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Introduction: Limited data from clinical trials in multiple sclerosis (MS) reported that
minocycline, a widely used antibiotic belonging to the family of tetracyclines (TCs), exerts a
beneficial short-lived clinical effect A similar anti-inflammatory effect of minocycline
attributed to a deviation from Th1 to Th2 immune response has been reported in
experimental models of MS. Whether such an immunomodulatory mechanism is
operated in the human disease remains largely unknown.

Aim: To assess the in vitro immunomodulatory effect of tetracyclines, and in particular
minocycline and doxycycline, in naïve and treated patients with MS.

Material and Methods: Peripheral blood mononuclear cells from 45 individuals (35 MS
patients, amongst which 15 naïve patients and 10 healthy controls, HCs) were cultured
with minocycline or doxycycline and conventional stimulants (PMA/Ionomycin or IL-12/
IL-18). IFN-g and IL-17 producing T-, NK- and NKT cells were assessed by flow
cytometry. The effect of TCs on cell viability and apoptosis was further assessed by
flow cytometry with Annexin V staining.

Results: Both tetracyclines significantly decreased, in a dose dependent manner, IFN-g
production in NKT and CD4+ T lymphocytes fromMS patients (naïve or treated) stimulated
with IL-12/IL-18 but did not decrease IFN-g producing CD8+ T cells from naive MS or
treated RRMS patients. They also decreased IL-17+ T and NKT cells following PMA and
Ionomycin-stimulation. Tetracyclines did not affect the viability of cell subsets.

Conclusion: Tetracyclines can in vitro suppress IFN-g and IL-17- producing cells from
MS patients, and this may explain their potential therapeutic effect in vivo.
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INTRODUCTION

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory
demyelinating disease of the central nervous system (CNS) (1).
Based on disease course, patients can be classified into three main
categories, relapsing-remitting MS (RRMS), secondary
progressive MS (SPMS) and primary progressive MS (PPMS)
(2). The autoimmune pathogenesis of MS is well established by
translational research in patients with MS and studies based on
experimental autoimmune encephalomyelitis (EAE), a model of
MS (3, 4).

The activation of myelin-specific T cells followed by
dysregulation of Th1, Th2 and Th17 cytokines is believed to be
a major event during the initiation phase of MS (5). CD4+ Th1
cells produce inflammatory mediators, such as interferon-g
(IFN-g) which lead to autoantigen-specific inflammatory attack
resulting in myelin degeneration (6, 7). IL-12 and IL-18, which
can synergistically induce high levels of IFN-g expression (8), are
found elevated in MS and correlate with disease activity (9, 10).
In addition to Th1 cells, it is now believed that pro-inflammatory
Th17 and other IFN-g and IL-17 producing cells, such as Th17,
NK and NKT cells are also significantly involved in the initiation
and perpetuation of the disease (11–13). Sharp reduction of
CNS-penetrating IFN-g and IL-17 producing cells is directly
linked with disease prevention or disease remission in patients
with MS (14, 15).

Current therapeutic agents in MS mainly affect pro-
inflammatory cytokine production (15, 16), but they lack
desirable efficacy (17–19).

In addition to their well-defined antimicrobial-bacteriostatic
activity, tetracyclines (TCs) (20, 21), such as minocycline and
doxycycline, demonstrate neuroprotective, anti-apoptotic, anti-
inflammatory and immunomodulatory properties (22–25), and
have been clinically tested with encouraging results in
autoimmune diseases, such as rheumatoid arthritis and MS
(26–29). For example, in a recent randomized, controlled
clinical trial, conversion from a clinically isolated syndrome to
MS at six months was significantly lower in the minocycline
compared to placebo group, but this effect was short-lived (27).
Other trials failed to report an efficacy of TCs in MS (30),
contradicting data from animals whereby minocycline dramatically
suppresses ongoing disease activity and remarkably limits EAE
disease progression (31–33). Amongst the mechanisms involved
in their immunomodulatory action are inhibition on IFN-g and
TNF-a production by T-lymphocytes or monocytes (34–37). An
anti-inflammatory effect of minocycline has been reported in
EAE when combined with other treatments such as IFN-b,
steroids, glatiramer acetate, and atorvastatin (32, 38–40). Also,
Popovic et al. reported a dramatic suppression of disease activity
in EAE by minocycline and a deviation of MOG-specific T cell
response towards a Th2-like response (31).

