
Research Article
Evaluation of an AI-Powered Lung Nodule Algorithm for
Detection and 3D Segmentation of Primary Lung Tumors

Thomas Weikert , Tugba Akinci D’Antonoli , Jens Bremerich , Bram Stieltjes,
Gregor Sommer , and Alexander W. Sauter

Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland

Correspondence should be addressed to �omas Weikert; thomas.weikert@usb.ch

Received 29 March 2019; Accepted 26 May 2019; Published 1 July 2019

Guest Editor: Elena Bonanno

Copyright © 2019 �omas Weikert et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Automated detection and segmentation is a prerequisite for the deployment of image-based secondary analyses, especially for lung
tumors. However, currently only applications for lung nodules ≤3 cm exist. �erefore, we tested the performance of a fully
automated AI-based lung nodule algorithm for detection and 3D segmentation of primary lung tumors in the context of tumor
staging using the CT component of FDG-PET/CT and including all T-categories (T1–T4). FDG-PET/CTs of 320 patients with
histologically confirmed lung cancer performed between 01/2010 and 06/2016 were selected. First, the main primary lung tumor
within each scan was manually segmented using the CT component of the PET/CTs as reference. Second, the CT series were
transferred to a platform with AI-based algorithms trained on chest CTs for detection and segmentation of lung nodules.
Detection and segmentation performance were analyzed. Factors influencing detection rates were explored with binominal
logistic regression and radiomic analysis. We also processed 94 PET/CTs negative for pulmonary nodules to investigate frequency
and reasons of false-positive findings. �e ratio of detected tumors was best in the T1-category (90.4%) and decreased con-
tinuously: T2 (70.8%), T3 (29.4%), and T4 (8.8%). Tumor contact with the pleura was a strong predictor of misdetection.
Segmentation performance was excellent for T1 tumors (r� 0.908, p< 0.001) and tumors without pleural contact (r� 0.971,
p< 0.001). Volumes of larger tumors were systematically underestimated. �ere were 0.41 false-positive findings per exam. �e
algorithm tested facilitates a reliable detection and 3D segmentation of T1/T2 lung tumors on FDG-PET/CTs. �e detection and
segmentation of more advanced lung tumors is currently imprecise due to the conception of the algorithm for lung nodules <3 cm.
Future efforts should therefore focus on this collective to facilitate segmentation of all tumor types and sizes to bridge the gap
between CAD applications for screening and staging of lung cancer.

1. Introduction

Failure to detect lung cancer on imaging studies is a very
common reason for malpractice suits [1]. �e reasons for
misdiagnosis are multilayered and include recognition error
and satisfaction of search [2]. Strategies for the reduction of
observer errors are therefore of great importance and
computer-aided detection (CAD) of pulmonary nodules has
gained increasing interest in this context [3]. Most recently,
conventional CAD solutions that require visual confirma-
tion to reduce false-positive calls [4] are being challenged by
deep learning algorithms that have an inherent advantage of
automatic feature exploitation [3].

�e diagnostic task of imaging in lung cancer, however,
does not end with tumor detection. Tumor staging using
18F-fluorodeoxyglucose- (FDG-) PET/CTas the standard of
care forms an integral part of the clinical diagnostic workup
of patients with lung cancer [5]. �e recent revision on the
T-categories for the 8th edition of the TNM lung cancer
classification emphasized that from 1 to 5 cm, each cm
separates lesions of significantly different prognosis [6].
However, the implicit assumption that tumors are spherical
and consequently proportional changes of tumor diameter
and parallel changes in tumor volume is particularly dis-
rupted for advanced tumors [7]. �is clearly underlines the
need for accurate tumor segmentation and precise tumor
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volumetry, particularly when it comes to therapy response
monitoring [7], radiation treatment planning [8], radiomics
[9], and other new developments in the framework of
personalized medicine.

