing cell death (3), which mainly mediated by RIPK1,

RIPK3, and MLKL, and inhibited by NEC1 (4). According to

previous literature, necroptosis was implicated in the

pathogenesis of neuroinflammatory diseases such as

Alzheimer’s disease, Parkinson’s disease, and traumatic brain

injury (5–7). In addition, it also plays an important role in

carcinogenesis and has been proved strongly associated with

tumor progression (8). Necroptosis can prevent tumor

development, but can also promote cancer metastasis and

immunosuppression by triggering an inflammatory response.

This dual effect on tumors has been found in multiple cancer

types (8–10). Therefore, regulating necroptosis in tumors may be

an innovative and potential therapeutic strategy. There are

several studies analyzed the relationship between necroptosis

and breast cancer. Zheng.L et al. screened necroptosis-associated

miRNAs for predicting breast cancer metastasis (11). Chen. F

et al. established a risk model based on 7 necroptosis-related

lncRNAs to predict breast cancer prognosis (12). However, there

have been few studies have analyzed the necroptosis-related

genes (NRGs) signature in TNBC.

In this study, NRGs expression data and related clinical data

of TNBC patients were downloaded from The Cancer Genome

Atlas (TCGA) database. First, we analyzed the expression

profiles of NRGs and divided samples into two distinct

necroptosis subtypes based on NRGs expression levels. Next,

we identified differentially expressed genes (DEGs) based on

the two necroptosis subtypes and divided patients into three

gene subtypes. Then, a necroptosis-related prognostic risk
02
model was constructed to predict overall survival (OS) of

patients. We also analyzed the genetic mutation, biological

process, immune landscape, and drug susceptibility et al. of

NRGs within TNBC.
Methods

Data collection

The analysis process of this study is shown in Figure 1. We

search the breast cancer data by the keyword: “BRCA” in The

Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)

and “TNBC and survival” in the Gene Expression Omnibus

(GEO) databases (https://www.ncbi.nlm.nih.gov/geo/) database
FIGURE 1

The workflow of the data analysis. TNBC, triple negative breast
cancer; NRGs, necroptosis-related genes; CSC, cancer stem cell.
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and written by English. The patients meeting the following

criteria were included: 1). Histologically diagnosed breast

cancer; 2). Negative expression of ER, PR, and HER2; 3).

Available gene expression profiling by array of homo sapiens;

4). Complete follow-up information. After excluding data with

incomplete records, 275 cases with follow-up time and 155 cases

with full clinicopathological information were selected (Table

S1). We obtained the gene expression (fragments per kilobase

million, FPKM), mutation, copy number variation (CNV), and

relevant clinicopathological data of breast cancer from the

TCGA database and the GEO database, which including four

TNBC cohorts (GSE39004, GSE58812, GSE10886 and

GSE97342). Moreover, we selected TNBC samples from the

Metabric database (http://www.cbioportal.org/study/summary?

id=brca_metabric) and GSE31519 datasets as external validation

cohort. Then, we transformed the FPKM values of TCGA-BRCA

into transcripts per kilobase million (TPM) for further analysis.
Genetic mutation, CNV and consensus
clustering analysis of NRGs

According to GSEA website (https://www.gsea-msigdb.org/

gsea) and previous literatures (12–14), we extracted 67

necroptosis-related genes (NRGs). The summary of these 67

NRGs was listed in the Tables S2 , S3. The R package “maftools”

and “RCircos” was used to show the genetic mutation and

locations of CNV alterations of NRGs on 23 chromosomes,

respectively. Based on these NRGs, we performed consensus

clustering analysis to identify different necroptosis subtypes by

the R package “ConsensusClusterPlus”. The overall survival

(OS) of different necroptosis subtypes was assessed by the R

package “survival” and “survminer”. Using the R package

“Limma” to identify the DEGs between the two necroptosis

subtypes. Furthermore, we observed the relationship between

different necroptosis subtypes and clinicopathological

characteristics, such as age and TNM stage, by the R

package “pheatmap”.
GSVA, PCA, and functional enrichment
analysis

The Gene Set Variation Analysis (GSVA) was employed to

investigate the difference of relevant biological process between

different necroptosis subtypes. In addition, we used the single-

sample gene set enrichment analysis (ssGSEA) algorithm to

observe the levels of immune cell infiltration in the different

necroptosis subtypes. The principal component analysis (PCA)

was used to assort TNBC samples based on necroptosis subtypes.

