
ORIGINAL RESEARCH
published: 12 September 2018
doi: 10.3389/fphar.2018.01017

Frontiers in Pharmacology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 1017

Edited by:

Lixia Yao,

Mayo Clinic, United States

Reviewed by:

Yanshan Wang,

Mayo Clinic, United States

Chen Li,

Xi’an Jiaotong University, China

Chen Wang,

Mayo Clinic, United States

*Correspondence:

Xing Chen

xingchen@amss.ac.cn

Specialty section:

This article was submitted to

Translational Pharmacology,

a section of the journal

Frontiers in Pharmacology

Received: 09 April 2018

Accepted: 22 August 2018

Published: 12 September 2018

Citation:

Zhang L, Chen X, Guan N-N, Liu H

and Li J-Q (2018) A Hybrid

Interpolation Weighted Collaborative

Filtering Method for Anti-cancer Drug

Response Prediction.

Front. Pharmacol. 9:1017.

doi: 10.3389/fphar.2018.01017

A Hybrid Interpolation Weighted
Collaborative Filtering Method for
Anti-cancer Drug Response
Prediction
Lin Zhang 1, Xing Chen 1*, Na-Na Guan 2, Hui Liu 1 and Jian-Qiang Li 2

1 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China, 2College of

Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

Individualized therapies ask for the most effective regimen for each patient, while the

patients’ response may differ from each other. However, it is impossible to clinically

evaluate each patient’s response due to the large population. Human cell lines have

harbored most of the same genetic changes found in patients’ tumors, thus are

widely used to help understand initial responses of drugs. Based on the more credible

assumption that similar cell lines and similar drugs exhibit similar responses, we

formulated drug response prediction as a recommender system problem, and then

adopted a hybrid interpolation weighted collaborative filtering (HIWCF) method to predict

anti-cancer drug responses of cell lines by incorporating cell line similarity and drug

similarity shown from gene expression profiles, drug chemical structure as well as

drug response similarity. Specifically, we estimated the baseline based on the available

responses and shrunk the similarity score for each cell line pair as well as each drug

pair. The similarity scores were then shrunk and weighted by the correlation coefficients

drawn from the know response between each pair. Before used to find the K most similar

neighbors for further prediction, they went through the case amplification strategy to

emphasize high similarity and neglect low similarity. In the last step for prediction, cell

line-oriented and drug-oriented collaborative filtering models were carried out, and the

average of predicted values from both models was used as the final predicted sensitivity.

Through 10-fold cross validation, this approach was shown to reach accurate and

reproducible outcome for those missing drug sensitivities. We also found that the drug

response similarity between cell lines or drugs may play important role in the prediction.

Finally, we discussed the biological outcomes based on the newly predicted response

values in GDSC dataset.

Keywords: anti-cancer drug response, drug response prediction, recommender system, collaborative filtering,

interpolation weighted method
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INTRODUCTION

One of the top challenges in individualized therapies is the
choice of the most effective chemotherapeutic regimen for each
patient, while the administration of ineffective chemotherapy
may increase mortality and decrease quality of life in cancer
patients (Chen et al., 2013). Thus, it is urgent to evaluate each
patients’ possible response to each chemotherapeutic regimen to
make sure the regimens applied are most likely to be effective. To
address this problem, extensive patient drug screening projects
need to be carried out so as to unveil significant drug response
patterns. However, the large populations of cancer patients with
numerous drugs has become the bottleneck.

To circumvent this issue in the context of cancer, some large
drug screening projects have been carried out using cancer cell
lines instead of individual cancer patients. These are NCI-60
panel, Genomics of Drug Sensitivity in Cancer (GDSC) and
the Cancer Cell Line Encyclopedia (CCLE) projects (Boyd and
Paull, 1995; Barretina et al., 2012; Yang et al., 2013). The NCI-
60 study was pioneered by the US National Cancer Institute
(NCI) to assemble the NCI60 tumor cell line panel, which has
been assayed for its sensitivity to over 130,000 compounds and
had been extensively profiled at the biological level (Shoemaker,
2006). It has been useful for the development of computational
approaches aiming at linking drug sensitivity with genotype
profiles together (Shoemaker et al., 1988; Weinstein et al., 1997;
Garnett et al., 2012). The GDSC project is, to date, the largest
public resource for information on drug sensitivity in human
cancer cell lines and molecular markers of drug response. It
pioneered the combination of drug and cell line information,
including gene expression, gene copy number variations, and
mutation profiles for drug sensitivity prediction (Garnett et al.,
2012; Yang et al., 2013). It systematically addressed the issue of
predictive biomarker identification by collectively analyzing the
clinically-relevant human cell lines and their pharmacological
profiles for corresponding cancer drugs. The other widely
used database, CCLE (Barretina et al., 2012), collects gene
expression, chromosomal copy number and massively parallel
sequencing data from 947 human cancer cell lines, coupled with
pharmacological profiles for 24 anti-cancer drugs across 479 of
the cell lines. It allows identification of genetic, lineage, and gene
expression-based predictors of drug sensitivity.