Sexauer et al. have shown that manual annotation and
segmentation of lung tumors is feasible, but tumor stage and
lesion size and count correlate significantly with segmen-
tation time [10]. Algorithms for automatic pulmonary
nodule detection and segmentation are currently under
development but are commonly trained and validated based
on intraparenchymal lesions which are less than 3 cm in size.
�erefore, it is unclear how pulmonary masses beyond this
diameter and with nonspherical shape will be treated by
these algorithms. Moreover, the vast majority of CAD
systems have been evaluated on chest CTs that have been
acquired in deep-inspiration breath-hold technique [11–21].
So far, only few CAD applications were tested for PET/CT
and that only for nodules smaller than 3 cm [22, 23].

It was thus the aim of this study to evaluate the per-
formance of a fully automated computer-assisted detection
and 3D segmentation algorithm that was initially designed
for lung nodule detection and segmentation in the context of
tumor staging. �is was done using the CT component of
FDG-PET/CT studies of a patient cohort with histologically
proven primary lung tumors from all T-categories.

2. Materials and Methods

�is study was conducted under the provisions of the ap-
propriate Swiss regional ethics committee (Ethikkommission
Nordwest-und Zentralschweiz).

2.1. Case Selection. We compiled two datasets using an in-
house-developed Radiology Information System/Picture
Archiving and Communication System (RIS/PACS) search
engine: First, we retrospectively identified 18F-fluorodeox-
yglucose- (FDG-) PET/CTs with histologically proven pri-
mary lung cancer that were acquired at our institution
between 01/2010 and 06/2016. Selection criteria were pro-
tocol name, time period, and verified tumor histology
according to our pathology archive. �is resulted in 320
PET/CTs (lung tumor population). Second, for the creation
of a dataset with exams not containing pulmonary nodules,
appropriate PET/CTs were selected with the criteria protocol
name, time period (01/2017–12/2018), and the presence of
the text string “no pulmonary nodules” in the clinically
approved reports. �is resulted in 92 PET/CTs (nodule
negative population). �e study workflow is displayed in
Figure 1.

2.2. Imaging Protocols. PET/CT examinations were per-
formed on two integrated PET/CT systems: on a Discovery
STE with 16-slice CT (GEHealthcare, Chalfont St Giles, UK)
from 01/2008 to 11/2015 and on a Biograph mCT-X RT Pro
Edition with 128-slice CT (Siemens Healthineers, Erlangen,
Germany) from 12/2015 to 12/2016. Scans were obtained
1 hour after intravenous injection of 5 MBq FDG/kg body
weight at glycemic levels below 10mmol/L and previous

fasting for at least 6 h. �e CT component of the combined
PET/CT examination was acquired with the following pa-
rameters: Discovery STE: slice thickness 3mm, i50f kernel,
X-ray tube voltage 120 kVp (SD: 0 kVp), exposure 80mAs
(SD: 15mAs), CTDIvol 5.8mGy (SD: 1.7mGy), and DLP
536mGy∗ cm (SD: 100mGy∗ cm). Biograph mCT-X: slice
thickness 3mm, i50f kernel, X-ray tube voltage 120 kVp (SD:
0 kVp), 37mAs (SD: 18mAs), CTDIvol 3.1mGy (SD:
1.5mGy), and DLP 294mGy∗ cm (SD: 146mGy∗ cm). In
21 cases, Iopromide (Ultravist 370, Bayer Pharma, Germany,
Berlin) was applied as contrast agent at a mean dose of
87.1ml (SD: 24.9ml). All other scans were acquired without
contrast.

2.3. Ground Truth Segmentation. Manual tumor segmen-
tations with reference to the clinically approved report were
performed as previously described [10]. �e PET/CT image
dataset of each patient was segmented via a modified 3D-
slicer-based segmentation tool (version 4.6.2, Slicer Python
Interactor 2.7.11, Boston, USA). Segmentation of the data
involved in this analysis was performed by a dual-board-
certified radiologist and nuclear medicine physician with
10 years’ experience in PET/CT reading (A. S., n� 137) as
well as a radiology resident with 2 years of professional
experience that was supervised by A. S. (T. W., n� 183).
Tumors were segmented as a 3D volume defined by con-
secutive 2D regions of interest (ROIs) that were delineated
on all transversal slices of the CT component showing a
lesion. Fused PET information was used in addition
whenever the tumor boundaries were not clearly definable
on CT.