The gene ontology (GO) analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways analysis was applied to

identify the biological process of NRGs. The “GSEABase”,
Frontiers in Immunology 03
“GSVA”, “clusterProfiler”, “limma”, “org.Hs.e.g.db”, and

“enrichplot” etc R packages were used in this process.
Construction of the necroptosis-related
prognostic risk model

First, the prognostic-related NRGs were identified by

univariate COX regression with P < 0.05. Then, we divided

samples into different gene clusters with the unsupervised

clustering analysis according to the expression of prognostic-

related NRGs. Similarly, OS and clinicopathological

characteristics of different gene clusters were observed. Next,

all data were randomly divided into training set and testing set in

a 1:1 ratio by the “caret” R package, then established the

necroptosis-related prognostic risk model in the training set.

The risk model was validated in the testing set and external

cohort. LASSO regression was applied to prevent over-fitting

and observe the trajectory of each variable by the “glmnet” R

package. Finally, the independent prognostic-related genes were

screened out by multivariate COX regression analysis. We used

risk-score and clinicopathological characteristics to build a

nomogram by the “rms” R package. The discrimination of the

model was assessed using the time-dependent area under the

ROC curve (AUC) and the correction of the model was

evaluated by the calibration curve. According to the median

risk score in the training set, the patients were classified to low-

risk group and high-risk group. Sankey diagram was made to

show the cluster distribution with different risk group and

survival outcomes by the “dplyr” R package.
Tumor Immune and cancer stem cell
(CSC) index Analysis

We used CIBERSORT algorithm to perform the tumor

immune analysis. First, we investigated the correlation

between prognostic-related genes and risk score with 22

tumor-infiltrating immune cells. Then, we calculated tumor

microenvironment (TME) scores by “Estimate” R package for

high- and low-risk groups, which including stromal score,

immune score, and estimate score. In addition, we explored

the relationship between stemness scores and risk score.
Tumor mutation and drug susceptibility
analysis

We converted the somatic mutation file extracted from the

TCGA database into mutation annotation format (MAF) with

the “maftools” R package and observed mutation status of

samples in the high- and low-risk groups. Furthermore, we

calculated the tumor mutation burden (TMB) score of two
frontiersin.org
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risk groups and investigated the correlation between TMB score

and risk score. Finally, we used the “pRophetic” R package to

calculate the semi-inhibitory concentration (IC50) values of

commonly used chemotherapeutic drugs for TNBC and to

compare the differences in the efficacy of chemotherapeutic

drugs in high- and low-risk groups.
qRT-PCR

Total RNA was extracted from TNBC cells (MDA-MB-231,

SUM 159, and BT-549) and normal mammary epithelial cell

(MCF-10A) with the RNA fast200 reagent (Fastagen Biotech;

220010). cDNA was synthesized with the StarScript II First-

strand cDNA Synthesis Kit-II for qRT-PCR (Genestar). The

mRNA expression levels were quantified with the SYBR-Green

assays (Genestar) in the Bio-Rad CFX-96 instrument (Hercules).

We processed the data through the 2-DDC t strategy and selected

GAPDH as an internal reference. The primer sequences used in

this study were listed in Table S4.
Statistical analysis

All statistical analyses were conducted with R statistical

software (version 4.1.1, R Foundation for Statistical

Computing, Vienna, Austria). A two-tailed P<0.05 was

considered statistically significant.
Results

Genetic expression and mutation of
NRGs in breast cancer

A total of 67 NRGs were included in this study. A pooled

analysis of the incidence of somatic mutations in these 67 NRGs

showed that, out of 987 breast cancer samples, 235 (23.81%) had

mutations in NRGs (Figure 2A). Among them, GATA3 had the

highest mutation frequency (13%), and frame-shift insertion

mutations accounted for the majority. Followed by ATRX (3%)

