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Abstract

Stanniocalcin-1 (STC1) secreted by mesenchymal stromal cells (MSCs) has anti-

inflammatory functions, reduces apoptosis, and aids in angiogenesis, both in vitro and

in vivo. However, little is known about the molecular mechanisms of its regulation.

Here, we show that STC1 secretion is increased only under specific cell-stress condi-

tions. We find that this is due to a change in actin stress fibers and actin-myosin ten-

sion. Abolishment of stress fibers by blebbistatin and knockdown of the focal

adhesion protein zyxin leads to an increase in STC1 secretion. To also study this con-

nection in 3D, where few focal adhesions and actin stress fibers are present, STC1

expression was analyzed in 3D alginate hydrogels and 3D electrospun scaffolds.

Indeed, STC1 secretion was increased in these low cellular tension 3D environments.

Together, our data show that STC1 does not directly respond to cell stress, but that

it is regulated through mechanotransduction. This research takes a step forward in

the fundamental understanding of STC1 regulation and can have implications for

cell-based regenerative medicine, where cell survival, anti-inflammatory factors, and

angiogenesis are critical.
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1 | INTRODUCTION

Stanniocalcin-1 (STC1) is a widely expressed hypocalcemic 50-kDa

homodimeric glycoprotein hormone originally found in teleost fish, and

more recently in mammals. STC1 is released into the bloodstream and

regulates blood calcium levels by influencing renal and intestinal cal-

cium and phosphate transport through paracrine signaling.1 In addition,

STC1 has recently been reported to be involved in cellular responses to

several cell-stress inducing stimuli such as hypoxia,2-4 inflammation,3

oxidative stress,5,6 and cancer.7 STC1 expression increases in hypoxia,

regulated by hypoxia-inducible factor (HIF),4 and promotes angiogene-

sis in vitro and in vivo by increasing expression of vascular endothelial

growth factor (VEGF).7 In addition, STC1 secreted by human mesen-

chymal stromal cells (hMSCs) has been proposed as an important anti-

apoptotic factor in the MSC secretome.8-10 Several studies have shown

that STC1 is related with cell survival. In a coculture model, hMSCs

increased STC1 secretion when fibroblasts were UV-irradiated, which

in turn enhanced their survival by reducing apoptosis.11 Similarly,

hMSCs upregulated STC1 expression when cancer cells were treated

with reactive oxygen species (ROS), increasing their survival byJip Zonderland and David B. Gomes contributed equally to this work.
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reducing intracellular ROS.5 The reduction of intracellular ROS by

hMSC-secreted STC1 has also been shown for endothelial cells.12 In

vivo, STC1 secreted by injected hMSCs reduced fibrosis and ROS in a

mouse pulmonary fibrosis model.13 STC1 has also been reported to

increase in 3D culture platforms, such as spheroids and 3D-additive

manufactured scaffolds, compared to 2D cultures such as tissue culture

polystyrene (TCP).14-17 Despite these efforts, the molecular mechanisms

by which STC1 expression and secretion are regulated are still unclear.

Here, we show that STC1 secretion is increased in hMSCs chal-

lenged with stress conditions18-21 such as hypotonic shock or nutrient

deprivation, but not in hypertonic shock. Our data show that the regu-

lation of STC1 secretion is not directly related with apoptosis and cell

survival, but rather regulated by mechanotransduction. We demon-

strate that the actin structure changes in hypotonic and nutrient dep-

rivation conditions, but not with hypertonic treatment. This change in

actin is, at least partly, responsible for the increased STC1 secretion,

demonstrated by an increase in STC1 secretion after treatment with

blebbistatin or zyxin knockdown. This shows that STC1 is regulated

by mechanotransduction, an observation not previously reported.

2 | RESULTS

2.1 | Increased STC1 release in certain cell-stress
conditions

STC1 has been shown to be involved in apoptosis both in vitro and in

vivo,5,7,11-13 but its regulation is largely unknown. To start investigat-

ing how STC1 is regulated, we treated hMSCs for 8 hours in different

cell-stress inducing conditions: hypertonic medium (200 mM NaCl in

basic medium), hypotonic medium (90% water in basic medium), or

nutrient deprivation (phosphate buffered saline [PBS]). After 8 hours,

apoptosis, measured by caspase 3/7 activity, was significantly

increased 9.1 ± 1.2x (P < .001) and 1.5 ± 0.05x (P < .01) in the hyper-

tonic (Figure 1A) and nutrient deprivation conditions (Figure 1C),

respectively, compared to the basic (untreated) condition. Caspase

3/7 activity was not affected in the hypotonic condition (Figure 1B).