The precise cellular source and mechanism of cytokine
modulation by TCs in MS patients, remains largely unknown
Abbreviations: CNS, Central Nervous System; EAE, Experimental Autoimmune
encephalomyelitis; FCS, Fetal Calf Serum; MoAb, Monoclonal Antibody; MS,
Multiple Sclerosis; PMA, Phorbol Myristate Acetate; TC, Tetracycline.
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and studies conducted so far limited their assessment in
particular cell-subsets, selecting either TC but not both. The
aim of our study was to comparatively investigate for the first
time the in vitro effect of both minocycline and doxycycline on
IFN-g and IL-17 production by peripheral cell populations in
patients with MS (newly-diagnosed naive and treated RRMS).
PATIENTS AND METHODS

Patients and Healthy Controls
A total of 35 patients with MS diagnosed according to the
McDonald criteria (41) were included in the study, including
15 naïve (12 females, mean age of 41.4 ± 13.4 years, range 19-59)
and 20 RRMS (13 females, mean age of 40.9 ± 11.4 years, range
20-61) with a mean disease duration of (11.2 ± 8.8 years, range
1-33). All patients attended the Outpatient Clinics of the
Neurology Department, of the University General Hospital of
Larissa, Greece. RRMS patients (9 at relapse) were on standard
treatment (glatiramer acetate, n=3; natalizumab, n=6;
fingolimod, n=5; fampridine, n=1; and IFN-b n=5). Blood
collection of all naive MS patients was performed before
initiation of corticosteroid or other drug treatment. Ten age
and sex-matched healthy individuals (7 females, mean age of
37.3 ± 10.4 years) were included as healthy controls (HCs).
Patients and healthy HCs had not received TCs for at least three
months before blood collection.

All experimental protocols were approved by the Local
Institution’s Ethical Committee of the University General
Hospital of Larissa, University of Thessaly while written
informed consent has been obtained from all study
participants according to the declaration of Helsinki.

PBMC Isolation and Cryopreservation
Peripheral blood samples (20-30mL) from MS patients and HCs
were collected by venipuncture in preservative-free heparin tubes
(50 U/mL) and aliquots were layered onto an equal volume of
Ficoll-Hypaque (10ml Lymphoprep™) density gradient solution
(Axis-Shield, Oslo, Norway). Peripheral blood mononuclear cells
(PBMCs) were isolated by centrifugation at 300g, washed twice
with RPMI-1640 (GIBCO™ -Thermo Fisher Scientific,
Waltham, MA, USA), counted, and their viability, determined
by trypan blue exclusion, routinely exceeded 95%. Cells were re-
suspended in freezing medium containing 10% DMSO and 70%
fetal calf serum (FCS), aliquoted into cryogenic vials (Corning™,
Thermo Fisher Scientific), kept at −80°C for one day, and then
stored in liquid nitrogen tanks until used.

Reagents
TCs (minocycline hydrochloride and doxycycline hyclate, ≥ 98%
pure) were purchased from Cayman Chemical Company, Michigan
USA. Both antibiotics were reconstituted in DMSO, further
aliquoted at small volumes and stored at a final concentration of
5 mg/ml. TCs were supplemented simultaneously with cell stimuli
(see below) at a final concentration of 50mg/ml unless otherwise
stated and remained in culture for 5 hours (see Results section).
November 2021 | Volume 12 | Article 739186
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DMSO concentration in TC-supplemented cultures was less than
0.1%. The same DMSO concentration (0.1%) was also added to
control cultures in the absence of TCs, to exclude a direct cytotoxic
effect of DMSO. Recombinant IL-12 and IL-18 were purchased
from R and D Systems Inc (Abington, UK) and used at a final
concentration of 20 ng/ml and 25 ng/ml, respectively (8). Phorbol
12-myristate 13-acetate (PMA) and Ionomycin were obtained from
Sigma-Aldrich-Merck (Gillingham, UK) and were used at 20-50 ng/
ml, and 1mg/ml, respectively in order to conventionally stimulate
PBMCs in a non-specific manner (42).