and CASP8 (2%), missense mutations are the most common

mutations for the two genes. In addition, we investigated CNV in

these NRGs and found that copy number alterations were

prevalent in all 67 NRGs. Specifically, FADD, MYC, TRIM11,

and TNFSF10 had extensive CNV gains, while TARDBP,

TNFRSF1B, SIRT3 and PANX1 exhibited CNV deletions

(Figure 2C, Table S5). Meanwhile, we also observed gene

mutation and CNV changes in the Metabric database (Figure

S1). The CNV alterations of NRGs and their locations on the 23

chromosomes were shown in Figure 2B and Table S6. Finally, we

analyzed the mRNA expression differences of NRGs in tumor

tissues and normal tissues (Figure 2D). We found that most of
Frontiers in Immunology 04
the highly expressed NRGs in tumor tissues have CNV gain,

such as TRIM11, ZBP1. However, there are also some NRGs with

CNV gain, such as FADD, FASLG, and no significantly

difference in tumor and normal tissue. This phenomenon

implies that CNV can affect NRGs expression, but it is not the

only influencing factor (15).
Identification of necroptosis subtypes in
TNBC

To explore the effect of NRGs on tumorigenesis, we

performed COX univariate regression analysis to analyze the

relationship between NRGs and breast cancer OS and plot the

survival curve for the genes based on the threshold of P<0.05

(Figure S2 and Table S7). Then, we used a necroptosis network

to show these NRGs interactions, mutually regulation, and their

prognostic value in breast cancer patients (Figure 3A). To

investigate the landscape of NRGs expression in patients with

TNBC, we performed the consensus clustering algorithm to

categorize the samples according to the expression profiles of

67 NRGs. Our results indicated that k=2 was the best choice for

dividing the entire samples into subtype A and subtype B

(Figure 3B). The Kaplan-Meier curves showed subtype A has a

better OS than type B (log-rank test, P = 0.416; Figure 3C). In

addition, the PCA analysis implied a remarked difference in

necroptosis transcriptional profiles between the two subtypes

(Figure 3D). Furthermore, we compared the clinicopathological

features of different subtypes of breast cancer with a heatmap

(Figure 3E). We also add more samples from Metabric database

to 369 cases for further validation (Figure S3 and Table S8). The

results showed that the distribution of age (P = 0.047) and T

stage (P = 0.047) between two subtypes was significant.
Characteristics of the biological behavior
in necroptosis subtypes

GSVA analysis revealed the main biological processes

enriched for two subtypes and the difference were statistically

significant (Figure 4A; Table S9). As shown in Figure 4A,

subtype A was significantly enriched in vasopressin regulated

water reabsorption, valine leucine and isoleucine degradation,

sphingolipid metabolism, type II diabetes mellitus, endocytosis,

other glycan degradation et al. biological processes. And subtype

B was mainly enriched in nod like receptor signaling pathway,

natural killer cell-mediated cytotoxicity, cell cycle, homologous

recombination, DNA replication et al. pathways. In addition,

ssGSEA algorithm showed the levels of 22 immune cell

infiltration in the two subtypes (Figure 4B). We found that the

infiltration of most immune cells was statistically different

between the two subtypes. CD56dim NK cells, eosinophils,

immature dendritic cells, mast cells, NK cells, neutrophils,
frontiersin.org
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plasmacytoid dendritic cell had significantly higher infiltration

in subtype A than those in subtype B. However, subtype B had

more immune cell infiltration, such as activated B cells, activated

CD4 T cells, activated CD8 T cells, activated dendritic cells,

CD56 bright NK cells, gamma delta T cells, MDSC cells,

macrophage, Monocyte, NK T cells, regulatory T cells,

T follicular helper cells et al.
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Moreover, we screened out 527 necroptosis subtype-related