Total DNA was significantly reduced in all conditions, by 38% ± 16%

(P < .05) in the hypertonic condition (Figure 1D), by 60% ± 4%

(P < .001) in the hypotonic condition (Figure 1E) and by 54% ± 11%

(P < .01) in the nutrient deprivation condition (Figure 1F). Together,

these results show that the different cell-stress inducing conditions

successfully induced cell death in a large portion, but not all of the

treated cells. Next, to investigate the regulation of STC1 in different

cell-stress-inducing conditions, we analyzed STC1 secretion. Interest-

ingly, STC1 secretion was not significantly different in the hypertonic

condition, but was significantly increased in both the hypotonic and

nutrient deprivation conditions (Figure 1G-I). In the hypotonic and

nutrient deprivation conditions, STC1 secretion increased 4.6 ± 1.4x

(P < .05) and 2.6 ± 0.1x (P < .0001) compared to the untreated condi-

tion, respectively. qPCR analysis of STC1 expression revealed no

difference in mRNA expression between control and cell-stress induc-

ing conditions, showing that the change in STC1 secretion is not

regulated on a transcription level (supplemental online Figure 1).

Together, these data show that STC1 is affected by some, but not all

cell-stress conditions, warranting further investigation in STC1

regulation.

To exclude a potential effect of differences in proliferation in the

8 hours of various cell-stress conditions, we analyzed STC1 release in

different proliferation inhibited conditions. When proliferation was

inhibited by culturing cells for 6 days with 0.5% FBS, STC1 secretion

increased (supplemental online Figure 2A,B). However, when prolifer-

ation was inhibited for 24 hours with 1% DMSO, STC1 secretion

decreased (supplemental online Figure 2C,D). Other proliferation

inhibitors did not influence STC1 secretion (high cell seeding density,

actinomycin D, CDK4 inhibitor, valproic acid, AZD5438) (supplemen-

tal online Figure 2E,F). Also, increasing proliferation by the addition of

bFGF to the medium did not affect STC1 secretion. DNA significantly

decreased in the 0.5% FBS, 1% DMSO condition and AZD5438 condi-

tion, but not in the other conditions. This suggests that proliferation is

not directly correlated with STC1 secretion. Knock down of STC1,

however, led to a decrease in proliferation and adding recombinant

STC1 increased proliferation (supplemental online Figure 2G-I).

Together, these data show that STC1 can influence proliferation, but

proliferation does not directly influence STC1 secretion.

2.2 | Specific cell-stress conditions induce change
in actin network

The STC1 secretion was increased by hypotonic- and nutrient depri-

vation treatment, but not by hypertonic treatment. While all three

conditions induced cell death, only two conditions increased

STC1 secretion. Caspase 3/7 increased in hypertonic and nutrient

Significance statement

Stanniocalcin-1 (STC1) has been shown to be anti-inflamma-

tory; it reduces apoptosis and promotes angiogenesis both

in vitro and in vivo. Controlling these cellular responses are

of key importance in regenerative medicine and tissue engi-

neering. Despite these important functions, the regulation

of STC1 is widely understudied and is poorly understood.

We show here that STC1 is upregulated in certain, but not

all, cell-stress conditions and that this correlates with a

change in the actin cytoskeleton. This study demonstrates

that STC1 is regulated through focal adhesions, ROCK, and

actin-myosin. Also, in 3D scaffolds, where cellular tension is

low, STC1 is upregulated. This research takes a step forward

in the fundamental understanding of STC1 regulation and

paves the way for future research. These results can have

direct implications for different cell-based regenerative

medicine approaches, where cell survival, anti-inflammatory

factors, and angiogenesis are critical.
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F IGURE 1 Caspase 3/7 activity, DNA and STC1 release in specific cell-stress conditions. A-C, Caspase 3/7 activity, normalized by total DNA,
of hMSCs treated for 8 hours in A, hypertonic medium (Basic medium + 200 mM NaCl); B, hypotonic medium (90% water in basic medium); or C,
nutrient deprivation medium (PBS). D-F, Total DNA of hMSCs after 8 hours in D, hypertonic medium; E, hypotonic medium; or F, PBS. G-I, Total
released STC1, measured by ELISA, over an 8 hours period of hMSCs treated with G, hypertonic medium; H, hypotonic medium; or I, PBS. N = 3
for each condition. Student's t-test; n.s. not significant, *P < .05, **P < .01, ***P < .001, ****P < .0001, compared to Basic. Error bars represent
mean ± SD. hMSCs, human mesenchymal stromal cells; PBS, phosphate buffered saline; STC1, stanniocalcin-1
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F IGURE 2 Legend on next page.
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deprivation conditions, and not in hypotonic conditions. Yet, STC1

increased in hypotonic and PBS, and not hypertonic conditions.

Together, this shows that STC1 secretion is not directly affected by

cell death or apoptosis, but is regulated through other mechanisms.

