
Published online 29 October 2019 Nucleic Acids Research, 2020, Vol. 48, Database issue D789–D796
doi: 10.1093/nar/gkz942

BBCancer: an expression atlas of blood-based
biomarkers in the early diagnosis of cancers
Zhixiang Zuo †, Huanjing Hu†, Qingxian Xu, Xiaotong Luo, Di Peng, Kaiyu Zhu, Qi Zhao*,
Yubin Xie* and Jian Ren *

State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer
Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China

Received August 15, 2019; Revised September 28, 2019; Editorial Decision October 07, 2019; Accepted October 09, 2019

ABSTRACT

The early detection of cancer holds the key to com-
bat and control the increasing global burden of can-
cer morbidity and mortality. Blood-based screen-
ings using circulating DNAs (ctDNAs), circulating
RNA (ctRNAs), circulating tumor cells (CTCs) and
extracellular vesicles (EVs) have shown promis-
ing prospects in the early detection of cancer. Re-
cent high-throughput gene expression profiling of
blood samples from cancer patients has provided
a valuable resource for developing new biomark-
ers for the early detection of cancer. However, a
well-organized online repository for these blood-
based high-throughput gene expression data is still
not available. Here, we present BBCancer (http://
bbcancer.renlab.org/), a web-accessible and compre-
hensive open resource for providing the expression
landscape of six types of RNAs, including messen-
ger RNAs (mRNAs), long noncoding RNAs (lncR-
NAs), microRNAs (miRNAs), circular RNAs (circR-
NAs), tRNA-derived fragments (tRFRNAs) and Piwi-
interacting RNAs (piRNAs) in blood samples, includ-
ing plasma, CTCs and EVs, from cancer patients
with various cancer types. Currently, BBCancer con-
tains expression data of the six RNA types from
5040 normal and tumor blood samples across 15 can-
cer types. We believe this database will serve as a
powerful platform for developing blood biomarkers.

INTRODUCTION

The early detection of cancer can greatly reduce the proba-
bility of distance metastasis, thereby improving the survival
rate of cancer patients (1). The measures of early detection
include screening of cancer cells or tissues before symp-

toms are present and recognizing early symptoms before
cancer progression. While a number of methods for early
detection of cancer are proposed, only a handful of cancer
screening methods are shown to be effective in the clinic.
In recent years, liquid biopsy methods (mainly blood-based
tests) for the early detection of cancer have received much
attention (2). The data on blood-based tests are promis-
ing, but the specificity and sensitivity are still challenging
(3,4). An ideal set of biomarker molecules and effective al-
gorithms are needed to develop an accurate blood-based
testing method.

Current blood-based tests mainly focused on molecules,
such as circulating tumor DNAs (ctDNAs), with DNA
fragments released by tumor cells or tissues into the blood
circulating system, since these molecules could survive long
in blood and contain genetic changes identical to the tumors
they derive from. Genetic changes in ctDNAs, such as mu-
tations, copy number changes, gene fusion events, and even
DNA methylation patterns, have been widely investigated
as biomarkers in blood-based tests. For instance, mutations
in the ER gene can be frequently found in ctDNAs of breast
cancer patients and can potentially be used as a biomarker
to predict the response of endocrine therapy (5). Patients
with innate trastuzumab resistance presented high HER2
copy number alterations in ctDNAs from HER2-positive
gastric cancer patients (6). Xu et al constructed a predic-
tion model based on ctDNA methylation for the diagnosis
of hepatocellular carcinoma with high diagnostic specificity
and sensitivity (7).

In contrast, RNA molecules have not received much at-
tention as biomarkers for the early detection of cancers,
since RNA molecules are unstable in the circulating system.
However, an increasing number of studies have indicated
that RNA molecules, such as microRNAs (miRNAs), cir-
cular RNAs (circRNAs), tRNA-derived fragments (tRFR-
NAs) and Piwi-interacting RNAs (piRNAs), are frequently
detected in human blood (8–11), suggesting the promising
prospect of these RNA molecules as biomarkers for blood-
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based tests in early cancer detection. Moreover, extracellu-
lar vesicles (EVs) and circulating tumor cells (CTCs) in the
blood play fundamental roles in cancer progression. The
coding and noncoding RNA molecules present in EVs and
CTCs could potentially be used as biomarkers in blood-
based tests.