2.4. Algorithm Characteristics. �e transversal 3mm low-
dose CT series of the PET/CTs with histologically proven
primary lung tumor (n� 320) as well as the CT series of the
PET/CTs negative for pulmonary nodules (n� 94) served as
the only input for the in-house-deployed AI-based research
algorithm for detection and segmentation of lung nodules.
�e image data were processed in three steps: First, lung and
lung lobe segmentation was performed by a deep image-to-
image network (DI2IN) that was trained on chest CTs ac-
quired on scanners of multiple vendors. Its architecture has
previously been described for liver segmentation by Yang
et al. [24]. Second, nodule detection was performed by
nodule candidate generation (NCG) and false-positive re-
duction (FPR). �e NCG is a 3D region proposal network
based on faster-RCNN [25] that outputs suspicious regions
called “nodule candidates” and assigns probability scores.
�en, for each nodule candidate, a small patch around it was
sampled and sent to the FPR module consisting of several
Res-Net units [26]. �e FPR module further evaluated the
likelihood for the nodule candidate to be a true nodule or a
false positive by updating the scores generated by the NCG
module. �e final decision was made by taking the weighted
sum of the scores generated by NCG and FPR modules. �e
training data for the nodule detection algorithm contained
nodules up to a diameter of 3 cm. �ird, nodules were
segmented by an algorithm based on region growing. �e
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principle of this method has been previously described by
Hojjatoleslami and colleagues [27]. In the interest of im-
proved readability, these three interlinked algorithms will be
referred to as “algorithm” in this paper. None of the selected
PET/CTs within the study was used to train the algorithm or
to adapt hyperparameters.

2.5. Data Analysis. �e output of the AI algorithm pipeline
was the transversal chest CTcomponent of the PET/CTwith
overlays for lung lobe boundaries and tumor boundaries of
detected tumors. �is output series also contained specifi-
cations of volume (VolumeAI), 2D diameter, and location
(lung lobe) for every detected tumor and served as the index
test. �e reference standard was the CT component of the
PET/CT for detection and the volumes that were calculated
from the 3D tumor masks that resulted from the manual
image segmentation process (ground truth volumes: Vol-
umeGT). For each case, the segmented tumor was visually
correlated with the output series of the algorithm and it was
recorded whether the tumor was detected or not. �e
correctness of the indication of tumor location (lung lobe)
was checked. We additionally established whether a lesion
contacted parietal pleura or not by consensus reading (A. S.
and T. W.). Finally, we reviewed the output series of the
nodule negative population to describe numbers of and
reasons for false-positive findings.

2.6. Statistical Analysis and Radiomics. Statistical analysis
was performed using IBM SPSS Statistics for Windows,
Version 22.0 (IBM Corp., Armonk, NY). Scatterplots and
graphs were created with JMP, Version 14.2 (SAS Institute
Inc., Cary, NC). For descriptive analyses of continuous data,
we calculated the mean and standard deviations. To test for
association between two or more categorical variables, we

used the chi-squared test. To test for statistical differences
among the means of two or more groups, we conducted a
one-way analysis of variance. Normal distribution was
assessed with the Shapiro–Wilk test, histograms, and Q-Q
plots. To analyze the influence of histology, location, pleural
contact, and maximal axial diameter on detection rates, we
performed a binomial logistic regression with detection (yes/
no) as the dependent variable. In this model, the largest
histology subgroup and the most common location re-
garding the lung lobe (for location) were set as reference
categories of the categorical variables. For the analysis of
segmentation performance, all tumors with automatically
calculated tumor volumes (VolumeAI) were considered (�all
tumors detected). We used the Pearson correlation co-
efficient to assess the relationship between VolumeGT and
VolumeAI. p values less than 0.05 were defined to indicate
statistical significance.

To elucidate the influence of textual features on detection
rates, we extracted 200 radiomic features with Pyradiomics
version 2.1.0 [28]. Least absolute shrinkage selection oper-
ator (LASSO) regression and extended Bayesian information
criterion (EBIC) were used for feature selection in Stata
Statistical Software Release 15 (StataCorp, College Station,
TX). Selected features were then transferred into a logistic
regression model and the predictive power was assessed.
Youden cutoff values were generated for each selected
feature [29].