We observed clear differences in cell morphology in the different cell-

stress conditions. To understand if this could be correlated with the

increased STC1 secretion, we stained hMSCs for F-actin after 8 hours

in the hypertonic, hypotonic and nutrient deprivation conditions

(Figure 2A). Interestingly, hypertonic treatment did not greatly affect

the actin structure, cell area, or number of actin stress fibers in the

cells that remained alive (Figure 2A-C). Hypotonic treatment reduced

cell size 71% ± 30% (P < .001) and the number of stress fibers by

86% ± 25% (P < .001), compared with the untreated condition. While

the nutrient deprivation treatment did not significantly affect cell area,

F IGURE 2 Reduced actin stress fibers in specific cell-stress conditions. A, F-actin (green) and nuclei (blue) staining of hMSCs incubated for
8 hours with hypertonic medium (200 mM NaCl in basic medium), or hypotonic medium (90% water in basic medium), or nutrient deprivation
medium (PBS). Red rectangles in the top panel highlight the area magnified in the bottom panel, where a 7× magnification of the respective image

above is depicted. Scale bar = 75 μm (top) and 10 μm (bottom). B, Quantification of cell area in the respective cell-stress conditions. Average cell
area was measured in 12 different images for each condition. C, Quantification of the number of stress fibers per cell area in the different cell-
stress conditions. n = 15 cells per condition. D, Quantification of zyxin positive focal adhesions per cell area in the different cell-stress conditions.
n = 20 per condition. B, C, D, One-way ANOVA; n.s. not significant, ***P < .001, ****P < .0001 compared with Basic. Error bars represent mean
± 95% CI. E, Zyxin (green) and nuclei (blue) staining of hMSCs in the different cell-stress inducing conditions. Red rectangles in the top panel
highlight the area magnified in the bottom panel, where a 4× magnification of the respective image above is depicted. Scale bar = 25 μm (top) and
5 μm (bottom). hMSCs, human mesenchymal stromal cells; PBS, phosphate buffered saline

F IGURE 3 Increased STC1 release after specific interference in mechanotransduction pathways. A, Total secreted STC1 in the medium over
24 hours culture period measured by ELISA, normalized by total DNA in each sample. STC1/DNA was measured in hMSCs treated with A,
blebbistatin (n = 4), or D, ROCK inhibitor Y27632 (n = 3), or in hMSCs transduced with shRNA against B, PXN, C, ZYX, E, LMNA or F, YAP
(n = 3). A, D, Student's t-test, or B, C, E, F, one-way ANOVA; n.s. not-significant, *P < .05, **P < .01 compared to A, D, DMSO or B, C, E, F, control
scrambled shRNA (SCR). Error bars represent mean ± SD. hMSCs, human mesenchymal stromal cells; STC1, stanniocalcin-1
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it completely abolished the actin stress fibers in the cells. In addition

to actin stress fibers, we also analyzed focal adhesions. Focal adhe-

sions are directly connected to the actin network and play an impor-

tant role in mechanotransduction pathways.22 Zyxin, an important

focal adhesion protein, was visualized and quantified in the different

cell-stress inducing conditions. The number of zyxin focal adhesions

per cell area was greatly reduced (P < .0001) in the hypotonic and

nutrient deprivation conditions, but not in the hypertonic condition

(Figure 2D,E). The zyxin results correlated neatly with the actin stress

fiber quantification and STC1 secretion.

2.3 | STC1 secretion is regulated through zyxin
and actin-myosin

Hypotonic and nutrient deprivation treatments decreased actin stress

fibers and zyxin positive focal adhesions and increased

STC1 secretion, while the hypertonic treatment did not affect actin

stress fibers, zyxin, or STC1 secretion. To test whether there is a

functional link between the actin network and STC1 secretion, we

treated hMSCs for 24 hours with blebbistatin, a potent actin-myosin

inhibitor.23 Indeed, a 3.1 ± 0.9x (P < .01) increase of released STC1

was observed when actin-myosin tension was inhibited (Figure 3A).