Advances in high-throughput technologies, such as mi-
croarrays and next-generation RNA sequencing (RNA-
Seq), have resulted in large amounts of gene expression
data of blood samples across different cancer types. Some
databases based on the integration of high-throughput data
analysis have emerged in recent years. Kim et al. constructed
EVpedia (12), a useful resource to elucidate the fundamen-
tal roles of EVs derived from prokaryotes and eukaryotes
from 130 high-throughput sequencing studies. Li et al. de-
veloped exoRBase that contains 58 330 circRNAs, 15 501
lncRNAs and 18 333 mRNAs from 87 blood exosomal
RNA-seq datasets (13). Nevertheless, a comprehensive on-
line repository for these blood-based high-throughput gene
expression data specialized for the early detection of cancer
is still lacking.

Here, we present BBCancer (http://bbcancer.renlab.org/),
a web-accessible and comprehensive open resource for pro-
viding the expression landscape of six RNA types, including
mRNAs, lncRNAs, miRNAs, circRNAs, tRFRNAs and
piRNAs in blood samples, including plasma, CTCs and
EVs, from cancer patients with various cancer types (Figure
1). Using BBCancer, users are able to evaluate the expres-
sion abundance of RNAs of interest in tumor and normal
blood samples from different cancer types. Moreover, users
can explore the differential expression of RNAs of interest
between tumor and normal blood samples. We believe that
BBCancer will serve as a powerful platform for developing
blood-based biomarkers for the early detection of cancers.

MATERIALS AND METHODS

Data sources

The RNA-seq and gene expression microarray raw datasets
were collected from NCBI SRA (14) and GEO (15)
databases. We queried the SRA and GEO databases us-
ing both cancer-related key words and blood-related key
words. The SRA files from the SRA database were down-
loaded by the Aspera high-speed file transfer protocol (http:
//asperasoft.com/) and were converted to FASTQ files by
using SRA Toolkit (SRA Toolkit Development Team, http:
//ncbi.github.io/sra-tools/). Sample information, such as tis-
sue types (tumor or normal), was collected and manually
curated. We also downloaded the probe sequences of each
microarray platform from the GEO database or the websites
of their corresponding companies for the purpose of rean-
notating the probes. All collected datasets were limited to
human studies. Currently, all datasets were collected before
July 2018.

Analysis of RNA-seq data

All collected RNA-seq datasets were processed using the
following pipeline. Briefly, FastQC was used to check the
quality of raw sequencing data in the FASTQ format. The
raw sequencing reads were trimmed by removing adapters

and low-quality bases using Cutadapt (v. 1.7.1) (16). For
long RNAs, the trimmed sequencing reads were mapped
to the human reference genome (GRCh38) using HISAT2
(v. 2.0.4) (17). HTSeq-count (v. 0.6.0) (18) was employed
to quantify the number of reads aligned to regions of mR-
NAs or lncRNAs. Read counts for each gene were normal-
ized to the RPKM values (Reads Per Kilobase per Million
mapped reads) (19). CircRNAs were identified using CIRI
(v. 2.0.5) (20) and find circ (v. 1.2) (21). Only circRNAs
that were identified by either of the two tools were retained.
Read counts for each circRNA were normalized by calcu-
lating the RPM values (Read counts per million mapped
reads). For miRNAs and piRNAs, all of the small sequenc-
ing reads were aligned to the miRBase (v. 22) and piRNA-
Bank (22) using a BLAST-like alignment tool (BLAT) (23).
Only alignments with no more than one mismatch, no gaps
and a mapping length equal to the length of the small RNA
were considered as the best match. The raw counts of miR-
NAs and piRNAs were normalized to RPM values (24). For
tRFRNAs, all of the small sequencing reads were analyzed
using MINTmap (v. 1.0) (25) and MINTbase (26) to iden-
tify and quantify tRFRNAs.

Analysis of gene expression microarray data

Previous studies have shown that the probes of many
protein-coding gene expression microarrays should be re-
annotated to lncRNAs according to the latest gene anno-
tation files. We used the following strategy to reannotate
the probes from different gene expression microarray plat-
forms. The latest gene annotation files were downloaded
from the ENSEMBL database. A BLAST-like alignment
tool (BLAT) (27) was used to align all probe sequences from
the different microarray platforms to the human genome
(GRCh38). Only alignments with no more than one mis-
match, no gaps and a similarity score larger than 90 bp were
retained. In general, probes (50–60 nucleotides) from Agi-
lent and Illumina platforms were designed to locate target
genes or transcripts. The microarrays from Affymetrix uti-
lized a probe set containing a group of 25-mer probes to
represent a gene or transcript. Thus, for Affymetrix data,
we combined probes that specifically corresponded to the
same probe set and ensured that there were at least three
perfectly matching and adjacent probes in each probe set.
Second, we mapped the probes to coding genes or lncRNAs
according to their genomic coordinates. If any probes were
targeted to both coding genes and lncRNAs, then we only
preserved the annotation of the coding genes. MicroRNA
probes were uniformly annotated by miRBase (v22).