DEGs (Table S10) and conducted functional enrichment

analysis (Figures 4C, D; Table S11).GO analysis showed that

these subtype-related DEGs were involved in biological

processes such as gland development, reproductive structure

and system development, apical plasma membrane, DNA-

binding transcription activator activity et al. KEGG pathway
A B

D

C

FIGURE 2

Genetic expression and mutation of NRGs in breast cancer. (A). Somatic mutation frequencies of NRGs; (B). The CNV locations on the 23
chromosomes of NRGs. (C). Frequencies of CNV gain and loss among NRGs. (D). Expression differences of NRGs in tumor tissues and normal
tissues (t-test, “***”, P = 0.001; “**”: P = 0.01; “*”: P = 0.05). NRGs, necroptosis-related genes; CNV, copy number variation.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.964118
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pu et al. 10.3389/fimmu.2022.964118
analysis suggested that these NRGs were mainly related to

MAPK signaling pathway, PI3K-Akt signaling pathway,

human T-cell leukemia virus 1 infection, breast cancer, Wnt

signaling pathway, cell cycle, transcriptional misregulation in

cancer et al.
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Identification of gene subtypes in TNBC
based on DEGs

We performed univariate COX regression for 527 DEGs

to analyze their prognostic value in TNBC, and obtained 40
A B

D

E

C

FIGURE 3

Identification of necroptosis subtypes and clinicopathological characteristics in TNBC. (A). Interactions and prognostic value of NRGs; (B).
Consensus matrix heatmap defining two necroptosis subtypes (k = 2). (C). The Kaplan-Meier analysis for OS of two necroptosis subtypes. (D).
The PCA analysis of two necroptosis subtypes. (E). Clinicopathologic characteristics and expression levels of NRGs of two necroptosis subtypes.
NRGs, necroptosis-related genes; TNBC, triple negative breast cancer; OS, overall survival; PCA, principal components analysis.
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genes according to P < 0.05 for further analysis (Table S12).

Then, based on these prognosis-related genes, we used a

consensus clustering algorithm to divide the cohort into

three gene subtypes (Figures 5A, B). Kaplan–Meier survival

analysis suggested that the OS among the three gene subtypes

were significant (P = 0.008), and gene cluster B having the

worst prognosis (Figure 5C). Then, we analyzed the

distribution of clinicopathological features in each gene

cluster with a heatmap (Figure 5D). Finally, the expression

of NRGs in each gene cluster was analyzed, and the results

showed that the expression of NRGs was significantly

different (Figure 5E).
Construction of necroptosis-related
prognostic risk_score

Based on 40 prognosis-related genes, we constructed a

necroptosis-related prognostic risk model (Figure 6). First, we

randomly divided the cohort into training and testing sets in a
Frontiers in Immunology 07
1:1 ratio, and then selected the optimum prognostic factors by

Lasso regression and COX multivariate regression analysis.

According to Lasso regression, 11 OS-related genes were

retained by minimum partial likelihood deviance (Figures 6A,

B). COX multivariate regression analysis was performed based

on these 11 OS-related genes, and finally, we screened out 7

genes (TPSG1, KRT6A, GPR19, EIF4EBP1, TLE1, SLC4A7,

ESPN) for constructing risk model. The risk_score was

constructed as follows:

Risk_score = (0.2668* expression of TPSG1) + (0.1289*

expression of KRT6A) + (-1.0792* expression of GPR19) +

(0.3827* expression of EIF4EBP1) + (0.4732* expression of

TLE1) + (-0.6097* expression of SLC4A7) + (0.2877 *

expression of ESPN).

According to the median risk_score, the patients were

classified as low-risk groups (n=132) and high-risk groups

(n=142). Sankey diagram showed the distribution of samples

in two necroptosis clusters, three gene clusters and two

risk_score groups (Figure 6C). We found that risk_score was

significantly different between three gene clusters (Figure 6D).
A B

DC

FIGURE 4

Characteristics of the biological behavior in necroptosis subtypes. (A). GSVA analysis of two necroptosis subtypes. (B). ssGSEA analysis of the
22 immune cell infiltration levels in two necroptosis subtypes (t-test, “***”, P = 0.001; “**”: P = 0.01; “*”: P = 0.05). (C, D). GO (C) and KEGG
(D) enrichment analyses of DEGs among two necroptosis subtypes. GSVA, Gene Set Variation Analysis; ssGSEA, single-sample gene set
enrichment analysis; GO, gene ontology analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes pathways analysis; DEGs, differentially
expressed genes.
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The cluster B had the highest score, followed by cluster A, and

cluster C had the lowest score. The difference of risk_score

among the two necroptosis clusters was showed in Figure 6E.