The same trend was observed for two other different hMSCs donors,

with an increase of 2.7 ± 1.1x (P < .05) and 2.3 ± 0.2x (P < .01) (sup-

plemental online Figure 3A,C). To understand the role of zyxin and

focal adhesions in the regulation of STC1, we knocked down zyxin in

hMSCs (supplemental online Figure 4A). STC1 secretion increased by

5.0 ± 1.0x and 4.5 ± 1.0x (P < .01 for both) in zyxin knockdowns

1 and 2, respectively (Figure 3C). Zyxin plays an important role in

linking the focal adhesions to the actin network and forming stress

fibers,24,25 as opposed to other focal adhesion proteins, such as

paxillin that are more involved in signal transduction.26-28 To under-

stand whether this link to the actin network is important, rather than

direct signal transduction from the focal adhesions, we knocked

down paxillin (supplemental online Figure 3B). Indeed, no change in

STC1 secretion was observed after knockdown of paxillin

(Figure 3B), further hinting at the importance of actin-myosin tension

in the regulation of STC1. ROCK activation induces actin-myosin ten-

sion29,30 and stabilizes actin stress fibers.31,32 To further investigate

the link between actin-myosin and STC1, we treated hMSCs for

24 hours with the ROCK inhibitor Y27632. The results were not con-

clusive as STC1 secretion increased 29% ± 18% (P < .05) with donor

#1 cells (Figure 3D), had no statistical significant difference in donor

#2 (supplemental online Figure 3B), and had a decrease of 103%

± 84% (P < .001) for donor #3 (supplemental online Figure 3D) after

ROCK inhibition. This shows that ROCK might not play a role in the

regulation of STC1 release. Lamin A/C, a nuclear skeleton protein,

which is also connected to the actin network and transduces signals

to the inside of the nucleus33 was also tested. After knockdown of

lamin A/C (supplemental online Figure 3C), no difference in STC

secretion was observed (Figure 3E), demonstrating that it is not

involved in this process. Lastly, we knocked down YAP (supplemental

online Figure 3D), an important mechanosensitive transcription

F IGURE 4 Less zyxin and more STC1 secretion in 3D cultures. A, Zyxin (green) and nuclei (blue) immunofluorescent staining of hMSCs
cultured in 2D TCP, 3D Alginate and 3D ESP. Red rectangles in the top panel highlight the area magnified in the bottom panel, where a 4×
magnification of the respective image above is depicted. Scale bar = 30 μm (top) and 5 μm (bottom). B, Total secreted STC1 in the medium over
24 hours culture period, measured by ELISA, normalized by total DNA in each sample (n = 4 for 2D TCP; n = 3 for 3D alginate and 3D ESP).
One-way ANOVA; ***P < .001 compared to 2D TCP. Error bars represent mean ± SD. hMSCs, human mesenchymal stromal cells; STC1,
stanniocalcin-1; TCP, tissue culture polystyrene
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factor.34 Again, no change in STC1 secretion was observed

(Figure 3F). Together, these results demonstrate that STC1 secretion

is mechanosensitive and a direct result of a lack of focal adhesions or

reduced actin-myosin tension, either through zyxin inhibition or by

actin-myosin tension inhibition. Regulators of machanosensing mech-

anisms such as ROCK, lamin A/C or YAP signaling seemed not to

influence the secretion of STC1.

2.4 | Increased STC1 secretion in 3D cultures

Previous reports have shown that STC1 is upregulated in different 3D

culture systems.14-17 We have previously shown that hMSCs in 3D

electrospun (ESP) scaffolds have fewer stress fibers and focal adhe-

sions than in 2D.35,36 We have also seen that 3D alginate hydrogels

show the same trend, in line with results published by others.37-45

Indeed, when stained for zyxin, hMSCs cultured in 3D RGD-modified

alginate hydrogels or 3D ESP scaffolds displayed very few zyxin posi-

tive focal adhesions, while many large focal adhesions were observed

in 2D TCP (Figure 4A). As expected, STC1 secretion was increased

5.7 ± 1.0x (P < .001) in 3D alginate and 6.0 ± 1.4x (P < .001) in 3D

ESP. These results suggest that the increase of STC1 in 3D cultures

observed here and by others14-17 could come from a reduction in

stress fibers and zyxin positive focal adhesions.

3 | DISCUSSION

Acting as a paracrine protein, STC1 has been shown to promote

angiogenesis, reduce apoptosis and enhance overall cell sur-

vival.5,7,11-13 STC1 is known to be upregulated in different stress

conditions,4,11-13 but the molecular mechanisms behind such biologi-

cal activity are still poorly understood. This was used as a starting

point and hMSCs were treated with different stress inducing

conditions (hypo- and hypertonic, and nutrient deprivation).

STC1 secretion only increased in specific stress-inducing conditions

and only in the conditions where the actin cytoskeleton was greatly

affected (hypotonic and nutrient deprivation). We found a reduction

in actin stress fibers and cell size after 8 hours of hypotonic treat-

ment, in line with previous reports19 and an aberration of actin

stress fibers in cells treated following nutrient deprivation, also in

line with previous reports.18,20 The increase in STC1 secretion in

these conditions, as well as the change in the actin cytoskeleton, has

not been previously reported and led us to investigate a causal link

between the two. Indeed, by inhibiting actin-myosin tension with

blebbistatin, we showed that the change in actin structure was

responsible for the increased STC1 secretion. The hypertonic treat-

ment did not change the actin cytoskeleton; even though it induced

cell death and apoptosis, STC1 secretion remained unchanged. This

suggests that the increase in STC1 release after induced cell-stress

might be due to a change in actin cytoskeleton, rather than being a

direct response to cell-stress, apoptosis or cell death. Others have

reported that depolymerization of actin results in increased vesicle

secretion, hinting at a potential mechanism of the increased

STC1 secretion.46 The number of zyxin positive focal adhesions was

also reduced in the hypotonic and nutrient deprivation conditions,

but not the hypertonic condition, correlating with the

STC1 secretion. When zyxin was knocked down, we also found an

increase in STC1 secretion, proving a causal link between the two.