Phenotypic Analysis of Peripheral Blood T
and Innate Cells by Flow Cytometry
Phenotypic assessment and enumeration of peripheral blood sub-
populations was performed using standard monoclonal antibodies
(MoAbs) panels and protocols as described previously (43, 44).
Briefly, upon thawing PBMCs were washed with serum-free
RPMI-1640, counted to confirm more than 95% cell viability,
pelleted, and re-suspended at 106 cells/mL in RPMI culture
medium supplemented with L-glutamine and 10% heat-
inactivated FCS (Biosera Europe, Nuaille, France). PBMCs were
seeded in 24-well plates and allowed to rest at 37°C in a CO2

incubator for at least one hour before stimulation. In this study we
used the following mouse anti-human MoAbs: (FITC)-conjugated
anti-CD3 (clone UCHT-1), (PE)- and (PE-Cy7)-conjugated anti-
CD56 (clones C5.9 and B159), (PE)- and (PE-Cy7)-conjugated
anti-CD4 (clone RPA-T4) and PE conjugated anti-CD8 (clone
SK1). All MoAbs were obtained from BD Biosciences (Mountain
View, CA, USA) and Merck-Millipore (Burlington, MA, USA).
Isolated PBMCs (0.5-1 x 106cells) were washed in phosphate-
buffered saline (PBS) and re-suspended in staining buffer (PBS
plus 1% FCS plus 0.09% sodium azide) and then incubated with
labeled MoAbs specific for cell surface antigens for 30 minutes on
ice and fixed with paraformaldehyde (2%). Background auto-
fluorescence was monitored by equivalent 4-colour matched
isotype control mouse anti-human MoAbs and formed the basis
to set the cut-off for surface-positive cell discrimination. Flow
cytometric analysis was performed in Guava® EasyCyte8
(Merck-Millipore, Burlington, MA, USA) benchtop flow
cytometer using logarithmic amplification and a forward and
side scatter-based gate for total lymphocyte populations. At least
3x105 events within the lymphocyte gate were collected for
accurate measurement of infrequent cell subtypes.

Flow Cytometric Analysis of Apoptotic
Cells by Annexin V
IL-12 and IL-18 activated PBMCs supplemented with 50mg/ml
minocycline or doxycycline were collected and stained with
FITC-labeled Annexin V (BioLegend, San Diego, CA, USA),
which is used to specifically target and identify apoptotic cells
(45), in the presence of Annexin V binding buffer according to
manufacturer’s instructions. Experiments in the absence of IL-12
and IL-18 were also performed as controls. Lymphocyte subsets
were identified using fluorescent labeled mAbs directed against
lymphocyte surface markers (section 2.4) and subjected to
conventional FACS analysis.
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Intracellular IFN-g Production by
Peripheral Blood Cell Subsets
In order to measure intracellular IFN-g protein production by
peripheral T cells and innate NK and NKT cells, PBMCs were left
untreated, or cultured in 10% RPMI supplemented with 20 ng/ml
PMA plus 1mg/ml ionomycin for 5 hours in the presence of
Brefeldin A (GolgiPlug™, BD Biosciences). Cells were surface
stained, fixed and subsequently permeabilized using
commercially available Perm/Wash buffers (BD Biosciences).
Intracellular IFN-g protein was detected using APC-conjugated
MoAbs (clone 4S.B3) obtained from BD Biosciences.

Intracellular IL-17 Production
by Th17 Cells
In order to measure intracellular IL-17 protein production by
peripheral Th17 cells, PBMCs were left untreated or cultured in
10% RPMI supplemented with 50 ng/ml PMA plus 1mg/ml
ionomycin for 5 hours in the presence of Brefeldin A. Cells
were surface stained, fixed and subsequently permeabilized using
commercially available Perm/Wash buffers (BD Biosciences).
Intracellular IL-17 was detected using FITC- and PE-
conjugated MoAbs clones (BL-168) all obtained from BD
Biosciences and Merck-Millipore.

Statistical Analysis
Percentages of cells expressing cell surface markers and mean
fluorescence intensities (MFI) were described as median of the
individuals in each group. Variation in each patient group was
defined by standard deviation (SD). Differences between healthy
controls and patients and between patient groups one-way
analysis of variance (ANOVA) and the nonparametric Mann-
Whitney test. P-values smaller than 0.05 were considered
significant. All graphs and statistical calculations were
performed with Graph Pad Prism 9 software.
RESULTS