Corresponding to the large-scale datasets screened on

cultured human cell line panels, many computational
methods have been developed for the elucidation of the

response mechanism of anti-cancer drugs, most commonly
are multivariate linear regression (LASSO and elastic net

regularizations) and nonlinear regression (e.g., neural networks
and some kernel based methods; Barretina et al., 2012; Garnett
et al., 2012; Heiser et al., 2012; Menden et al., 2013; Yang
et al., 2013; Costello et al., 2014). Deamen et al. used least
squares-support vector machine and random forest to identify
drug response associated molecular features in breast cancer
(Daemen et al., 2013). Based on the NCI-60 panel, a weighted
voting classification model, an ensemble regression model using
Random Forest as well as a simultaneous machine learning
modeling of chemical and cell line information have been

developed to predict anti-cancer drug sensitivity (Staunton
et al., 2001; Riddick et al., 2011; Cortes-Ciriano et al., 2016).
Based on the GDSC dataset, Ammad-uddin et al. developed a
kernelized Bayesian matrix factorization (KBMF) method to
integrate genomic and chemical properties as well as drug target
information for drug sensitivity prediction (Ammad-ud-din
et al., 2014). Sheng et al predicted unseen drug responses by
calculating a weighted average of observed drug responses based
on drug specific cell line similarity and drug structure similarity
(Breese et al., 1998). Liu et al. proposed a dual-layer cell line drug
integrated network (DLN) model, which integrated both cell line
and drug similarity network data, to predict the missing drug
response (Zhang et al., 2015). Wang et al. proposed HNMDRP
method, incorporating gene expression, chemical structure as
well as drug target and protein-protein interaction information
to predict missing values of drug responses in cell lines (Zhang
et al., 2018). Based on the transcriptomic data from both GDSC
and CCLE, Kim et al. developed a network-based classifier for
predicting sensitivity of cell lines to anti-cancer drugs (Kim et al.,
2016). Base on the same whole datasets, Wang et al. proposed
a similarity-regularized matrix factorization (SRMF) method
for drug response prediction, which incorporates similarities
of drugs and of cell lines simultaneously (Wang et al., 2017).
Stanfield et al. proposed a heterogeneous network based method
to predict the interaction between cell line-drug pairs (Stanfield
et al., 2017). They classified the interaction between each cell
line-drug pairs into sensitive and resistant, thus, turned the
prediction problem into classification. Current methods have
taken the similarity of genomic or transcriptomic profiles as well
as drug structure into consideration for similarity definition,
which were often defined by calculating the Pearson correlation
coefficient for genomic profiles, or Jaccard coefficient for drug
chemical fingerprint in present studies and are called as COEF
in the following for short. However, the similarity that exhibited
through drug sensitivity, which can be defined by calculating
the Pearson correlation coefficient based on drug response
sensitivity, has not been considered yet and is called as RPCC
for short in the following. Not to mention the combination of
COEF and RPCC, which is called as MRPCC (Multiplication of
COEF and RPCC) for short throughout the paper. Drug-target
interaction and PPI network have also been considered to
improve the prediction performance (Chen et al., 2012; Stanfield
et al., 2017).