The following strategy of gene expression was applied to
the diverse microarray platforms within BBCancer. First,
the raw data were normalized using different methods
according to the different platforms. For Agilent, Illu-
mina and other platforms, the ‘Limma’ package (28) was
employed to quantile-normalized the data sets. For the
Affymetrix GeneChip data, raw CEL files were normalized
with the RMA algorithm (‘affy’ package v. 1.26 or ‘apt-
probeset-summarize’ in Affymetrix Power Tools v. 1.19.0)
(29,30). For certain studies lacking raw data, we used the
data matrix provided in the GEO database as a normal-
ized expression matrix. The expression of each gene was
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Figure 1. Overall design and construction of BBCancer.

log2 transformed. Next, all of the probes were transformed
to gene names based on the above re-annotation file. The
average expression was calculated to represent those genes
that are targeted by multiple probes. Finally, a robust rank
aggregation algorithm was utilized to integrate the rank of
gene expression abundance from multiple datasets for the
same cancer type.

Differential expression analysis

We categorized differential expression with one of the fol-
lowing conditions: tumor versus normal, precancerous le-
sion versus normal and precancerous lesion versus tumor.
For RNA-Seq and microarray data, differential expres-
sion analysis was performed with the ‘DESeq2’ (31) and
‘Limma’ package (32), respectively. Finally, a robust rank
aggregation algorithm was utilized to integrate the blood-
basedRNA profiles in a unbiased manner (33). The aggre-
gation rank score (AR score) represents the integrated rank
from the meta-analysis of the fold-changes in different stud-
ies. All results were scaled by cancer type and presented in a
heat map, allowing users to interactively explore the expres-
sion of RNAs of interest.

Database and web interface implementation

All data in BBCancer were stored and managed by MySQL
tables. The web interfaces were implemented in Hyper Text
Markup Language (HTML), Cascading Style Sheets (CSS)
and JavaScript (JS). To visualize the analysis results, multi-
ple statistical diagrams were embedded in the website. The

interactive heat maps showing the expression abundance
and differential expression were constructed by DataTa-
bles. The charts presenting gene expression rank and the
boxplots showing the differential expression were drawn
by Highcharts. Furthermore, all analyses in the BBCancer
website were performed in R.

RESULTS

Database content

In the current release, BBCancer contains expression data
for RNA molecules from 7,184 samples, including 5,040
blood samples such as extracellular vesicles (EVs) and cir-
culating tumor cells (CTCs), in normal person and 15 can-
cer types including breast cancer, borderline ovarian tumor,
cervical cancer, colorectal cancer, esophageal cancer, gas-
tric cancer, liver cancer, lung cancer, pancreatic cancer, and
prostate cancer (Table 1). Six types of RNA (19 612 mR-
NAs, 10 918 lncRNAs, 60 306 circRNAs, 2568 miRNAs,
1231 piRNAs and 43 459 tRFRNAs) were included in BB-
Cancer (Table 2). To our knowledge, BBCancer represents
the largest blood sample resource for cancer biomarker re-
search.

Web interface and usage

BBCancer provides a user-friendly web interface that con-
tains four modules: Explore, Browse, Statistics and Down-
load.
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Table 1. Summary of the gene expression data of samples collected in BBCancer

Extracellular
vesicles

Circulating
tumor cells

Other
blood

Tumor
tissue

Normal
tissue

Precancerous
tissue

Borderline ovarian tumor 0 0 66 0 0 0
Breast cancer 42 112 171 463 149 0
Colorectal cancer 215 6 149 113 271 41
Esophageal cancer 28 0 88 117 118 6
Gastric cancer 0 0 115 22 31 8
Glioblastoma 41 0 0 18 69 0
Liver cancer 21 0 81 68 77 5
Lung cancer 3 0 123 47 39 0
Multiple myeloma 10 0 9 53 67 0
Ovarian cancer 0 0 320 8 4 0
Pancreatic cancer 36 24 115 20 5 0
Sarcoma 0 0 115 19 4 0
Wilms’ tumor 0 0 15 60 4 0
Prostate cancer 59 0 0 29 128 0
Renal cell carcinoma 41 0 0 18 63 0
Normal person 167 25 2843 NA 0 0