Tetracyclines Decreased IFN-g Producing
Cells in a Dose-Dependent Manner
To assess the in vitro effect of either minocycline or doxycycline
on IFN-g production, antibiotics in isolation were supplemented
in PBMC cell cultures at different concentrations ranging from of
0.1mg - 50mg/ml, similarly to previous reports in whole blood
cultures and THP-1 human monocytes (46, 47). These
concentrations are within the in vivo pharmacological plasma
concentration levels noted following oral tetracycline
administration; in human subjects who have taken oral
doxycycline (200mg), doxycycline plasma concentrations
(Cmax) of 1.5 to 7.0 mg/ml were usually reached within 3 h,
and the drug had a half-life of 14 to 24 h (48, 49). Also, such TCs
concentrations were administered in accordance with in vivo
studies of experimental endotoxemia where doxycycline and
other TCs are efficacious in downregulating inflammatory
cytokines and preventing shock when the drug was injected
immediately following the LPS challenge (50).
November 2021 | Volume 12 | Article 739186
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IFN-g production was measured following stimulation with
IL-12 plus IL-18 or PMA plus ionomycin for 5 hours on the basis
of TCs optimal Cmax and limited half-life in vivo, as well as our
previous published data, where both stimuli induce kinase (p38
MAPK) activation and robust IFN-g production within 2-6hrs
post stimulation in innate and adaptive cells (8).

Supplementary Figures 1, 2 show cumulative data from TC
dose-response experiments in MS patients (n=3) and HCs (n=3).
Minocycline or doxycycline decreased IFN-g production by
innate and adaptive T cells in a dose-dependent manner when
IL-12 plus IL-18 was used for cell stimulation. Both drugs clearly
inhibited cytokine expression in CD4+ T cells and NKT cells at
pharmacological concentrations (1mg/ml-10mg/ml). However,
the maximal inhibitory effect was noted when IL-12 plus IL-18
and 50mg/ml minocycline or doxycycline were used (see below).
In all tested concentrations there was no detrimental effect of
TCs on cell viability, as assessed by microscopic evaluation and
trypan blue exclusion in line with previously published
observations (47). The effect of TCs on cell viability was
further assessed using Annexin V staining. As shown in
Supplementary Figures 3, 4 neither antibiotic exerted a
toxicity effect influencing the viability, apoptosis and
percentages of any cell subset at the maximal concentration
(50mg/ml). Neither minocycline nor doxycycline exerted an
inhibitory effect on IFN-g producing CD3+ and non CD3+ cell
Frontiers in Immunology | www.frontiersin.org 4
subsets from naive MS and RRMS patients, after stimulation with
PMA and Ionomycin (Supplementary Figures 2, 6). There was a
marginal statistically significant decrease in IFN-g+ NKT
(CD3+CD56+) cells following treatment with doxycycline
(p = 0.04, n = 9) (Supplementary Figure 7). Thus, all
subsequent experiments were performed using IL-12 plus
IL-18 and minocycline or doxycycline at 50mg/ml.

Tetracyclines Decreased IFN-g Producing
CD4+ T Cells in MS
The flow cytometric gating strategy followed for phenotypic
analysis of different cell subsets, including CD4+ T cells, is
shown at Supplementary Figures 3, 5. In general, we observed
a statistically significant reduction in IFN-g producing CD4+ T
cells from both MS patients and HCs in the presence of
minocycline or doxycycline. Figure 1 illustrates representative
cases and cumulative data. The percentage of IFN-g+ CD4+ T
lymphocytes following IL-12 plus IL-18 stimulation in naïve MS
patients (n=15) decreased from 1.1 ± 0.41% to 0.53 ± 0.21% in
the presence of minocycline (p = 0.004) and to 0.42 ± 0.20% in
the presence of doxycycline (p = 0.001). The percentage of IFN-g+

CD4+ T cells in RRMS patients (n=20) decreased from 0.89 ±
0.43% to 0.53 ± 0.27% in the presence of minocycline (p = 0.009)
and to 0.44 ± 0.22% in the presence of doxycycline (p = 0.002). In
HCs (n=10), the percentage of IFN-g+ CD4+ T lymphocytes was
A B

FIGURE 1 | Tetracycline-mediated inhibition of CD4+ IFNg+ T cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were seeded in cell
culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline (DOX) for 5h. Cells
were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry (see also methods
section). Individual cell subsets were sub-gated according to expression of CD3 and CD4 surface epitopes. (A) Flow cytometry dot-plots showing the frequency of
CD4+IFNg+ T cells in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-18/DOX treated cells from representative MS cases and HCs. (B) Box and whiskers graphical
representation showing significant reduction in the percentages of IFN-g-producing CD4+ T cells in the presence of tetracyclines in naïve MS, RRMS and HCs.
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reduced from 1.87 ± 0.79% to 0.80 ± 0.51% in the presence of
minocycline (p = 0.0015) and to 0.71 ± 0.45% in the presence of
doxycycline (p = 0.001) (Figure 1).