The Kaplan–Meier survival analysis of the two risk groups

declared that the patients in the low-risk group could obtain

significantly better OS than those in the high-risk group (log-
Frontiers in Immunology 08
rank test, P<0.001; Figure 6F). Furthermore, the 1-, 3- and 5-year

AUC value of risk_score model were 0.743, 0.758, 0.830 in the

training cohort (Figure 6G). The 1-, 3- and 5-year AUC value in

the entire cohort were 0.736, 0.737, 0.718 and in the testing

cohort were 0.728, 0.718, and 0.613, respectively (Figure S4).

Moreover, we also validated the risk_score model in the
A
B

D

E

C

FIGURE 5

Identification of gene subtypes based on DEGs. (A, B). Consensus matrix heatmap defining three gene subtypes (k = 2). (C). The Kaplan-Meier
analysis for OS of three gene subtypes. (D). Clinicopathologic characteristics distribution of three gene subtypes and two necroptosis subtypes.
(E). Expression of NRGs in three gene subtypes (t-test, “***”, P = 0.001; “**”: P = 0.01; “*”: P = 0.05). DEGs, differentially expressed genes; OS,
overall survival; NRGs, necroptosis-related genes.
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GSE31519 dataset (Figure S5). Finally, we investigated

differences in the expression levels of NRGs within the two

risk groups (Figure 6H).
Development and validation of a
prognostic nomogram for TNBC

To improve c l in i c a l p rac t i c ab i l i t y , we added

clinicopathological parameters, including age, stage_T and

stage_N, to the above prognostic risk model to construct a

more comprehensive nomogram for predicting OS of TNBC

(Figure 7A). It was verified that the model had good

discrimination. In the training set, the AUC values for 1-, 3-,

and 5-year were 0.847, 0.908, and 0.942, respectively (Figure 7B).
Frontiers in Immunology 09
In the testing set, the AUC values for 1-, 3-, and 5-year were

0.851, 0.726, and 0.832, respectively (Figure 7C). The calibration

curve suggested that the model had good correction ability

(Figure S6). Scatter plot of the risk distribution showed that

survival time decreased and mortality increased with increasing

of the risk score (Figures 7D, E). Finally, we validated the

performance of the nomogram in the Metabric cohort

(Figure S7).
Characteristics of the TME in the high-
and low-risk groups

We evaluated the association between risk_score and

immune cell infiltration with the CIBERSORT algorithm. As
A B

D E
F

G

H

C

FIGURE 6

Construction of necroptosis-related prognostic risk_score. (A, B). Lasso regression analysis on the prognosis-related genes. (C). Sankey diagram
of samples distribution in two necroptosis subtypes, three gene subtypes and two risk_score groups. (D, E). Difference of risk_score among the
three gene subtypes (D) and two necroptosis subtypes (E). (F). The Kaplan-Meier analysis for OS of two risk groups. (G). ROC curves to predict
1-, 3-, and 5-year OS according to the risk _score in the training cohort. (H). Expression of NRGs in two risk groups (t-test, “***”, P = 0.001; “**”:
P = 0.01; “*”: P = 0.05). OS, overall survival; NRGs, necroptosis-related genes.
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Figure 8A shown, risk_score was negatively associated with

memory B cells, activated dendritic cells, activated NK cells,

and gamma delta T cells, and was positively correlated with M2

macrophages, resting memory CD4+ T cells. In addition, low

risk_score was also associated with higher immune score

compared to high risk_score (Figure 8B). Then, we

investigated the relationship of seven genes in the model with

immune cells and found that these genes were significantly

associated with most immune cells (Figure 8C). Finally, we

observed the expression of immune checkpoints among two
Frontiers in Immunology 10
risk group. As Figure 8D shown, some immune checkpoints

were differentially expressed in the two groups.
CSC index, mutation and drug
susceptibility analysis