3. Results

3.1. Lung Tumor Population

3.1.1. Population Characteristics. �e mean patient age was
66.7 years (SD: 10.7 years). 70.3% of the patients were male
(n� 225), and 29.7% were female (n� 95). �e mean tumor
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Figure 1: Study workflow for (a) lung tumor population and (b) nodule negative population.
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volume was 68.2 cm3 (SD: 125.6 cm3; T1� 3.0 cm3,
T2�17.8 cm3, T3� 56.7 cm3, and T4� 210.0 cm3), and the
mean axial tumor diameter was 5.0 cm (SD: 3.4 cm). Tumors
were located in all lobes (right upper lobe: n� 101; middle
lobe: n� 19; right lower lobe: n� 50; left upper lobe: n� 88;
left lower lobe: n� 62). All T-categories were represented in
the dataset with the following distribution: T1: n� 83; T2:
n� 106; T3: n� 51; T4: n� 80. �ere were no statistically
significant differences between the patients included in the
T-categories regarding age and gender (χ2 �1.217,
p � 0.749). �e distribution of tumor histology is shown in
Table 1.

3.1.2. Detection. �e attribution of a lesion to the corre-
sponding lung lobe was correct in 100% of the detected
lesions. Detection rates differed significantly across T-cat-
egories and declined towards advanced tumors: 90.4% for T1
(75 of 83), 70.8% for T2 (75 of 106), 29.4% for T3 (15 of 51),
and 8.8% for T4 (7 of 80). �is detection decline is also
reflected in Figure 2(a) that shows the number of detected
and missed tumors by T-category and Figure 2(b) that
displays detection of tumors depending on the ground truth
volume. Furthermore, mean VolumeGT was smaller for
detected lesions (18.6 cm3; SD: 39.3 cm3) as compared to
missed lesions (125.9 cm3; SD: 161.8 cm3).

Binominal logistic regression conducted to explore
factors that influence detection rates showed that tumors
with a larger maximal axial diameter and tumors with
pleural contact were more likely to be missed by the de-
tection algorithm (both p< 0.001). �e results of this
analysis are summarized in Table 2. Interestingly, squamous
cell carcinomas and SCLC had a slightly higher likelihood to
be missed compared to adenocarcinomas (p< 0.001 and
p � 0.015, respectively). Location of a lesion in a specific
lung lobe did not influence detection rates. With an Exp(B)
of 74.4, pleural contact was by far themost relevant factor for
nondetection in the model. �is is also reflected by the fact
that 94 of 95 lesions without pleural contact were detected
(98.9%), while only 78 of 225 lesions with pleural contact
were correctly identified (34.7%).

Table 3 summarizes the results of the radiomic analysis. It
revealed that first order, shape, and texture features were
significantly different in detected and missed tumors
(p< 0.001). Tumors with finer, less heterogeneous texture
(e.g., CT_glrlm_GrayLevelNonUniformityN: Lasso coef-
ficient�−1.0776312, Youden cutoff� 0.1166608) and rounder
shape (e.g., shape_Sphericity: Lasso coefficient� 0.2268932,
Youden cutoff� 0.4293948) weremore likely to be detected by
the algorithm. Interestingly, three PET features (PET_first-
order_10Percentile, PET_firstorder_Maximum, PET_gldm_
DependenceEntropy) indicated whether or not a tumor is
detected on the CT component.

3.1.3. Segmentation. All tumors detected by the algorithm
were included in the second step of our analysis that in-
vestigated the segmentation performance (all: n� 172; T1:
n� 75; T2: n� 75; T3: n� 15; T4: n� 7). We found a positive
correlation between volumes calculated by the algorithm and

ground truth volumes (Pearson correlation coefficient:
r� 0.634, p< 0.001). As for detection rates, there were dif-
ferences regarding T-categories: r� 0.908 for T1 (p< 0.001),
r� 0.797 for T2 (p< 0.001), r� 0.520 for T3 (p � 0.047), and
r� 0.748 for T4 (p � 0.053). �is correlation is displayed in
Figures 3(a)–3(d). It is worth mentioning that due to the low
detection rate only seven T4 tumors were included and
therefore the high Pearson correlation coefficient is likely
related to random effects. Automatically calculated volumes
of tumors that had no contact to pleura had a stronger
correlation with ground truth volumes (r� 0.971, p< 0.001)
as compared to tumors with pleural contact (r� 0.586,
p< 0.001) for all T-categories. �e volumes of larger tumors
were systematically underestimated by the algorithm. Figure 4
displays a typical example of a T1 lesion without pleural
contact that was manually segmented (a) as well as correctly
segmented by the algorithm (b). Figure 4(c) shows an in-
completely segmented T3 lesion with pleural attachment, and
Figure 4(d) illustrates an invasive, completely missed T4
lesion.