Zyxin is known to play an important role in stress fiber forma-

tion.24,25 Paxillin knockdown, however, did not result in an increase

in STC1 secretion, in line with the fact that paxillin is not required

for stress fiber formation.26-28 ROCK activation induces actin-

myosin contraction29,30 and stabilizes actin filaments.31,32 However,

ROCK does not necessarily inhibit completely focal adhesions for-

mation. In fact, Hoffman et al,47 showed that although exposing

zyxin−/− cells to ROCK inhibitor (Y27632) led to a loss of stress

fibers, when these cells were then induced to express zyxin in the

presence of the inhibitor they kept partially some of their stress

fibers. A difference in baseline ROCK expression, focal adhesions or

actin-myosin tension could explain the differences between the

three donors that we have observed when using the Y27632 ROCK

inhibitor. Y27632 ROCK inhibitor only partially blocks actin myosin

tension,48 perhaps being more sensitive to donor variation. Con-

versely, blebbistatin fully inhibits actin myosin tension at high

enough concentrations,48 thereby overcoming baseline differences

between donors. However, the role of ROCK on STC1 regulation

remains unclear and further studies are needed to elucidate

it. Together, these results suggest a possible interaction between

the regulation of STC1 secretion, focal adhesions and actin-myosin

tension. Interestingly, lamin A/C knock down, critical in the

transduction of mechanical signals to the nucleus, did not affect the

STC1 secretion. Also, YAP knockdown did not affect

STC1 secretion. Together with ROCK inhibition results, this suggests

that the reduced STC1 secretion due to actin-myosin tension might

not be regulated through the nucleus, YAP or ROCK signaling. Block

et al11 have shown that STC1 and vinculin staining colocalize in

hMSCs, A549 lung epithelial cells and mouse embryonic fibroblasts.

Interestingly, when fibroblasts were UV-irradiated they increased

STC1 expression, changed their morphology and decreased focal

adhesion staining.11 However, when cocultured with hMSCs, UV-

irradiated fibroblasts restored their shape as well as their vinculin

and STC1 expression, with both proteins colocalizing. In addition,

Ylostalo et al have demonstrated an upregulation of STC1 gene

expression when hMSCs are cultured in 3D spheroids, compared to

spread hMSCs cultured on TCP.49 When 3T3-L1 fat cells undergo

adipogenic differentiation, they become more spherical and

upregulate STC1 gene and protein expression.50 Also, 3D cultures

show an increase in vesicle secretion, which could potentially con-

tain STC1.46 These results are in line with ours and hinted at a

mechanosensitive regulation of STC1. Here, we have shown that

STC1 is indeed regulated through mechanotransduction pathways,

specifically through zyxin and actin-myosin. In line with this, in 3D

environments (alginate hydrogels and ESP scaffolds), fewer focal

adhesions formed and STC1 secretion increased. A reduced number

of focal adhesions and actin stress fibers have been previously
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reported in a number of studies in both hydrogels37-45 and ESP scaf-

folds.35,36 The increase of STC1 in 3D cultures has been shown before

in different 3D culture systems.14-17 Our data suggest that this might

be due to a reduction in focal adhesions and/or actin-myosin tension.

Whether such a reduction is also dependent on the mechanical proper-

ties of the 3D culture system (eg, different stiffness of hydrogels) shall

be the objective of future studies. STC1 expression has also been

shown to be influenced by hypoxia.2-4 Hypoxia can also change actin

organization,51 increase focal adhesions,51 and activate RhoA and

ROCK signaling.52 Whether the change in STC1 expression under hyp-

oxia is regulated through the same zyxin and actin-myosin dependent

pathway as described here remains to be investigated.

Together, the new findings described here pave the way to

understand the regulation of STC1 as a paracrine factor secreted by

hMSCs. As STC1 can aid cell survival and angiogenesis in vitro and in

vivo,5,7,11-13 a better understanding of STC1 regulation could aid

future cell-based regenerative medicine.

4 | MATERIALS AND METHODS

4.1 | Cell culture

Bone marrow hMSCs were isolated from a 22-year-old male by aspi-

ration by Texas A&M Health Science Center53 after ethical approval

from the local and national authorities and written consent from the

donor. Mononuclear cells were isolated by centrifugation. Isolated

hMSCs were verified for differentiation capacity and were received at

passage 1. For further expansion, hMSCs were seeded at 1000 cel-

ls/cm2 in αMEM + Glutamax medium (Thermo Fisher Scientific) sup-

plemented with 10% (V/V) fetal bovine serum (FBS) (Sigma-Aldrich)

(basic medium) at 37�C in 5% CO2. Upon reaching 70% to 80% con-

fluency, cells were trypsinized in 0.05% trypsin and 0.53 mM EDTA

(Thermo Fisher Scientific) and used for experiments at passage 5.

4.2 | Cell-stress conditions

Before the cell-stress treatments, hMSCs were expanded for 7 days to

get sufficient cell numbers. For the hypertonic condition, basic medium

was supplemented with 200 mM NaCl (Sigma-Aldrich); for the hypo-

tonic condition, Basic medium was diluted in miliQ water to get 90%

water and 10% basic medium; for the nutrient deprivation condition,

pure PBS (Sigma-Aldrich) was used. Basic medium was used as control.

hMSCs were incubated in the various media for 8 hours on the 7th day

of culture. After 8 hours, the medium and cells were harvested for

Caspase 3/7 assay, DNA, and STC1 ELISA (discussed as follows).