We analyzed the somatic mutations in the high- and low-

risk groups. The gene with the highest mutation frequency in

the two risk groups was TP53. We found that some genes were
A

B

D E

C

FIGURE 7

Development and validation of a prognostic nomogram. (A). Nomogram for predicting OS of TNBC. (B, C). ROC curves to predict 1-, 3-, and 5-
year OS according to the nomogram in the training cohort (B) and testing cohort (C). (D, E). Ranked dot, scatter plots, and heatmap showing
the risk_score distribution, patient survival status and gene expression in the in the training cohort and testing cohort. OS, overall survival.
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mutated more frequently in the low-risk group than in the

high-risk group, such as PTEN and HMCN1. Conversely,

MUC17 was mutated more frequently in the high-risk group

than in the low-risk group (Figures 9A, B). Then, the TMB was

negatively corrected with risk_score (Figure 9C). Furthermore,

the potential correlations between CSC index values and

risk_score was also assessed. According to Figure 9D,

risk_score was negatively correlated with CSC index,

meaning that TNBC cells with lower risk_score had more

obvious stem cell properties. Finally, we assessed the

susceptibility of TNBC patients in the high- and low-risk

groups to some common therapeutic agents. As Figures 9E–L

shown, most therapeutic drugs had lower IC50 value in the
Frontiers in Immunology 11
low-risk group, such as cisplatin, doxorubicin, gemcitabine and

vinorelbine et al, whereas lapatinib had a lower IC50 value in

the high-risk group.
Validation of the expression levels of the
seven NRGs in the risk model

The mRNA expression of seven prognosis related

necroptosis-genes in TCGA database was showed in Table

S13. In addition, we measured the expression levels of seven

prognostic genes in four TNBC cells and one normal

mammary epithelial cell by RT-qPCR. As shown in
A

B

D

C

FIGURE 8

Characteristics of the TME and immune checkpoint among two risk_score groups. (A). Association between risk_score and immune cell
infiltration; (B). Association between risk _score and both immune and stromal scores. (C). Association between the abundance of immune cells
and seven genes in the risk_score model. (D). Expression of immune checkpoints in the high and low-risk groups. TME, tumor
microenvironment.
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Figure 10, the expression levels of ESPN, SLC4A7 et al. were

upregulated while those of TPSG1 and KRT6A were

downregulated obviously in TNBC cells compared with

MCF-10A. Moreover, we contrasted the expression level of

these genes in TNBC patient’s tissues and corresponding

normal tissues in the GSE42568 dataset (Figure 11,

Table S14), the results showed that ESPN, GPR19, KRT6A,

SLC4A7, TPSG1 were significantly upregulated in TNBC

patients, while TLE1 was dramatically downregulated in
Frontiers in Immunology 12
TNBC patients. The prognostic value of seven necroptosis-

related genes was summarized in the Table S15.
Discussion

This is the first study, to our knowledge, to identify and

comprehensively summarize the NRGs somatic mutation,

expression level, CNV, immune infiltration, TME, CSC, drug
A B

D
E F

G IH

J K L

C

FIGURE 9

Mutation, CSC index, and drug susceptibility analysis among two risk_score groups. (A, B). The waterfall plot of somatic mutation features in the
high-risk group (A) and low-risk group (B). (C). Correlation between risk_score and TMB. (D). Correlation between risk_score and CSC index. (E-
L). Correlation between risk_score and drug sensitivity. CSC, cancer stem cell; TMB, tumor mutation burden.
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sensitivity et al. in TNBC. Based on the 67 NRGs, we divided the

samples into two necroptosis subtypes, and subtype A with

better OS. The biological process and immune cell infiltration

of the two subtypes were analyzed by GSVA and GSEA, and the
Frontiers in Immunology 13
results suggested that subtype B was mainly enriched in nod like

receptor signaling pathway, natural killer cell-mediated

cytotoxicity, cell cycle, homologous recombination, DNA

replication et al. In addition, subtype B has more immune cell
FIGURE 10

The mRNA expression of 7 prognosis related necroptosis-genes in TNBC cells and normal mammary epithelial cell by RT-PCR (t-test, “***”, P =
0.001; “**”: P = 0.01; “*”: P = 0.05).
FIGURE 11