Regarding the relatively more credible assumption that similar
cell lines and similar drugs exhibit similar drug responses (Zhang
et al., 2015), the prediction of missing drug response can be
considered as a typical Recommender System (RS) (Adomavicius
and Tuzhilin, 2005). Typically, in a recommender system, there
is a set of users and a set of items. Each user rates a set of items
by some values. The recommender system attempts to profile
user preferences and tries to model the interaction between
users and items, which is exactly what we want in the issue
of drug response prediction. The cell lines correspond to users
while drugs correspond to items. From the RS perspective, the
similarity shown through drug sensitivity is also very important
formissing value prediction. Thus, we improved an RS technique,
Hybrid InterpolationWeighted Collaborative Filtering (HIWCF)
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(The acronym list defined in this paper is shown in Table 1),
for drug response prediction, which incorporates similarities
of drugs and of cell lines in additional to the known drug
response simultaneously (The key source code and ready to
use CCLE and GDSC datasets are provided at https://github.
com/laureniezhang/HIWCF). To demonstrate its effectiveness,
we compared HIWCF with SRMF and KBMF, which have been
proved to show higher performance than typical similarity-based
methods. The evaluation metrics used were averaged Pearson
correlation coefficient (PCC) and averaged root mean square
error (RMSE) over all drugs. The results on GDSC and CCLE
drug response datasets by 10-fold cross validation showed that
similarity defined based on drug response is more dependable
for unknown response prediction, and the incorporation of gene
expression profile, drug response, and drug structure similarity
help to better improve the prediction performance. Finally,
HIWCF was applied to impute the unknown drug response
values in GDSC dataset for further evaluation.

MATERIALS AND METHODS

Data and Preprocessing
In this paper, two datasets, both consisting of large scale
genomic expression profiles, pharmacologic profiling of drug
compounds, as well as the experimentally determined drug
response measurements IC50 values (the concentration of a drug
compound that reached the absolute inhibition of 50% in vitro,
given as natural log of µM) or experimental activity areas were
used for performance evaluation. Large scale genomic expression
profiles were normalized across cell lines to draw the similarity
matrix of cell lines. The chemical structures of drug compounds
were used to draw the similarity matrix of drugs.

The first dataset is from GDSC project (http://www.
cancerrxgene.org/), consisting of 139 drugs and a panel of 790
cancer cell lines (release 5.0). We selected 652 cell lines for which
both drug response data and gene expression were available, and

TABLE 1 | Acronym list.

Acronym Detailed description

HIWCF Hybrid Interpolation Weighted Collaborative Filtering

COEFc Pearson Correlation Coefficient drawn from cell line gene

expression profile

COEFd Jaccard Correlation Coefficient drawn from drug chemical

fingerprint

RPCCc Pearson Correlation Coefficient between cell lines drawn from

drug response matrix

RPCCd Pearson Correlation Coefficient between drugs drawn from

drug response matrix

RPCC Refers to RPCCc or RPCCd . It depends on the context.

MRPCCc Multiplication of COEFc with RPCCc, used as final similarity

score between cell lines.

MRPCCd Multiplication of COEFd with RPCCd , used as final similarity

score between drugs.

MRPCC Refers to MRPCCc or MRPCCd . It depends on the context.

135 drugs whose SDF format (encoding the chemical structure of
the drugs) were available. The drug response is given with IC50
values (70,676 data points, matrix 80.3% complete).

The second dataset consists of 1,036 human cancer cell
lines and 24 drugs, which is from CCLE project (http://www.
broadinstitute.org/ccle). We also selected 491 cell lines and 23
drugs following the same rule used in GDSC dataset. The drug
response is given with activity areas (10,870 data points, matrix
96.25% complete). Both ready to use datasets are submitted to
Github at https://github.com/laureniezhang/HIWCF.

Problem Formulation
We basically treat anti-cancer drug response prediction as a
RS problem where each cell line-drug pair is the typical user-
item pair. Based on the finding that similar cell lines by gene
expression profiles exhibit similar response to the same drug
(Zhang et al., 2015), we proposed a weighted interpolation
collaborative filtering method to approximate the sensitivity of
cell line u to drug i. For convenience, we reserve special indexing
letters for distinguishing cell lines from items: for cell lines u,
v, and for drugs i, j. We are given cell line drug response about
m cell lines and n drugs, arranged as an m × n matrix R =
{rui}1≤u≤m,1≤i≤n, where higher value of activity area or lower
value of IC50 means a better sensitivity of a cell line to a given
drug.

Baseline Estimate Strategy
Since typical CF data often exhibit large user and item effects,
that means systematic tendencies for some users to give higher
ratings than others, and for some items to receive higher ratings
than others, we first adjusted the rating data by accounting for
these effects, which we include in the baseline estimate strategy.
Let µ denotes the overall average drug response, we denote
the estimated baseline for an unknown rating r̂ui as bui, which
accounts for the above-mentioned user and item effects.

bui = µ+ bu + bi (1)

The parameters bu and bi indicate the observed deviations of cell
line u and drug i, respectively, from the average.