Minocycline and doxycycline did not decrease IFN-g
producing CD8+ T cells from naive MS (n=15) or RRMS
patients (n=20) (Figure 2). However, in HCs (n=10), the
percentage of IFN-g+CD8+ T lymphocytes was reduced from
3.43 ± 0.45% to 2.18 ± 0.78% in the presence of minocycline
(p = 0.001) and to 2.10 ± 0.75% following doxycycline
supplementation (p = 0.001) (Figure 2).

Tetracyclines Decreased IFN-g Producing
NKT Cells in MS
IFN-g+ NKT lymphocytes following IL-12 plus IL-18 stimulation
in naïve MS (n=15) patients decreased from 6.49 ± 4.10% to 3.61 ±
2.39% in the presence of minocycline (p = 0.02) and to 2.52 ±
1.87% in the presence of doxycycline (p = 0.003) (Figure 3). The
percentage of IFN-g+ NKT cells in RRMS patients (n=20)
decreased from 7.34 ± 4.40% to 3.92 ± 2.51% in the presence of
minocycline (p = 0.01) and to 2.40 ± 1.89% in the presence of
doxycycline (p = 0.001). In HCs (n=10), the percentage of IFN-g+

NKT lymphocytes was reduced from 14.73 ± 7.53% to 7.35 ±
4.27% following minocycline supplementation (p = 0.03) and to
5.41 ± 3.07% following doxycycline supplementation (p = 0.005).
Frontiers in Immunology | www.frontiersin.org 5
Tetracyclines Did Not Affect IFN-g
Producing NK Cells in MS
In IL-12 and IL-18- stimulated NK cells, there was no difference
in IFN-g+ cells in the presence of minocycline or doxycycline in
naïve MS (n=15), RRMS (n=20) or HCs (n=10) (Figure 4).

Tetracyclines Decreased IL-17A Producing
CD4+ T Cell and NKT Cells in MS
We also investigated the effect of TCs on IL-17A production in
PMA plus ionomycin activated PBMCs from patients with naïve
MS (n=9), RRMS patients (n=9) and HCs (n=9). As shown in
Figure 5, TCs decreased IL-17 production from CD4-expressing
cells. These consisted of CD3+CD4+ T cells and CD56+CD4+

NKT cells. In patients with naïve MS the percentage of CD4+IL-
17A+ T cells decreased from 1.77 ± 1.33% to 0.74 ± 0.43% in the
presence of minocycline (p = 0.02) and to 0.55 ± 0.44% in the
presence of doxycycline (p = 0.01) (Figure 5). In RRMS patients
the percentage of CD4+IL-17A+ T cells decreased from 2.14 ±
1.68% to 1.2 ± 0.9% in the presence of minocycline (p = 0.04)
and to 0.76 ± 0.71% in the presence of doxycycline (p = 0.02). In
HCs the percentage of CD4+IL-17A+ T cells decreased from
1.35 ± 0.51% to 0.64 ± 0.35% in the presence of minocycline (p =
0.01) and to 0.43 ± 0.29% in the presence of doxycycline
(p = 0.02).
A B

FIGURE 2 | Tetracycline-mediated inhibition of CD8+ IFNg+ T cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were seeded in
cell culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline (DOX) for
5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry (see also
methods section). Individual cell subsets were sub-gated according to expression of CD3 and CD8 surface epitopes. (A) Flow cytometry dot-plots showing the
frequency of CD8+IFNg+ T cells in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-18/DOX treated cells from representative MS cases and HCs. (B) Box and whiskers
graphical representation showing significant reduction in the percentages of IFNg-producing CD8+ T cells in the presence of tetracyclines in HCs but not naïve MS
and RRMS patients.
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The percentage of CD4+IL-17A+ NKT lymphocytes in naïve
MS patients (n=9) decreased from 1.49 ± 0.80% to 0.69 ± 0.33%
in the presence of minocycline (p = 0.008) and to 0.48 ± 0.17% in
the presence of doxycycline (p = 0.001). The percentage of
CD4+IL-17A+ NKT lymphocytes in RRMS patients (n=9)
decreased from 2.59 ± 0.90% to 1.09 ± 0.43% in the presence
of minocycline (p = 0.009) and to 0.8 ± 0.55% in the presence of
doxycycline (p = 0.006). The percentage of CD4+IL-17A+ NKT
lymphocytes in HCs (n=9) decreased from 1.63 ± 0.75% to 0.87 ±
0.54% in the presence of minocycline (p = 0.04) and to 0.84 ±
0.64% in the presence of doxycycline (p = 0.04).
DISCUSSION

The major finding of our study is that of an inhibitory effect of
minocycline and doxycycline on IFN-g and IL-17 producing cells
in a cell subset-related, dose-dependent manner in patients with
MS, with the most prominent effect being noted in CD4+ T and
NKT lymphocytes.