4.3 | Proliferation inhibition conditions

hMSCs were seeded at 1000 cells/cm2 and cultured for 5 days in

basic medium before starting the different proliferation inhibiting

conditions. On day 5, the medium was replaced with basic medium

containing 1% (v/v) DMSO, 1 μg/mL actinomycin D, 2 μg/mL CDK4

inhibitor, 166 μg/mL valproic acid, or 0.74 μg/mL AZD5438. Cells

were cultured for 6 days with basic medium + 10 ng/mL bFGF,

medium with 0.5% FBS (instead of 10%), or seeded at 20000 cel-

ls/cm2 (instead of 1000) and cultured in basic medium. The medium

replaced 24 hours before harvesting and cells were harvested at the

end of the experiment to measure STC1 released in the medium and

DNA, respectively. Cells were cultured for 7 days with basic medium

supplemented with recombinant STC1 (0.5 μg/mL, BioVendor) to

measure the effect of STC1 on proliferation.

4.4 | Lentiviral production and transduction, and
actin-myosin and ROCK inhibition

Lentivirus was produced in human embryonic kidney 293FT (HEK) cells.

HEK cells were seeded at 60 000 cells/cm2 in a 10-cm TCP dish in

DMEM + 10% FBS. HEK cells were transfected with pMDLg pRRE,

pMD2.G, pRSV Rev (Addgene), and one of the pLKO.1 shRNA plasmids

using lipofectamine 2000 (Thermo Fisher Scientific) in a ratio of 5:1 (μL

lipofectamine 2000:μg DNA) 24 hours after seeding. TRC pLKO.1

constructs (Dharmacon) with the following Clone ID's were used:

PXN: TRCN0000123134 and TRCN0000123136; ZYX: TRCN

0000074204 and TRCN0000074205; LMNA: TRCN0000061833 and

TRCN0000061836; YAP: TRCN0000107265 and TRCN0000107266;

STC: TRCN0000154599 and TRCN0000155141; and a non-targeting

shRNA as control (RHS6848). The medium was changed 16 hours after

transfection to basic medium. Lentiviral particles were harvested 24 and

48 hours after the change to basic medium and filtered through a

0.45-μm filter. hMSCs were thawed at 1000 cells/cm2 in a 10 cm-TCP

dish 24 hours before transduction. Three milliliters of unconcentrated

filtered medium containing the lentiviral particles was added and incu-

bated overnight at 37�C. After 16 to 24 hours, the medium was chan-

ged to basic medium and 24 to 48 hours after, medium was replaced

with selection medium (basic medium + 2 μg/mL puromycin (Sigma-

Aldrich)) for 72 hours. After a total of 9 to 10 days after thawing, the

cells were passaged at 1000 cells/cm2 and used for subsequent experi-

ments. To test the effect of actin-myosin tension and ROCK on

STC1 secretion, 100 μM blebbistatin (Sigma-Aldrich) or 10 μM Y27632

in basic medium was added to untransduced hMSCs.

4.5 | Hydrogel and scaffold production and culture

Food grade alginate was purified according to a protocol previously

published by Neves et al54 Briefly, alginate with 70% “GG blocks,”

kindly provided by FMC polymers, was dissolved overnight in ultrapure

water (18 MΩ, Milli-Q UltraPure Water System, Millipore) at a final

concentration of 1% (w/v). After dissolution, activated charcoal (2%

(w/v), Sigma-Aldrich) was added under agitation for 1 hour at RT. The

obtained suspension was then centrifuged for 1 hour at 27000g

(Beckman centrifuges). Then, the supernatant passed through a series
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of filters (1.2, 0.45, and 0.22 μm membrane pores, VWR) and was

freeze-dried and stored at −20�C until further use. The alginate was

then modified with (glycine)4-arginine-glycine-aspartic acid-serine-

proline (referred to as RGD throughout the text) (Genscript,

Piscataway, New Jersey) to allow cell adhesion by using aqueous

carbodiimide chemistry (EDC chemistry). Briefly, as described

previously,55 a 1% (w/v) solution was prepared in 0.1 M 2-(N-

morpholino) ethanesulfonic acid (MES) buffer solution (0.1 M MES

buffering salt, 0.3 M NaCl, pH adjusted to 6.5 using 1 M NaOH,

Sigma). N-Hydroxy-sulfosuccinimide (sulfo-NHS, Pierce Chemical)

and 1-ethyl-(dimethylaminopropyl)-carbodiimide (EDC, Sigma,

27.40 mg per g alginate), at a molar ratio of 1:2, were sequentially

added to the solutions, followed by the addition of 65.9 μmol RGD

per gram alginate. The solution was then left stirring for 20 hours

and quenched with 18 mg of hydroxylamine hydrochloride (Sigma)

per gram alginate. The final product was dialyzed (MWCO 3500,

Spectra/Por, VWR) against decreasing concentrations of ultrapure

water with NaCl for 3 days at 4�C and freeze-dried and stored at

−20�C. For encapsulation, 100 000 hMSCs were pelleted by centri-

fugation at 500g for 5 minutes and cells were embedded in 10 μL

1% alginate-RGD (w/v) (106 cells/ml). The alginate hydrogels were

crosslinked in a bath of 100 mM BaCl2 (Sigma-Aldrich) for 5 minutes,

to be subsequently cultured in basic medium.