In order to get the baseline formulation, for each drug i, we
set:

bu =

∑

i∈U(u,i) (rui − µ− bi)

λ3 + |U(u, i)|
(2)

Then, for each cell line u, we set:

bi =

∑

u∈U(u,i) (rui − µ)

λ2 + |U(u, i)|
(3)

whereU(u, i) is the set of cell lines who responses to drug i, or the
set of drugs who have responses in cell line u, and |U(u, i)|means
the number of elements in setU(u, i). λ2and λ3 are regularization
parameters that help to shrink the averages bu and bi toward zero.
They are set to 5 and 2, respectively in the following simulation
process.
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TABLE 2 | The comparison results between HIWCF with different similarity definition (MRPCC/RPCC/COEF), SRMF, and KBMF obtained under 10-fold cross validation

on CCLE dataset.

Methods Drug-averaged PCC_S/R Drug-averaged RMSE_S/R Drug-averaged PCC Drug-averaged RMSE

HIWCF MRPCC 0.80(±0.07) 0.66(±0.21) 0.74(±0.08) 0.53(±0.15)

RPCC 0.80(±0.06) 0.67(±0.22) 0.73(±0.08) 0.54(±0.16)

COEF 0.74(±0.06) 0.76(±0.27) 0.66(±0.06) 0.60(±0.20)

SRMF 0.78(±0.07) 0.74(±0.23) 0.71(±0.09) 0.57(±0.18)

KBMF 0.65(±0.10) 0.81(±0.20) 0.71(±0.10) 0.64(±0.17)

TABLE 3 | The comparison results between HIWCF with different similarity definition (MRPCC/RPCC/COEF), SRMF, and KBMF obtained under 10-fold cross validation

on GDSC dataset.

Methods Drug-averaged PCC_S/R Drug-averaged RMSE_S/R Drug-averaged PCC Drug-averaged RMSE

HIWCF MRPCC 0.68(±0.14) 1.88(±0.54) 0.58(±0.15) 1.51(±0.39)

RPCC 0.68(±0.14) 1.87(±0.53) 0.58(±0.15) 1.50(±0.38)

COEF 0.57(±0.15) 2.12(±0.60) 0.46(±0.14) 1.66(±0.43)

SRMF 0.71(±0.15) 1.73(±0.46) 0.62(±0.16) 1.43(±0.36)

KBMF 0.59(±0.14) 2.00(±0.51) 0.49(±0.14) 1.59(±0.42)

FIGURE 1 | The drug similarity RPCC and COEF of 23 drugs in CCLE dataset. (A) The plot shows RPCC similarity for 23 drugs in CCLE dataset. (B) The plot shows

COEF similarity for 23 drugs in CCLE dataset.

FIGURE 2 | The cell line similarity RPCC and COEF of 491 cell lines in CCLE dataset. (A) The plot shows RPCC similarity for 491 cell lines in CCLE dataset. (B) The

plot shows COEF similarity for 491 cell lines in CCLE dataset.
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FIGURE 3 | Similar cell lines are more likely to be clustered into the same group (have similar similarity score) based on MRPCC similarity score. Most cell lines in the

plot were collected from hematopoietic and lymphoid tissues.

Similarity Definition
The similarity matrixes are required for identification of K
nearest neighbors. The original similarity of cell lines was drawn
based on the Pearson correlation coefficient between the gene
expression profiles of cell line u and v, which is indicated as
COEFcuv . The c in the subscript refers to cell line-oriented. The
similarity of drugs was drawn based on the Jaccard coefficient
between the drug chemical structures of drug i and j, which
is indicated as COEFdij . The d in the subscript refers to drug-
oriented.

However, to some extent, the similarity between cell line u

and v can also be shown from their drug response. Thus, in
this paper, we investigated the performance of different similarity
definitions for drug response prediction. To be more specific, the
similarity of cell line u and v, indicated asMRPCCcuv , was defined
as the multiplication of COEFcuvandRPCCcuv , which helps the cell
line pairs with consistent similarity in gene expression and drug
response to get higher rank for unknown response prediction.

MRPCCcuv ← COEFcuv × RPCCcuv (4)

where COEFcuv was defined as the their gene expression profile’s
Pearson correlation, while RPCCcuv was defined as the correlation
between the response IC50 value of cell line u and v.

RPCCcuv =

∑

(Ru• − R̄u•)(Rv• − R̄v•)
√

∑

(Ru• − R̄u•)
2 ∑

(Rv• − R̄v•)
2

(5)

where Ru• represents the response value of the u-th cell line, and
R̄u• represents the mean of the u-th cell line’s response.