The mRNA expression of 7 prognosis related necroptosis-genes in GEO database from TNBC patients and corresponding normal tissues (t-test,
“***”, P = 0.001; “**”: P = 0.01; “*”: P = 0.05).
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infiltration than subtype A. Based on the DEGs between the two

necroptosis subtypes, we identified three gene subtypes and

constructed a risk_score model for predicting OS in TNBC. In

order to improve the clinical utility of the model, we added

clinicopathological features to the model to construct a

nomogram and verified its predictive performance. The

prognosis, mutation, TME, CSC index and drug sensitivity of

patients with low-risk and high-risk NRG scores were

significantly different. Our findings revealed that NRGs could

be used to assess prognosis significance and immunotherapy

response in TNBC.

Breast cancer was thought to be immune cold, however,

TNBC has been shown to have an immunocompetent subtype

that could benefit from immunotherapy (16). The specific

role of necroptosis on tumor growth by affecting tumor

immune environment is still unclear. On the one hand,

necroptosis can activate dendritic cells and CD8+ T

lymphocytes by releasing various inflammatory cytokines,

thereby inducing a strong immune response and enhancing

anti-tumor immunity (10); on the other hand, immune

inflammatory cells recruited by necroptosis can promote

angiogenesis, tumor cell proliferation, and accelerate cancer

metastasis (17, 18). In our immune analysis, the low-risk

group had higher immune score compared to the high-risk

group. In addition, risk_score was negatively correlated with

tumor-killing immune cells such as NK cells, and positively

correlated with immunosuppressive cells such as M2

macrophages. The M2 macrophages (M2-type tumor

associated macrophages, TAMs) was the most common type

of tumor microenvironment (TME), which played a role in

inhibiting immune response in TME. Currently, inducing

macrophages ’ polarization to the M2 phenotype as

therapeutic targets and screening the key molecular(s)

modulators targeting macrophages’ polarization to the M2

phenotype could be another promising treatment strategy for

cancers. For instance, RIPK1 (one of our 67 NRGs, also a

common NRGs) is heavily expressed by TAMs in pancreatic

c an c e r whe r e i n R IPK1 f a c i l i t a t e s TAMs -d r i v en

immunosuppression (19), and the pharmacological

inhibitors of RIPK1 in pancreatic cancer patients (with or

without combination with anti-PD1 immunotherapy) with

the aim to ameliorate the immunosuppressive tumor milieu

(20). Thus, we believe a detailed tumor tissue analyses via

exploring key NRGs that can simultaneously capture the

ce l l s -o f -or ig in for pro-necrop to t i c genes wi l l be

instrumental in solving some of treatment strategy for

cancers, which also provide new clues and ideas for further

research on its role in TNBC.

In decades, immune checkpoint blockers (ICBs)-based

immunotherapies have allowed oncologists to anticipate

tumor curative strategies, however, not all cancer patients

durably respond to ICBs duo to the resistance to ICBs. To

overcome these problems, prediction model or combination
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of ICBs with key NRGs are being urgently need to study.

Snyder et al. endeavors aim to decipher whether necroptosis

can successfully synergize with ICBs to create new

immunotherapy (21). In mice, inducing spontaneous

ne c rop to s i s i n subcu t aneous mur in e tumor s by

overexpressing MLKL mRNA synergized efficiently with

anti-PD1 immunotherapy to elicit potent anti-tumor

immunity (22). In our study, the expression level analysis of

immune checkpoints showed that some immune checkpoints,

such as TNFSF9, TNFRSF4 (OX40), TNFRSF25, and LGALS9

were highly expressed in the high-risk group. TNFRSF4

(OX40) (also a classical necroptosis related gene) was

members of the TNF receptor superfamily (TNFRSF),

proved to have an anti-tumor and regulate the function of

immune cells function (23, 24). Moreover, we found that

CD44 was highly expressed in the low-risk group. CD44 is a

key regulator of PD-L1 expression in TNBC, and it could

indirectly promote cancer cell proliferation and immune

evasion through mediated PD-L1 expression (25). These

diverse mechanistic studies highlight the putative benefits of

combining ICBs with key necroptosis gene/molecular in

cancer immunotherapy context and our necroptosis-related

prognostic risk model targeting ICBs provide new clues and

ideas for further research on more tumor samples.