Electrospun (ESP) scaffolds were produced using 300PEO-

T55PBT45 (PolyVation), made from a starting 300 kDa poly(ethylene

glycol) in the synthesis reaction, with a PEOT/PBT weight ratio of

55/45. A 20% (w/v) solution of 300PEOT55PBT45 was made by dis-

solving the copolymer in a mixture of 30% (v/v) 1,1,1,3,3,3-hexafluoro-

2-propanol AR (HFIP) (Bio-Solve) and 70% (v/v) chloroform (Sigma-

Aldrich), overnight at room temperature under agitation.

ESP scaffolds were produced on a 19 cm diameter mandrel at

100 RPM rotation on a polyester mesh (FinishMat 6691 LL [40 g/m2],

generously provided by Lantor B.V.) with 12 mm holes, on top of alumi-

num foil. After electrospinning, the collected ESP scaffolds were pun-

ched out with a diameter of 15 mm and the aluminum foil was

removed. Using this method, 12 mm ESP scaffolds were created with a

1.5 mm supporting polyester ring to improve handleability. Processing

parameters were: 1 mL/h flow rate, 15 cm working distance, 40%

humidity and 23�C to 25�C. The needle was charged between 10 to

15 kV, while the collector was charged between −2 and −5 kV. For

sterilization, ESP scaffolds were submerged in 70% ethanol for

15 minutes and subsequently dried until visually dry. The ESP scaffold

were then seeded with 30 000 hMSCs and cultured in basic medium.

4.6 | Stanniocalcin ELISA

STC1 secreted into the medium by hMSCs was quantified using a STC1

ELISA kit (Antibodies-online, kit no. ABIN852096). Medium was changed

24 hours before harvest to an exact volume on the 6th day of culture.

For the cell-stress experiments, medium was changed on the 7th day and

only incubated for 8 hours. The ELISA was performed according to the

manufacturer's instructions. STC1 concentration was normalized to total

DNA in each sample to correct for differences in cell numbers.

4.7 | Caspase 3/7 activity assay

Caspase 3/7 activity was measured using the Caspase-Glo 3/7 assay

(Promega). Caspase 3/7 assay solution was mixed 1:1 with alpha-

MEM without phenol red (Thermo Fisher Scientific) (caspase 3/7 lysis

buffer) and added to the cells at the moment of harvest. After

30 minutes incubation, light intensity was measured at 520 nm on a

CLARIOstar Plus plate reader.

4.8 | DNA quantification

hMSCs were washed 2× with PBS to remove dead cells and medium

before stored dry at −80�C for later DNA quantification. Samples were

freeze-thawed twice before either RLT lysis buffer (Qiagen) or the

caspase lysis 3/7 buffer was added. Samples were freeze-thawed three

times again in lysis buffer (after caspase 3/7 assay, if applicable) to ensure

full lysis. TCP samples were scraped and hydrogel and ESP scaffolds

were left in the lysis buffer. Samples were then diluted 50× in Tris-EDTA

buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5 [Sigma-Aldrich]) and a

DNA standard curve was made in the same final solution (2% RLT or

caspase lysis 3/7 buffer in Tris-EDTA buffer). Pico green assay (Thermo

Fisher Scientific) was used to quantify DNA, according to the manufac-

turer's protocol.

4.9 | Protein isolation and Western blot

To validate the knockdowns, protein was isolated from transduced

cells with RIPA buffer (Sigma-Aldrich), supplemented with cOmplete,

Mini, EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich). Cells

were grown in TCP dishes and after scraping with lysis buffer, the

samples were spun down at 10 000g and the supernatant was used

for further analysis. Total protein concentration was quantified using

the Pierce BCA protein assay kit (Thermo Fisher Scientific). Twenty

micrograms of protein of each sample was incubated in 10%

2-Mercaptoethanol (Sigma-Aldrich) in laemmli loading buffer (Bio-

Rad) at 95�C for 5 minutes before loading into a 4% to 15% polyacryl-

amide gels (Bio-Rad). The semi-dry transfer method was used to blot

proteins from the gel to a 0.45 μm PVDF membrane (Bio-Rad). Mem-

branes were blocked in 5% (w/v) fat free milk (Bio-Rad) in TBS

+ 0.05% (v/v) tween-20 (Sigma-Aldrich) for 1 hour. Primary antibodies

were incubated in blocking buffer overnight at 4�C. All antibodies

were ordered from Abcam and diluted 1/1000, except for YAP which

was diluted 1/500. Lamin A/C: ab108595; Paxillin: ab32084; Zyxin:

ab58210; YAP: ab52771; TBP: ab51841. The following day, blots

were incubated for 1 hour at room temperature in 0.33 μg/mL goat

anti-rabbit or anti-mouse HRP (Bio-Rad) in blocking buffer.
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Membranes were incubated in Clarity Western ECL (Bio-Rad) for 1 to

5 minutes to visualize protein bands on a Bio-Rad ChemiDoc.