In the same way, the similarity between drug i and j, indicated
as MRPCCdij , was defined as the multiplication of COEFdij and
RPCCdij .

MRPCCdij = COEFdij × RPCCdij (6)

where COEFdij was defined as their drug chemical fingerprint’s
Jaccard coefficient, while RPCCdij was defined as the Pearson
correlation coefficient between response IC50 values of drug i and
j.

RPCCdij =

∑

(R•i − R̄•i)(R•j − R̄•j)
√

∑

(R•i − R̄•i)
2 ∑

(R•j − R̄•j)
2

(7)

where R•i represents the response value of the i-th drug, and R̄•i
represents the mean of the i-th drug’s response.

In order to avoid the bias caused by the different level of
support (different number of known responses) for each cell line-
drug pair, we also went through a shrunk procedure for similarity
score, which is denoted by (Koren, 2010):

wi,j ←
|U(i, j)|

|U(i, j)| + λ4
wi,j (8)

where |U(i, j)| is the number of cell lines who have responses to
both drug i and j, or the number of drugs who have responses
from both cell line i and j. wijis the similarityMRPCCc defined in
(4) and MRPCCd in (6). λ4is a constant, which is set as 50 in the
experiments.

In the following, we adopted a case amplification strategy,
which refers to a transform applied to the weights used in the
following collaborative filtering prediction, to reduce the noise in
the data. The transform emphasizes high weights and punishes
low weights by (Breese et al., 1998):

wi,j ← wi,j � |wi,j|
ρ−1 (9)

where ρ is the case amplification power, ρ ≥ 1, and we also
followed the typical choice of ρ as 2.5 (Lemire, 2005).
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FIGURE 4 | Prediction performance of HIWCF with MRPCC similarity and SRMF for all 23 drugs tested in the CCLE dataset. (A) Bar plot shows that the prediction

performance of HIWCF with MRPCC is better than that of SRMF in the perspective of Pearson correlations between the predicted and observed activity areas. (B) Bar

plot shows that the prediction performance of HIWCF with MRPCC is better than that of SRMF in the perspective of Root Mean Square Error between the predicted

and observed activity areas.

Drug Response Prediction Based on
HIWCF Method
After removing the noise by baseline estimate strategy, we need to

predict the unknown sensitivity for cell line u of drug i, which is
r̂ui. Based on the above-mentioned similarity measure w defined
in (9), we first conducted drug-oriented CF, and k drugs, which
are most similar to drug i that had responses in cell line u were
identified. This set of k neighboring drugs is denoted by U(i; u).
Then, based on w, we conducted cell line-oriented CF, and k cell
lines that responded to drug i, which aremost similar to cell line u
were identified. This set of k neighboring cell lines is denoted by
U(u; i). Finally, the predicted value of r̂ui is taken as an average
of the weighted average of the response of neighboring drugs
found in U(i; u) and that of the response of neighboring cell
lines found inU(u; i), while adjusting from user and item effects

through baseline estimates:

r̂ui = bui +
1

2
(

∑

j∈U(i;u) wi,j(ruj − buj)
∑

j∈U(i;u) wi,j

+

∑

v∈U(u;i) wi,j(rvi − bvi)
∑

v∈U(u;i) wi,j
) (10)

RESULTS

Similarity Exhibited in Drug Response
Sensitivity Shows Leading Role in
Prediction
We first conducted 10-fold cross validation to evaluate the
performance of different similarity definition. Incorporated with
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FIGURE 5 | Scatter plots of observed and predicted drug activity area for four drugs in CCLE using HIWCF with MRPCC similarity. (A) Scatter plot of Irinotecan. (B)

Scatter plot of PD-0325901. (C) Scatter plot of Panobinostat. (D) Scatter plot of Erlotinib.

COEF, RPCC as well as MRPCC, drug response prediction
performance of HIWCF is evaluated in both CCLE dataset
and GDSC dataset with activity area or IC50 value as drug
response measurement in comparison with KBMF and SRMF.
The evaluation measures included average PCC, RMSE between
predicted and observed drug responses through all drugs.
Considering the known fact that the sensitive and resistant cell
lines of each drug are more valuable to unveil mechanisms of
drug actions, we also included PCC and RMSE from sensitive and
resistant cell lines for each drug, which were denoted as PCC_S/R
and RMSE_S/R (Wang et al., 2017).