Our results are of importance for studies conducted in
humans, as previous studies in MS have only been limited to
EAE, with their findings emphasizing an anti-inflammatory role
Frontiers in Immunology | www.frontiersin.org 6
of antibiotics and in particular minocycline, in synergy with
prednisone (51), IFN-b1 (52) glatiramer acetate (38) or
atorvastatin (39). While studies in EAE showed that
minocycline attenuates the disease by reducing T cell
infiltration into the spinal cord without affecting the cytokine
production profile (33), our human data clearly demonstrate
significant reduction of IFN-g (and/or IL-17) by both T cells and
NK/NKT cells, the inhibition varying amongst different cell
types. No clear data on the effect of doxycycline on pro-
inflammatory cytokine production in EAE currently exist,
though our human data support the notion that this antibiotic
also diminishes the ability of adaptive and innate immunity cells
to produce IFN-g and IL-17. In support, doxycycline decreased
inflammatory infiltration of T-cell, B-cell and macrophage
infiltration, sharply diminished IL-17 production and
attenuated demyelination in sciatic nerves of rats with
experimental autoimmune neuritis, a model of human
inflammatory demyelinating polyneuropathies (53).

In our cohort of patients with MS, a comparable TC-mediated
reduction of cytokine production was noted between naïve and
treated RRMS patients. Subsequent stratified analysis amongst
patients receiving different therapies revealed no statistically
significant differences regarding the levels of TC-mediated
cytokine inhibition within CD4+ T and NKT cells. It remains
A B

FIGURE 3 | Tetracycline-mediated inhibition of CD56+CD3+IFN-g+ T cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were
seeded in cell culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline
(DOX) for 5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry
(see also methods section). Individual cell subsets were sub-gated according to expression of CD3 and CD56 surface epitopes. (A) Flow cytometry dot-plots
showing the frequency of IFN-g+ NKT cells (gated CD56+CD3+ cells two-dimensionally depicted in CD3 vs IFN-g plots) in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-
18/DOX treated cells from representative MS cases. (B) Box and whiskers graphical representation showing significant reduction in the percentages of IFN-g-
producing NKT cells in the presence of tetracyclines in naïve MS, RRMS and HCs.
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to be seen whether the in vitro effect of TC could be augmented
following supplementation of MS-related immunomodulatory
agents and whether this effect could be seen in vivo.

Clinical trials using minocycline, alone or in combination with
conventional therapeutic agents, have produced inconclusive
results, some demonstrating beneficial effect on the risk of
conversion from a clinically isolated syndrome to MS (27), while
others failed to show a superiority of minocycline when added to
IFN b-1a (30).

Those studies by no means can de-emphasize the importance
of our in vitro study. In rheumatoid arthritis, a typical
autoimmune disease, both experimental and human data reveal
a beneficial effect of TCs in combination with methotrexate over
methotrexate alone, especially in early disease state, suggesting
that timing of initiation of TCs may be of importance (54, 55).
This effect is clearly attributed to the dose-dependent inhibition
of T cell proliferation and reduction of IFN-g and other pro-
inflammatory cytokines (56), a finding that perfectly fits with
those obtained in our study.