3.2. Nodule Negative Population. Mean age of the patients
was 63.2 years (SD: 16.6 years). �ere were 60.6% males
(n� 57) and 39.4% females (n� 37). �ere were 39 false-
positive findings (FP).�is corresponds to 0.41 FP per patient.
FPs were caused by dystelectases (n� 18), intrapulmonary
vessels (n� 12), hilar calcified lymph nodes (n� 3), detection
of ribs (n� 2), and a breathing artifact (n� 1).

4. Discussion

�e evaluated AI-driven algorithm allows for excellent
detection and segmentation of pulmonary T1 lesions (de-
tection rate: 90.4%; excellent correlation of VolumeAI and
VolumeGT: r� 0.91) and good detection and segmentation of
T2 tumors (detection rate: 70.8%; correlation of VolumeAI
and VolumeGT: r� 0.80) on the CT component of PET/CTs.
Given the fact that the algorithm is designed for the de-
tection of lung nodules smaller than 3 cm, such good per-
formance on tumors with a diameter of up to 5 cm is
remarkable. �is is even truer considering the fact that the
CTseries used as input for the algorithm had a slice thickness
of 3mm and were acquired in free breathing and mostly
nonenhanced technique. In more advanced tumors (T3/T4),
detection and segmentation are more challenging and
subsequently detection rates are low. Furthermore, the
segmentation mask volumes for T3/T4 tumors

Table 1: Distribution of the lung tumor histology subtypes.

Tumor histology n %
Adenocarcinoma (AC) 174 54.2
Squamous cell carcinoma (SCC) 79 24.6
NSCLC not specified (NOS) 25 7.8
SCLC 15 4.7
Other∗ 28 8.7
∗Large cell carcinoma, neuroendocrine tumor (NET), sarcomatoid carci-
noma, spindle cell carcinoma, typical carcinoid, and combined carcinomas
(NET+ SCLC; SCLC+ SCC; NET+ SCC; NET+AC).
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systematically underestimate ground truth volumes. It is
therefore an important finding that the tested CAD system
has conceptional limitations concerning the detection of
advanced lung tumors, and human inspection is still nec-
essary in these cases.

�e first step of CAD systems is to detect the location of
lesions in medical images [30]. Most previous studies used
CT datasets from lung cancer screening trials (e.g., NLST)
with nodule size between 3 and 30mm [19]. As an exception,

Dandil et al. analyzed 52 malignant and 76 benign lesions
with a size range from 4 to 58mm, but only 12.5% of these
nodules were bigger than 20mm in diameter [20]. �ey
reported a sensitivity of 92.3%, which is in line with the
detection performance we found for the comparable group
of T1 tumors. Earlier this year, Vassallo et al. compared
unassisted and cloud-based CAD of pulmonary nodules in
patients with extrathoracic malignancy [13]. A total of 215
lung nodules with a diameter between 3 and 28mm in 75
patients were used for evaluation. Stand-alone CAD sensi-
tivity was 85%, and the mean false-positive rate per scan was
3.8. �ese performance measures are representative for
recently published studies on lung nodule CAD software
[12, 14–18, 21]. Our results show a sensitivity of 90.4% for
small tumors with a diameter of up to 30mm with a far
superior rate of false-positive findings per exam of 0.41 on
the nodule negative population. �is low rate of false-pos-
itive findings is a prerequisite for integration into existing
clinical workflows and acceptance by radiologists and nu-
clear medicine physicians. Liang et al. tested four CAD
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Table 2: Results of the binomial logistic regression.