For each dataset, the drug response entries were divided into
10-folds randomly with almost the same size. Each time, one-fold
was used as the test set, while the rest nine-folds were used as the
training set. The prediction was repeated 10 times such that each
fold acted as a test set once. The whole cross-validation was run
for 100 times for each dataset, and the prediction performance
was shown in Tables 2, 3.

As is shown, the prediction performance of HIWCF with
MRPCC/RPCC similarity were far better than that with COEF

similarity, which suggested that the similarity exhibited in drug
response may lead important role than that of gene expression
profiles or drug structures in the scenario of drug response
prediction. Thus, we turned to use the predicted values of
HIWCF with MRPCC similarity measure only in the rest
evaluation of our paper.

In Table 2, we can also see that in CCLE dataset, the
performance of HIWCF with RPCC and MRPCC were better
than that of SRMF, without mentioning KBMF. However, as
shown in Table 3, the performance of HIWCF with either RPCC
or MRPCC were a little bit worse than that of SRMF. That may
be because the similarity score of RPCC/MRPCC is based on the
known drug response for each cell line-drug pair. Since GDSC
dataset is much sparser than that of CCLE, the similarity score of
RPCC/MRPCC of GDSC is less reliable than that of CCLE.

We further investigated the difference between COEF and
RPCC. To be more specific, based CCLE dataset, we calculated
the drug structure fingerprint similarity COEF for hierarchical
clustering analysis. As shown in Figure 1B, it was surprising
that the similarity score for most drug pairs were approaching
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FIGURE 6 | The association of lapatinib sensitivity and cancer gene mutations were consistent for predicted response values. WT refers to the non-mutated (wild

type) cell lines. (A) Box plot for grouped cell line response values for lapatinib based on their EGFR mutation profiles. (B) Box plot for grouped cell line response values

for lapatinib based on their ERBB2 mutation profiles. (C) Box plot for grouped cell line response values for lapatinib based on their ERBB2 mutation profiles.

1, which was undistinguishable for neighbor selection. However,
we can get distinguishable similarity scores from drug response
similarity RPCC, as shown in Figure 1A. If we investigate the
drugs that clustered into the same group, such as “Lapatinib,”
“AZD0530,” “ZD-6474,” and “Erlotinib.” It is well-known that
they are EGFR inhibitors, thus, they are most likely have higher
similarity scores in drug response (Yuan et al., 2016). We also
investigate the gene expression similarity with cell line response
similarity. The cell line response similarity RPCC and cell line
gene expression similarity COEF were calculated for hierarchical
clustering, which were comparable with each other (Figure 2).
The results show that cell lines collected from the same tissue
type may have higher similarity score, which is consistent with
previous studies. For example, most cell lines that clustered
into the same group shown in Figure 3 were collected from
hematopoietic and lymphoid tissues. Hierarchical clustering
was achieved in both row and column direction, with original
similarity score was normalized with 0 mean.

Cross-Validation on CCLE Drug Response
Datasets
We then tested the prediction performance of HIWCF for 23
drugs tested in the CCLE study, which were quantified based
on PPC and RMSE between the predicted and observed activity
areas.

As shown in Figure 4, the overall prediction performance
of HIWCF throughout all the drugs was significantly higher
than that of SRMF for the CCLE dataset. We believe that the
improvement of HIWCF is most likely due to the involvement
of similarity calculated from response matrix. The scatter plots
of observed vs. predicted responses for four demonstrative
drugs, Irinotecan, PD-0325901, Panobinostat, and Erlotinib are
shown in Figure 5, which indicate the good correlations between
existing response and predicted ones.

Response Data Prediction in GDSC Data
Based on the HIWCF method validated, we based on all
known data to predict the unknown ones in the GDSC dataset.

FIGURE 7 | Repositioning of sunitinib. Box plot for grouped cell line response

values for Sunitinib based on their tissue type. NSCLC indicates cell lines

sampled from non-small cell lung cancer tissues.