The inhibitory effect of antibiotics on IFN-g was noted after
the physiological stimulation of PBMC with IL-12 and IL-18 but
not with PMA and ionomycin, a phenomenon, which requires
further discussion. Previous work has shown that the effect of
minocycline on cytokine production by T-cells and monocytes is
Frontiers in Immunology | www.frontiersin.org 7
stimulus specific, as T cells stimulated by a Ca2+-independent
manner exhibited a decrease in TNF-alpha mRNA in the
presence of minocycline, whereas the TNF-alpha mRNA level
remained unaffected by minocycline when cells were stimulated
in a Ca2+-dependent manner, like in the case of PMA/ionomycin
stimulation (36, 56). The limitation of the in vitro studies, even if
those are conducted in patients with MS and not in animal
models of MS, cannot be ignored. While no in vivo studies have
looked at the effect of TCs in IFN-g or IL-17 producing T and NK
cell-subsets in patients with MS, a study in EAE has provided
data of interest. An early report by Popovic et al. (31) found that
minocycline administration suppressed migration of
inflammatory cells into CNS and further activation by a direct
effect on the cytokine milieu in EAE. Treatment with
minocycline shifted the balance from Th-1 to Th-2 and
resulted in enhanced IL-10, reduced TNF-a and a minimal
effect on IFN-g production, as measured by ELISA in cell-
culture supernatants (31). The investigation of cell-subset T
cell specific cytokine production was not included in the aims
of that study. Those latter data further emphasize the need for a
vigorous attempt to assess the in vivo the effect of TCs on T-cell
activation and cell-subset specific pro- and anti-inflammatory
cytokine production in patients with MS in well-designed
clinical trials.
A B

FIGURE 4 | Tetracyclines have no significant effect on IFN-g+ NK cells. PBMCs from naïve MS patients (n=15), RRMS patients (n=20) and HCs (n=10) were seeded
in cell culture plates (1 x 106 per well) and stimulated with IL-12 plus IL-18 (IL-12/IL-18), IL-12/IL-18 plus minocycline (MIN) and IL-12/IL-18 plus doxycycline (DOX)
for 5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular IFN-g production by flow cytometry (see
also methods section). Individual cell subsets were sub-gated according to expression of CD3 and CD56 surface epitopes. (A) Flow cytometry dot-plots showing the
frequency of CD56+CD3-IFNg+ NK cells (gated CD56+CD3- cells two-dimensionally depicted in CD56 vs IFN-g plots) in IL-12/IL-18, IL-12/IL-18/MIN and IL-12/IL-18/
DOX treated cells from representative MS cases. (B) Box and whiskers graphical representation show no significant reduction in the percentages of IFN-g-producing
NK cells in the presence of tetracyclines in either HCs or MS patients.
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CONCLUSION

In conclusion, this is the first in vitro study to show that
minocycline and doxycycline have a significant inhibitory effect
in CD4+ T and NKT cell producing IFN-g and/or IL-17 in
patients with MS (naïve or under treatment). If this is proved
in vivo in prospectively collected biological material from MS
patients under treatment with these tetracyclines, it may have
potential clinical relevance. In vivo inhibition of IFN-g (and
possibly IL-17)-producing NKT cells, for example, is a favorable
pre-requisite for successful remission in patients with MS (57–
59), and the effect of tetracyclines towards achieving this goal
may provide an additional therapeutic tool, most likely in
combination with standard treatment regimen in stratified
cohorts of patients.
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FIGURE 5 | Tetracycline-mediated inhibition of CD4+CD3+IL-17A+ T cells and CD56+CD4+IL-17A+ T (NKT) cells. PBMCs from naïve MS patients (n=9), RRMS
patients (n=9) and HCs (n=9) were seeded in cell culture plates (1 x 106 per well) and stimulated with PMA plus ionomycin (PMA/ION), PMA/ION plus minocycline
(MIN) and PMA/ION plus doxycycline (DOX) for 5h. Cells were collected, washed, surface stained with appropriate monoclonal antibodies an analyzed for intracellular
IL-17A production by flow cytometry (see also methods section). (A) Flow cytometry dot-plots showing the frequency of total CD4+IL-17A+ cells in PMA/IONO, PMA/
IONO/MIN and PMA/IONO/DOX treated cells from a representative naïve MS case. (B) CD4+IL-17A+ cells were sub-divided according to expression of CD3 or
CD56 surface epitopes. Box and whiskers graphical representation showing significant reduction in the percentages of IL-17A-producing T and NKT cells in the
presence of tetracyclines in naïve MS patients, RRMS patients and HCs.
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Supplementary Figure 1 | IFN-g producing PBMC subsets following stimulation
with IL-12 plus IL-18 in the presence of different doses of tetracyclines. The in vitro
effect of either minocycline or doxycycline supplemented at different concentrations
ranging from of 0.1mg - 50mg/ml on IFN-g production was assessed in PBMC cell
cultures of MS patients (n=3) and HCs (n=3) following stimulation with IL-12 plus
IL-18 for 5 hours (Box and whiskers graphical representation of cumulative data
with standard deviation errors bars are shown). *P < 0.05 **P < 0.005 ***P < 0.0005.