Independent variables p Exp(B) with 95% CI
Histology subtype
Reference: adenocarcinoma
(1) Squamous cell

carcinoma <0.001 0.209 (0.089–0.490)

(2) NSCLC (NOS) 0.181 0.443 (0.134–1.461)
(3) SCLC 0.015 0.093 (0.014–0.636)
(4) Others 0.653 0.765 (0.237–2.464)

Location (lobes)
Reference: right

upper lobe
(1) Middle lobe 0.350 0.499 (0.116–2.145)
(2) Right lower lobe 0.495 1.446 (0.502–4.167)
(3) Left upper lobe 0.905 1.054 (0.448–2.480)
(4) Left lower lobe 0.902 0.943 (0.369–2.408)

Pleural contact <0.001 74.400 (9.345–592.324)
Maximal axial diameter <0.001 0.953 (0.938–0.969)
Detection (yes/no) was set as dependent variable. Independent variables:
histology (categorial), location (categorial), pleural contact (dichotomous),
and maximal axial diameter (continuous). Exp(B) is the exponentiation of
the B coefficient.

Table 3: Results of the radiomic analysis with features from
Pyradiomics.

Selected feature Lasso
coefficient

Youden
cutoff

CT_glrlm_GrayLevelNonUniformityN −1.0776312 0.1166608
PET_firstorder_10Percentile −0.0344698 1.7492108
PET_firstorder_Maximum −0.0022762 6.9905767
PET_gldm_DependenceEntropy 0.0716689 2.2174546
shape_Maximum2DdiameterSlice −0.0043233 32.866422
shape_Sphericity 0.2268932 0.4293948
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systems at two time points for the detection of nodules with a
mean diameter of 4mm and 11mm, respectively, and found
sensitivities ranging from 52% to 82% [11]. Again, false-
positive rates of 0.6–7.4 per exam ranged above the ones we
found and —in line with our results—were often caused by
detection of blood vessels and bone. �ey did not identify
dystelectasis as a reason for FP findings—the most frequent
cause we found. �is can be explained by the fact that we
tested on PET/CTs acquired in free breathing technique,
while Liang and colleagues evaluated on chest CTs acquired
in deep-inspiration breath-hold technique [11]. Of interest
and with only one exception, they as well as some other
authors [31, 32] reported higher detection rates of the CADs
for isolated cancers as compared to those attached to the
pleura. �is supports our finding that pleural contact neg-
atively affects detection. It is important to understand that

these features are not totally independent from each other.
For example, advanced tumors more likely invade structures
adjacent to the lung, which means that pleural contact exists.
Of interest, we found no dependency of lesion detection on
the location within the lung, whereas Liang and colleagues
reported a higher probability of detection for nodules in
lower lobes for three of the four evaluated CAD systems [11].
However, the effect was small and not statistically significant.

Our radiomics analysis revealed further features that in-
fluence the detection rates: a finer, less heterogeneous and
rounder texture was associated with better detection. While
the utility of texture analysis for the differentiation of benign
vs. malign lung lesions [33, 34], the differentiation of histologic
subtypes [35, 36] and the prediction of progression [37–39] is
well established, more studies on its influence on detection
rates are warranted. Regarding tumor histology, our analysis
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revealed slightly lower detection rates for SCLC and squamous
cell carcinomas as compared to adenocarcinomas. Due to the
low number of cases in the two groups, however, these results
are likely to be influenced by random effects. Another ex-
planation could be that no preliminary stages of adenocar-
cinoma were included in our patient population. It is well
known that adenocarcinoma with lepidic growth pattern has
lower detection rates by human readers [40].

After detection, segmentation of lung lesions is the
subsequent step that, if done correctly, paves the way to a
plethora of secondary analyses that are currently developed
within the context of AI, radiomics, and personalized
medicine. In this context, Owens et al. compared contours of
10 lung tumors ranging from 1.1 cm3 to 10.5 cm3 defined by
human readers in consensus, corresponding to our cate-
gories T1 and T2, with 2 semiautomatic segmentation
methods: Lesion Sizing Toolkit (LSTK) and GrowCut [41].
For these semiautomatic tools, the mean Dice similarity
coefficients were 0.88± 0.06 and 0.88± 0.08 for LSTK and
GrowCut, respectively, indicating very good segmentation
quality. Our results which reveal an excellent correlation of
VolumeGT and VolumeAI for T1 (r� 0.90) and a good
correlation for T2 tumors (r� 0.70) are in line with these
findings. Various other studies assessed automated seg-
mentation methods for the segmentation of lung nodules on