As in Wang et al. (2017), we also focused on an EGFR
and ERBB2 inhibitor drug lapatinib, where more than half
of response values (342/652) were unknown. Previous studies
had demonstrated that EGFR and ERBB2 amplification was
associated with sensitivity to lapatinib, which has been licensed
for the treatment of HER2+ breast cancer clinically (Petrelli et al.,
2017; Zhao et al., 2017). Thus, we tried to investigate whether
the observed and predicted response of EGFR/ERBB2 mutated
cell lines exhibit the sensitivity to lapatinib. All the 635 cell lines
in GDSC were first grouped into mutated vs. wildtype by the
total copy number variation in the exact gene (Garnett et al.,
2012). Then, we found that not only EGFR mutated but also
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FIGURE 8 | Hierarchical clustering analysis on the gene expression profiles for all the 652 cell lines in GDSC dataset. (A) The bar plot of the IC50 values of each cell

line. (B) The hierarchical clustering plot on the right showed the gene expression pattern for 20% most variant genes in each cell line. Each row in (A) corresponds to

the exact row in the hierarchical clustering plot of gene expression profiles in (B). The genome expression pattern was shown as some genes were up-regulated in

Sunitinib resistant cell lines but down-regulated in Sunitinib sensitive cell lines, while some other genes were up-regulated in Sunitinib sensitive cell lines but

down-regulated in Sunitinib resistant cell lines.

ERBB2 mutated cell lines were both significantly more sensitive
to lapatinib, as shown in Figures 6A,B, which was consistent with
previously mentioned conclusions.

We further investigated whether the newly predicted drug
responses combined with known drug responses were able to
detect novel drug-cancer gene association or not. To be more
specific, the oncogene BRAF has been found to be significantly
associated with enhanced and selective sensitivity to MEK
inhibitor PD-0325901 (Solit et al., 2006) (p= 3.70e-11 for known
drug responses; p= 6.20e-12 for combined response of predicted
ones and known ones; Figure 6C).

The newly predicted drug responses of GDSC dataset may also
aid in drug repositioning. For example, Sunitinib, as a kinase
inhibitor targeting VEGFR2 and PDGFRβ , has been observed
to be sensitive to non-small cell lung cancer (NSCLC) based on
newly predicted drug responses vs. available ones, as shown in
Figure 7.

We further conducted the hierarchical clustering analysis
through genes based on the expression profile of all the 652 cell
lines. Before hierarchical clustering, 80 percent genes that show
less variations over all the genes were filtered out. As shown
in Figure 8, the patterns of gene expression were shown to be
related with the sensitivity of each cell line to Sunitinib. The pink
marked group of genes showed higher expression in cell lines
which were sensitive to Sunitinib, while the blue marked group of
genes showed higher expression in cell lines which were resistant
to Sunitinib.

We further conducted GO enrichment analysis for both
groups of genes. For the genes that up-regulated in Sunitinib
resistant cell lines were found to be related to some repair
pathways, such as regulation of DNA repair (p = 1.1e-3), base-
excision repair (p= 0.032), nucleotide-excision repair (p= 6e-3),

interstrand cross-link repair (p = 0.01), mismatch repair (p =
0.048), etc., which were found to be important factors of drug
resistance. For genes that were up-regulated in Sunitinib sensitive
cell lines were found to be related to mTOR signaling pathway (p
= 1e-2), NF-kappaB signaling (p= 4.1e-10). The inhibition of the
signaling pathways help to increase drug sensitivities (Cai et al.,
2014).

DISCUSSION

In this paper, we used a recommender system-based method
HIWCF to predict anti-cancer drug sensitivity in GDSC and
CCLE datasets respectively. The idea of the method comes from
the fact that similar cell lines exhibit similar responses to the
same drug, which is the exact motivation of a recommender
system. This method first estimated the baseline, which helped
to remove the noise in the original drug sensitivity, then
shrunk the similarity measure by integration of gene expression
profile, drug structure in addition to the correlation between
cell lines and drugs exhibited in the drug response, which
helped to weak the influence of sparseness in response matrix.
Finally, it incorporated the user-orientated and item-orientated
interpolation weighted collaborative filtering method to predict
the unknown drug sensitivity values. Ten-fold cross validation
demonstrated that the similarity drawn based on known drug
response can better improve the prediction performance in
comparison to the similarity drawn based on cell line gene
expression profiles and drug structure only. At least, in the
respective of recommender system method, it is more reliable
to predict the unknown drug sensitivity based on the similarity
exhibited in known drug responses. We also applied HIWCF
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method to predict the missing drug response values in GDSC
dataset. To be more specific, we found the consistent conclusions
of mutated cell lines such as EGFR/ERBB2 are more sensitive to
the drug of lapatinib. We also found that the gene expression
profiles showed exact pattern for Sunitinib sensitive and resistant
cell lines. Genes that up-regulated in Sunitinib sensitive cell
lines were subjected to repair pathways, while genes that down-
regulated in Sunitinib resistant cell lines were subjected to some
drug enhancement related pathways.