Table 2. Summary of the gene number for different RNA types in blood samples in BBCancer

mRNA lncRNA circRNA miRNA piRNA tRFRNA

Breast cancer 17 313 6036 0 2467 765 1905
Colorectal cancer 19 307 5791 40 564 2483 374 32 623
Glioblastoma 16 557 6818 0 0 0 0
Lung cancer 17 237 528 0 2310 0 0
Liver cancer 16 903 4894 54 481 1630 0 0
Prostate cancer 0 0 0 971 176 23 580
Pancreatic cancer 17 286 6417 41 105 1958 114 9289
Multiple myeloma 0 0 0 1302 528 10 838
Renal cell carcinoma 0 0 0 1732 214 13 953
Sarcoma 0 0 0 1634 0 0
Wilms’ tumor 0 0 0 1198 0 0
Borderline ovarian tumor 0 0 0 1634 0 0
Esophageal cancer 0 0 0 1634 0 0
Gastric cancer 0 0 0 1634 0 0
Ovarian cancer 0 0 0 1634 0 0
Normal person 19 245 3385 39 358 2568 400 28 581

Explore. In BBCancer, six RNA types, including mRNA,
lncRNA, circRNA, piRNA, miRNA and tRFRNA, were
provided (Figure 2A). An ideal blood biomarker requires
two characteristics: distinguishable and detectable. First,
the presence of biomarkers in cancer patients should be dis-
tinguished from that in normal persons. In BBCancer, we
implemented a module, named ‘Differential expression’, to
help users find biomarker candidates with such character-
istics. The ‘Differential expression’ module allows users to
explore the differential expression of RNA of interest be-
tween tumor and normal blood samples by an interactive
meta-score heat map (Figure 2B). Another desired charac-
teristic of an ideal biomarker is detectable. For this end, we
implemented a module, named ‘Expression abundance’, to
help users evaluate the expression abundance of an RNA
of interest. In the ‘Gene expression abundance’ module, an
interactive heat map was implemented to present the meta-
score from differential studies for the same cancer type (Fig-
ure 2B). In the interactive heat maps of the two modules, a
selection box was provided to help users quickly locate can-
cers, and a text box was provided to allow users to search
RNAs of interest (Figure 2B). Furthermore, users can sort
the RNAs by clicking the column name. The detailed infor-
mation for an RNA of interest in a certain cancer was shown
when clicking the ‘meta-score’ box. In the detailed informa-

tion page, gene expression rank line graphs were provided to
show the expression abundance of the selected RNAs in all
datasets categorized as normal blood samples, tumor blood
samples, normal tissues, tumor tissues and precancerous tis-
sues (Figure 2C). In addition, a table embedded with box-
plots was provided to show the differential expression of the
selected RNAs in different studies, including comparisons
between tumor blood samples and normal blood samples,
tumor tissue samples and normal tissue samples, and pre-
cancerous tissue samples and normal tissue samples (Figure
2D).

Browse. BBCancer systematically categorized the known
blood biomarker by ‘Biomarker categories’, ‘Biomarker’,
‘Gene Description’ and ‘Cancer Type’ (Figure 2E). Users
are allowed to explore the blood molecular marker of inter-
est to obtain the results of gene expression abundance and
differential expression analysis.

Statistics. Detailed statistics on the data in BBCancer
were provided in the ‘Statistics’ module.

Download and Help. All data in the database can be down-
loaded from the ‘Download’ page, and a detailed introduc-
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Figure 2. A schematic workflow of the search interface in BBCancer. (A) BBCancer contains six types of RNAs (mRNA, lncRNA, circRNA, miRNA,
piRNA and tRFRNA). (B) An interactive heat map showing the meta score of the gene expression fold change for each RNA type between tumor blood
samples and normal blood samples from different studies for each cancer type (upper panel), and an interactive heat map showing the meta score of the
gene expression rank for each RNA type in tumor and normal blood sample for each cancer type (lower panel). (C) Snapshot of the search results for
‘TIMP1’ using the ‘Protein coding’ search mode. Detailed information on the expression abundance of TIMP1 in all the colorectal cancer datasets is shown
in the gene expression rank line graphs. (D) The expression of RNA in different studies of colorectal cancer compared to normal tissues. Click the ‘view’
button to obtain the boxplot representing the differential expression of RNAs between different conditions. (E) Interactive table for browsing the known
blood biomarkers collected from Uttle et al (34).

tion to the BBCancer database as well as a tutorial are avail-
able on the ‘Help’ page.