the Lung Image Database Consortium-Image Database
Resource Initiative (LIDC-IDRI) dataset (diameters:
2mm–38mm, again corresponding to T1 and T2-category
of our dataset) and reported overlaps of ground truth and
automatically generated segmentation masks of 50.7% [42],
58% [43], 63% [31], 69%, and 71.2% [44], respectively.
Furthermore, Hassani et al. mention in their review that
difficulties of semi automated and fully automated systems
in segmenting subpleural nodules are due to masking of
margins by adjacent normal structures [45]. Our results
confirm this finding, showing a much better correlation of
VolumeGT and VolumeAI for isolated lesions (r� 0.97) as
compared to attached lesions (r� 0.59).

According to current guidelines, FDG-PET/CT is con-
sidered the standard imaging procedure of choice for
noninvasive staging of lung cancer [5].�eCTcomponent of
this examination is often acquired in free breathing using
thicker slices (3mm) and a lower dose compared to di-
agnostic chest CTs. In opposition to Marten et al., who
reported significantly dropping detection rates for in-
creasing reconstruction slice thicknesses (0.75mm: 73.9%,
2mm: 59.0%, 4mm: 4.4%) [46], we found detection rates for
the comparable T1-category collective that are equal or
superior to those reported by other authors for 1mm slice
thickness. �is can be explained by the fact that detection

(a) (b)

(c) (d)

Figure 4: Examples for (a) manual segmentation of a T1 tumor without pleural contact with (b) corresponding excellent segmentation by
the algorithm, (c) an incompletely segmented T3 lesion with pleural attachment, and (d) a completely missed T4 lesion with infiltration of
the chest wall.
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rates of DCNN detection algorithms used in our study are
superior compared to techniques based on histogram
analysis and thresholding used years ago. Teramoto et al.
evaluated a CAD system that used both the CT and PET
component to generate candidate lesions with a subsequent
reduction of false-positive findings through a convolutional
neural network (slice thickness: 2mm; 104 cases with 183
nodules) [22]. �ey report a sensitivity regarding detection
of 91% that is very similar to the one we found but a higher
rate of false-positive findings per case (4.9). An inclusion of
the information contained in the PET-component of the
FDG-PET/CTcould be a direction of further development of
the CAD we tested.

�ere are several limitations of our work. First, manual
segmentation was performed by two readers in random
order without consensus or double reading. Both, consensus
and double reading are time-consuming tasks and therefore
not practicable in this study with a total of 320 lesions.
Second, the assessment of segmentation quality was based
on comparison of the automatically calculated tumor vol-
umes with ground truth volumes. More advanced methods
like Dice similarity coefficients or Hausdorff distances could
not be applied since space coordinates were not accessible in
the manually created tumor masks. �ird, for the creation of
manual tumor masks, the FDG-PET component was con-
sidered whenever tumor borders could not be well de-
lineated on the CT component, while automated tumor
detection was performed only on the CT component. In-
clusion of the information contained in the PETcomponents
could possibly increase detection rates and segmentation
quality. Fourth, the analysis was conducted in two steps:
detection and segmentation. Due to lower detection rates for
more advanced tumors, a selection bias in step two of the
analysis could positively influence segmentation perfor-
mance in this group.

In conclusion, the tested algorithm facilitates a fast and
reliable detection and 3D segmentation of pulmonary T1 and
T2 tumors that also works well on the CT component of
PET/CTs acquired in free breathing and with a slice
thickness of 3mm. �e detection and segmentation of more
advanced lung tumors is currently imprecise due to the
conception of the algorithm for lung nodules. Consequently,
there is still an unmet need for CAD applications that also
cope with the more complex segmentation tasks required in
the context of lung cancer staging. Future efforts must
therefore focus on this collective to facilitate segmentation of
all tumor types and sizes and bridge the gap between CAD
applications for screening and staging of lung cancer.
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