In comparison with existing drug response prediction
methods, HIWCF follows a neighbor based collaborative filtering
approach for unknown drug response prediction, which is
theoretically simple and intuitive. Matrix Factorization based
methods, such as SRMF model both cell lines and drugs with
some latent factors for unknown drug response prediction.

However, this method has its own drawbacks. First, since
HIWCF highly depends on the known drug response, the
performance highly depends on the sparseness of the response
matrix. The sparser the matrix is, the worse the performance
it gets. Secondly, the similarity of cell lines is calculated
by combining gene expression correlation coefficient and
Pearson correlation coefficient exhibited in their known drug
response. However, the similarity can also be improved by

integrating the epigenetic, epi-transcriptomic information, etc.

Furthermore, some pathway related information or other
dynamic information may also help to improve the performance.
Therefore, we can further work on some methods that aim
in sparse issue as well as multi-omics integration one in the
future.
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Stanfield, Z., Coşkun, M., and Koyutürk, M. (2017). Drug response prediction as a

link prediction problem. Sci. Rep. 7:40321. doi: 10.1145/3107411.3107459

Staunton, J. E., Slonim, D. K., Coller, H. A., Tamayo, P., Angelo, M. J., Park, J.,

et al. (2001). Chemosensitivity prediction by transcriptional profiling. Proc.

Natl. Acad. Sci. U.S.A. 98, 10787–10792. doi: 10.1073/pnas.191368598

Wang, L., Li, X., Zhang, L., and Gao, Q. (2017). Improved anticancer drug response

prediction in cell lines using matrix factorization with similarity regularization.

BMC Cancer 17:513. doi: 10.1186/s12885-017-3500-5

Weinstein, J. N., Myers, T. G., O’Connor, P. M., Friend, S. H., Fornace, A. J. Jr.,

Kohn, K.W., et al. (1997). An information-intensive approach to the molecular

pharmacology of cancer. Science 275, 343–349.

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S.,

et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource

for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41,

D955–D961. doi: 10.1093/nar/gks1111

Yuan, H., Paskov, I., Paskov, H., González, A. J., and Leslie, C. S. (2016). Multitask

learning improves prediction of cancer drug sensitivity. Sci. Rep. 6:31619.

doi: 10.1038/srep31619

Zhang, F., Wang, M., Xi, J., Yang, J., and Li, A. (2018). A novel heterogeneous

network-based method for drug response prediction in cancer cell lines. Sci.

Rep. 8:3355. doi: 10.1038/s41598-018-21622-4

Zhang, N.,Wang, H., Fang, Y.,Wang, J., Zheng, X., and Liu, X. S. (2015). Predicting

anticancer drug responses using a dual-layer integrated cell line-drug

network model. PLoS Comput. Biol. 11:e1004498. doi: 10.1371/journal.pcbi.10

04498

Zhao, M., Howard, E. W., Parris, A. B., Guo, Z., Zhao, Q., Ma, Z., et al. (2017).

Activation of cancerous inhibitor of PP2A (CIP2A) contributes to lapatinib

resistance through induction of CIP2A-Akt feedback loop in ErbB2-positive

breast cancer cells.Oncotarget 8, 58847–58864. doi: 10.18632/oncotarget.19375

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewers YW and CW and the handling Editor declared their shared

affiliation.

Copyright © 2018 Zhang, Chen, Guan, Liu and Li. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pharmacology | www.frontiersin.org 11 September 2018 | Volume 9 | Article 1017

https://doi.org/10.1038/nature04304
https://doi.org/10.1145/3107411.3107459
https://doi.org/10.1073/pnas.191368598
https://doi.org/10.1186/s12885-017-3500-5
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/srep31619
https://doi.org/10.1038/s41598-018-21622-4
https://doi.org/10.1371/journal.pcbi.1004498
https://doi.org/10.18632/oncotarget.19375
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	A Hybrid Interpolation Weighted Collaborative Filtering Method for Anti-cancer Drug Response Prediction
	Introduction
	Materials and Methods
	Data and Preprocessing
	Problem Formulation
	Baseline Estimate Strategy
	Similarity Definition
	Drug Response Prediction Based on HIWCF Method

	Results
	Similarity Exhibited in Drug Response Sensitivity Shows Leading Role in Prediction
	Cross-Validation on CCLE Drug Response Datasets
	Response Data Prediction in GDSC Data

	Discussion
	Author Contributions
	Funding
	References