4.10 | RNA isolation

hMSCs expanded for 7 days in 175 cm2 flasks were exposed to the

cell-stress treatments as previously described above. After 8 hours of

incubation, each condition was washed one time with PBS to wash

the remaining media. One milliliter of TRIzol (Fisher Scientific) was

added to the flaks and cells were dissolved and detached with the

help of a cell scraper (VWR). The samples were then frozen at −80�C

until further use. For mRNA isolation, samples have been thawed on

ice and 200 μL of chloroform (Sigma-Aldrich) were added. After shak-

ing vigorously for 15 seconds, the samples were left for 15 minutes at

RT and then centrifuged at 12 000g for 15 minutes at 4�C. An upper

aqueous layer was obtained to which 500 μL of isopropanol (VWR)

were added. The samples were incubated for 10 minutes at RT and

centrifuged at 12 000g for 10 minutes at 4�C. All but 200 μL of super-

natant was discarded and a same volume of molecular grade ethanol

(Thermo Fisher Scientific) was mixed into the solution with a pipette

to make a lysate. The samples followed then the protocol establish by

RNeasy Mini Kit (Qiagen) for mRNA isolation. The mRNA obtained

was quantified with a nanodrop and the sample concentration was

evened with nucleoside-free water (Bio-Rad). To synthesized cDNA,

mRNA samples obtained followed the iScript cDNA Synthesis Kit

(Bio-Rad) and followed the thermocycler reaction of 5 minutes at

25�C, 20 minutes at 46�C, 1 minute at 95�C and were frozen at

−20�C for storage or in ice for further use.

4.11 | Quantitative real-time RT-PCR

Primers for STC1 were selected and confirmed for their affinity to the

gene with BLAST. 50-AGGTGCAGGAAGAGTGCTACA-30 and 50-

GACGACCTCAGTGATGGCTT-30 were used as forward and reverse

primers, respectively. In order to confirm primers efficiency, control

hMSCs cDNA dilution series was performed and a 101% efficiency was

obtained for concentrations between 19 and 470 ng/μL. For reverse

transcription, 1 ng of sample was loaded with 0.3 μL of primers solution

and 7.5 μL of iQ SYBR Green Supermix (Bio-Rad) to a total of 15 μL.

After loading each reaction in a 96-well plate, the plate was placed on a

Real-Time PCR Detection System (Bio-Rad) and followed a protocol of

3 minutes at 95�C, 15 seconds at 95�C, 30 seconds at 55�C (repeated

39 times steps), and melting curve: 65�C to 95�C at 0.5�C steps of

5 minutes. The relative level of mRNA expression was calculated using

the 2−ΔΔCt method with GAPDH as a reference.

4.12 | Immunofluorescence and imaging

hMSCs were fixed at room temperature for 20 minutes in 3.6% (v/v)

paraformaldehyde (Sigma-Aldrich) in PBS. Blocking and

permeabilization was done for 1 hour at room temperature in 2%

bovine serum albumin (BSA) (VWR) with 0.1% (v/v) triton X (VWR)

in PBS. Zyxin antibody (mentioned above in the Western blot sec-

tion) was used in the same dilution for immunofluorescent staining.

Incubation was done overnight at 4�C in 2% (w/v) BSA and 0.05%

(v/v) tween-20 in PBS (incubation buffer). Goat anti-mouse Alexa

Fluor 488 (Thermo Fisher Scientific) in incubation buffer was incu-

bated overnight at 4�C. F-actin was visualized using phalloidin Alexa

Fluor 488 (Thermo Fisher Scientific). After blocking and

permeabilization, phalloidin (1/100 in PBS + 0.05% (v/v) tween-20)

was incubated at room temperature for 20 minutes. DAPI (Sigma-

Aldrich, 0.14 μg/mL in PBS + 0.05% (v/v) tween-20) was used as

nuclear staining. Actin images were taken on a wide-field fluores-

cence microscope (Nikon-Ti); zyxin images on an SP8 confocal

(Leica) microscope. All images within an experiment were captured

on the same day and using the same settings, so quantitative com-

parisons could be made.

Cell area was quantified using Fiji. Total cell area was divided by

the number of cells to get the average cell area per image. Twelve

individual images, taken from three different biological replicates,

were used for quantification. Actin stress fibers were manually coun-

ted in 15 cells per condition and normalized to cell area. The number

of zyxin focal adhesions was counted in 20 cells per condition and

normalized to cell area.

4.13 | Statistics

Number of biological replicates and statistical tests used are stated

in figure subtext. At least three biological replicas were used for

each assay. Cells selected for quantification of cell size and actin

stress fibers were selected randomly. Normal distribution of each

data set was tested using the Shapiro-Wilk test. For multiple com-

parisons within one experiment, a One-way ANOVA with Tukey's

post hoc was performed, or Kruskal-Wallis with Dunn's post hoc

as nonparametric equivalent. Experiments with one comparison

were tested using a two-tailed Student's t-test. Significance was

set at P < .05. Statistical analysis was performed using GraphPad

Prism 8.
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