Systematical screening of potential blood biomarkers using
BBCancer

We next systematically evaluated the utility of BBCancer
in discovering potential blood biomarkers for the early de-
tection of cancer. To this end, we first explored the dif-
ferentially expressed RNAs between tumor and normal
blood samples across various cancer types, which resulted
in 8646 mRNAs, 296 lncRNAs, 1124 circRNAs, 2401 miR-
NAs, 160 piRNAs and 6935 tRFRNAs (Figure 3A, fold
change > 1.5, adjusted P-value < 0.05). A number of RNAs
were differentially expressed in more than five types of can-
cers, suggesting broad pancancer functional importance of
these RNAs (Figure 3B). Uttle et al. identified 788 poten-
tial blood biomarkers covering 13 cancer types based on
a comprehensive investigation of 3990 related papers (34).
We examined the expression pattern of these 788 poten-
tial biomarkers across different cancer types in BBCancer.

Among the 788 biomarkers, 314 have expression data in BB-
Cancer. We found that 144 (82 mRNAs, 62 miRNAs) out
of 314 biomarkers had significantly higher expression in tu-
mor blood samples compared to normal blood samples in at
least one cancer type (Figure 3C). For example, MDK was
recently reported to be a promising blood biomarker for the
diagnosis of liver cancer (35). In BBCancer, we found MDK
expression was higher in blood samples of liver cancer pa-
tients compared to blood samples of normal persons (fold
change >1.5, adjusted P-value < 0.05) (Figure 3D). More-
over, MDK expression was also significantly higher in pre-
cancerous lesions compared to normal tissues (Figure 3D,
fold change >1.5, adjusted P-value < 0.05). These results
suggest that MDK is an ideal biomarker for the early detec-
tion of liver cancer.

By comparing the expression abundances of six differ-
ent RNA types in blood samples, we found that the expres-
sion abundances of tRFRNAs were highest among the five
RNA types in colorectal cancer, suggesting the promising
prospects of tRFRNAs as a blood biomarker for the early
detection of colorectal cancers (Figure 3E). To provide a list



D794 Nucleic Acids Research, 2020, Vol. 48, Database issue

Figure 3. Systematical screening of potential blood biomarkers. (A) A bar chart showing the differentially expressed RNAs between tumor blood samples
and normal blood samples in various cancer types. (B) A pie chart showing the number of differentially expressed genes shared by different cancers. (C) A
bar chart showing the known biomarkers with higher expression in tumor blood samples compared to normal blood samples. (D) MDK expression was
higher in blood samples of liver cancer patients compared to blood samples of normal persons (fold change >1.5, adjusted P-value < 0.05). (E) A box plot
showing the expression abundances of five different RNA types in colorectal cancer blood samples.

of promising blood biomarkers for each cancer type, we fur-
ther filtered the differentially expressed RNAs using expres-
sion abundance. The top 5 differentially expressed RNAs
for each RNA type with the highest expression abundance
in each cancer are shown (Figure 4). For instance, the ex-
pression of ABCC3 in patients with nonsmall cell lung can-
cer was potentially correlated with drug resistance (36). The
high expression level of exosome mir-1246 in breast cancer
has been reported to be related to breast tumor progression
(37). Furthermore, studies on bladder cancer have shown
a negative correlation between the high expression of mir-
26a-5p and patient survival (38). These results suggest that
these circulating RNAs may be potential blood biomarkers
for related cancers. Overall, the BBCancer database con-
tains a number of clinically relevant potential circulating

RNAs that can assist researchers in screening blood molec-
ular markers.

DISCUSSION

BBCancer is a comprehensive open resource for providing
the expression landscape of RNA molecules derived from
blood samples, including plasma, CTCs and EVs, from can-
cer patients with various cancer types.

Compared to other existing circulating RNA resources,
such as exoRbase and EVpedia, BBCancer is the first
database focusing on the expression atlas of RNA molecules
in blood samples of cancer patients. Briefly, BBCancer
has the following advantages: (i) BBCancer contains many
types of RNA. Currently, six types of RNA (mRNA,
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Figure 4. Top 5 circulating RNAs of each RNA type that are significantly overexpressed in the blood samples of different cancers compared to normal
blood samples.

lncRNA, miRNA, circRNA, tRFRNA and piRNA) were
included. (ii) BBCancer holds the largest number of blood
samples, with 5,040 normal and tumor blood samples
across 15 cancer types. (iii) BBCancer allows users to
rapidly and interactively explore the expression abundance
or differentially expressed RNAs in different studies by
meta-analysis, promoting the discovery of RNA biomark-
ers in cancers of interest.

In conclusion, we believe that BBCancer will be of signif-
icant benefit to the community and boost further advances
in developing blood-based biomarkers for the early detec-
tion of cancer.
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