In addition to immune cell infiltration, tumor mutation

burden is also a potential biomarker for predicting treatment

and prognosis in multiple tumors (26–28). According to

previous reports, TP53 is the most commonly mutated gene in

TNBC (29, 30), and patients with TP53 mutation exhibit

favorable immunotherapy response profile (31). In our

analysis, TP53 had the highest mutation frequency in the two

risk groups, which is consistent with the results in the above

literatures. TTNmutations are also frequently detected in TNBC,

and studies have suggested that TTN mutations could increase

TMB and improve the objective response to immune checkpoint

blockade therapy (32). Moreover, patients with TTN mutations

have higher progression-free survival (PFS) or OS than wild-type

patients (33). TMB is strongly corrected to tumor treatment

efficacy and prognosis, specifically high TMB produces better

survival (34–36). In our analysis, the low-risk group had higher

TMB and better survival, the P-value is not statistically

significant may be due to our small sample size.

It has been shown that TNBC exhibits more CSC features

than other breast cancer subtypes, which may contribute to its

high invasiveness and susceptibility to metastases (37, 38). In

addition, previous studies have shown that CSCs were the source

of chemotherapy resistance in TNBC (39, 40). In our study, the

necroptosis risk_score was negatively associated with the CSC

index. Moreover, drug sensitivity analysis revealed the IC50

values of common chemotherapy drugs such as cisplatin,

doxorubicin, gemcitabine, etc. in the low-risk group were

lower than those in the high-risk group. Targeted CSC therapy

could potentially prevent metastasis and thus TNBC survival
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(41). We speculated that the effect of CSC on tumor growth and

metastasis might be related to necroptosis.

This study has several limitations. First, our study is a

retrospective study, which inevitably has selection bias.

Second, the number of TNBC cases is limited and some

important clinical information are lacking, such as surgery and

neoadjuvant therapy, which are also important factors affecting

the prognosis of TNBC. Finally, our findings require further

validation of external clinical data, as well as in vivo and in

vitro experiments.
Conclusion

This study comprehensively analyzed the NRGs mutation,

CNV, expression profile, and their impact on tumor immune

infiltration, CSC index, drug sensitivity, and prognosis values.

We constructed a NRGs-related prognostic model, indicating

the potential influence of NRGs in immunotherapy and targeted

therapy. These finding are expected to provide a new strategy for

personalize the treatment of TNBC and improve its

clinical benefit.
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The Kaplan-Meier analysis for OS of NRGs in TNBC. NRGs, necroptosis-
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Clinicopathologic characteristics and expression levels of NRGs of two
necroptosis subtypes after add the data from the Metabric database.

NRGs, necroptosis-related genes.
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The Kaplan-Meier curves and ROC curves to predict 1-, 3-, and 5-year OS

according to the risk _score in the entire cohort (A, C) and testing cohort (B, D).

SUPPLEMENTARY FIGURE 5

The validation of risk _score in the GSE31519 dataset. (A). ROC curves to
predict 1-, 3-, and 5-year EFS according to the risk _score; (B). The
Kaplan-Meier analysis for EFS of two risk groups. (C). Ranked dot, scatter
plots, and heatmap showing the risk_score distribution, patient survival

status and gene expression. EFS, event-free survival.

SUPPLEMENTARY FIGURE 6

The calibration curves of nomogram in the training cohort (A) and testing cohort (B).

SUPPLEMENTARY FIGURE 7

The validation of nomogram in the Metabric database. (A). ROC curves to

predict 1-, 3-, and 5-year OS according to the nomogram; (B). The
calibration curves of nomogram. (C). Ranked dot, scatter plots, and
heatmap showing the risk distribution, patient survival status and gene

expression. OS, overall survival.
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