Supplementary Figure 2 | IFN-g producing PBMC subsets following stimulation
with PMA plus ionomycin in the presence of different doses of tetracyclines. The
in vitro effect of either minocycline or doxycycline supplemented at different
concentrations ranging from of 0.1mg - 50mg/ml on IFN-g production was assessed
in PBMC cell cultures of MS patients (n=3) and HCs (n=3) following stimulation with
PMA plus ionomycin for 5 hours. (Box and whiskers graphical representation of
cumulative data with standard deviation errors bars are shown). Data show a dose-
depending inhibition only in IFN-g producing NKT cells *P < 0.05 (see also
Supplementary Figure 7).

Supplementary Figure 3 | Tetracyclines do not affect PBMC flow cytometric
forward/side scatter characteristics and proportions of sub-gated cell subsets.
Representative flow cytometric assessment (MS case) of the in vitro effect of either
minocycline or doxycycline supplemented at the highest concentration (50mg/ml) on
PBMC cell viability and on cytometric analysis characteristics based on size/
Frontiers in Immunology | www.frontiersin.org 9
granularity (FSC/SSC) and phenotypic discrimination of the proportions of individual
cell subset.

Supplementary Figure 4 | Tetracyclines do not induce apoptosis of cell subsets.
Representative flow cytometric illustration (MS case) of the in vitro effect of either
minocycline or doxycycline supplemented at the highest concentration (50mg/ml) on
apoptosis of sub-gated cell subpopulations of CD4 and CD8 T cells assessed by
annexin V staining. Data are suggestive of lack of an in vitro effect of tetracyclines in
inducting apoptosis and affecting viability.

Supplementary Figure 5 | Representative flow cytometric gating strategy of
tetracycline treated IL-12 plus IL-18 stimulated PBMC subsets. Individual cell
subsets from a representative MS case were sub-gated according to expression of
CD3, CD4, CD8 and CD56 surface markers. All surface epitopes were sufficiently
maintained and detected following cell activation with IL-12 plus IL-18 in the
presence of minocycline and doxycycline.

Supplementary Figure 6 | Flow cytometric illustration of tetracycline-mediated
effects on IFNg production by PMA/ionomycin and IL-12 plus IL-18 stimulated CD3+

and non-CD3+ cell subsets from MS patients. Data of the effect of tetracyclines
using different stimuli in a representative naïve MS case are shown in A and B and in
a representative RRMS are shown in C and D. PBMCs were analyzed for IFN-g
production by flow cytometry following minocycline (MIN) or doxycycline (DOX)
supplementation (50mg/ml) and simultaneous treatment with PMA plus ionomycin
(A, C) or IL-12 plus IL-18 stimulation (B, D). CD3+ and non-CD3+ cell subsets were
sub-gated according to expression of CD3 surface epitope.

Supplementary Figure 7 | Doxycycline-mediated inhibition of CD56+CD3+IFNg+

T cells subsets following stimulation with PMA plus ionomycin. PBMCs from naïve
MS patients (n=9) were analyzed for IFN-g production by flow cytometry following
minocycline (MIN) or doxycycline (DOX) supplementation and simultaneous PMA
plus ionomycin stimulation (see also methods section). NKT cells were sub-gated
according to expression of CD3 and CD56 surface markers. (A) CD3 versus IFN-g
Flow cytometry dot-plots in sub-gated NKT cells showing the frequency of IFN-g+

NKTs following PMA/IONO, PMA/IONO/MIN and PMA/IONO/DOX treatment.
(B) Box and whiskers graphical representation showing significant reduction in
the percentages of IFN-g-producing NKT cells in the presence of doxycycline in
naïve MS.

Supplementary Figure 8 | CD4+IFN-g+ cells represent T helper 1 (TH1) cells and
not other CD4+ subsets like macrophage or DC subsets. PBMCs from MS patients
were analyzed for IFN-g production by flow cytometry following minocycline (MIN) or
doxycycline (DOX) supplementation and IL-12 plus IL-18 stimulation (see also
methods section).Th1 cells were assessed by staining against CD3, CD4 and
intracellular IFN-g simultaneously. A representative case of n=5 is illustrated where
the effect of minocycline and doxycycline on IFN-g production is clearly seen on
CD3+ and CD4+ ie Th1 cells.
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