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ABSTRACT

Fusion genes or chimeras typically comprise se-
quences from two different genes. The chimeric
RNAs of such joined sequences often serve as can-
cer drivers. Identifying such driver fusions in a given
cancer or complex disease is important for diagno-
sis and treatment. The advent of next-generation se-
quencing technologies, such as DNA-Seq or RNA-
Seq, together with the development of suitable com-
putational tools, has made the global identification
of chimeras in tumors possible. However, the testing
of over 20 computational methods showed these to
be limited in terms of chimera prediction sensitivity,
specificity, and accurate quantification of junction
reads. These shortcomings motivated us to develop
the first ‘reference-based’ approach termed Chi-
TaH (Chimeric Transcripts from High–throughput se-
quencing data). ChiTaH uses 43,466 non–redundant
known human chimeras as a reference database to
map sequencing reads and to accurately identify
chimeric reads. We benchmarked ChiTaH and four
other methods to identify human chimeras, lever-
aging both simulated and real sequencing datasets.
ChiTaH was found to be the most accurate and fastest
method for identifying known human chimeras from
simulated and sequencing datasets. Moreover, espe-
cially ChiTaH uncovered heterogeneity of the BCR-
ABL1 chimera in both bulk and single-cells of the
K-562 cell line, which was confirmed experimentally.

INTRODUCTION

Gene-gene fusions (or chimeric RNAs generated at the
RNA level) typically comprise sequences from two dif-
ferent genes. Fused genes can be generated by different

mechanisms, including chromosomal translocations, tran-
scriptional errors, or by cis- or trans-splicing (1–5). The
chimeric RNAs of such joined sequences often serve as
cancer drivers, as exemplified by BCR–ABL1, found in
∼95% of chronic myelogenous leukemia (CML) cases (6),
by TMPRSS2–ETS, found in ∼50% of instances of prostate
cancer (7), and by DNAJB1–PRKACA, the hallmark and
likely driver of fibrolamellar carcinoma (8). Identifying such
driver fusions in a given cancer or complex disease is im-
portant for diagnosis and treatment. For example, tyrosine–
kinase inhibitors are highly effective in treating patients suf-
fering from CML and other cancers harboring kinase fu-
sions (9–12). Despite the importance of chimeric RNAs
in various cancers, the current terminology used to de-
scribe gene-gene fusions can be inconsistent, possibly due
to the field’s infancy. Presently, numerous terms have been
used to describe chimeric RNAs, such as transcription-
mediated fusions, fusion genes, conjoined genes, complex
genes, chimeras, spanning genes, hybrid genes, and fusion
transcripts. In this article, we define chimeric RNAs and fu-
sion genes as chimeras.

Cytogenetic analysis led to the discovery of BCR–ABL1
as the first chimera in 1973 (13). Since, dozens of chimeras
have been identified in hematologic cancers. Over the past
decade, the advent of high–throughput, low–cost, and so-
phisticated next-generation sequencing (NGS) technolo-
gies, such as DNA-Seq or RNA-Seq, together with im-
proved computational power, has made global identifica-
tion of chimeras in solid tumors, including sarcoma, car-
cinoma, and tumors of the central nervous system, possi-
ble (14). Today, over 20 computational tools for identifying
chimeras using high–throughput sequencing data are avail-
able. The common feature of these de novo chimera identi-
fication methods is the use of discordant and/or split reads
to recognize exon-exon junction sites (15–34). At the same
time, the various methods vary in terms of the read align-
ment tool employed, the version of the human reference
genome consulted, the gene annotations used, the criteria
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selected for filtering candidate chimeras, and likely, false
positives. Furthermore, these tools were found to be lim-
ited in terms of prediction sensitivity and specificity, accu-
rate quantification of junction reads, installation complex-
ity, execution time and robustness when utilizing DNA-Seq
or RNA-Seq and paired-end or single-end sequencing data
(35–37).

These shortcomings motivated us to develop a first
‘reference-based’ approach, termed ChiTaH (Chimeric
Transcripts from High–throughput sequencing data), for
identifying chimeras from both high–throughput DNA-Seq
and RNA-Seq sequencing data. Since the introduction of
NGS, thousands of human chimeras have been identified
and published at NCBI and in the literature (38). Accord-
ingly, we processed 10 100 714 human EST/mRNA se-
quences from NCBI GenBank and identified 548 262 hu-
man chimeric transcripts and collected them into the latest
version of our extended ChiTaRS 5.0 database (39). These
chimeric transcripts were then used to assemble a reference
database of chimeras presenting non–redundant unique
junction sequences that included 43 466 humans chimeric
RNAs. ChiTaH uses these 43 466 chimeras as a reference
database of known human chimeras to map DNA-Seq or
RNA-Seq sequencing reads to accurately identify chimeric
reads. We subsequently evaluated the performance of Chi-
TaH and four best chimera detection methods, namely,
EricScript (19), STAR-Fusion (16), JAFFA (15), and Fu-
sionCatcher (20). We assessed each method on simulated
and real sequencing datasets by evaluating various parame-
ters, such as sensitivity and specificity to detect candidate
chimeras, quantification of detected junction reads, total
time required, and RAM (random–access memory) con-
sumed to complete the analysis. Moreover, we analyzed
single-cell RNA-Seq sequencing data collected from the K-
562 cell line to assess the potential of ChiTaH to determine
BCR-ABL1 chimera heterogeneity and expression at the
single cell level. We experimentally confirmed the hetero-
geneity of BCR-ABL1 in the K562 cell line. Finally, we an-
alyzed RNA-Seq samples of human cancer cell lines from
the CCLE (Cancer Cell Line Encyclopedia) to build a cat-
alog of cancer-specific chimeras. We also analyzed, RNA-
Seq samples of normal human tissues from ArrayExpress
archive of EBI (European Bioinformatics Institute) to build
a catalog of normal tissue-specific chimeras, using ChiTaH.

MATERIALS AND METHODS

Collection of known human chimeras

A total of 10 100 714 EST/mRNA sequences were retrieved
from the NCBI GenBank database and aligned to a hu-
man reference genome (hg38) using the BLAT program
(40). EST/mRNA sequences were considered as human
chimeras if their first and second sequence tracts shared a
minimum identity of 95% and if these two sequences could
not be mapped linearly to the human reference genome. In
addition, the total length of the two connected mapped nu-
cleotide sequence tracts had to be more than one-third of
the length of the original EST/mRNA sequence. Original
EST/mRNA sequences with lengths shorter than 21 bp and
longer than 75 000 bp were discarded. A total of 548 262
human chimeras were thus identified and included in the

latest version of our extended ChiTaRS 5.0 database (39).
Pre-processing of the human chimeras was performed to fil-
ter out low–quality sequences. As such, chimeras were fil-
tered out if the identities of the gene1 and gene2 sequences
to the human reference genome (hg38) were <96%, or if
the chimera presented an ‘intron–intron’ junction type, con-
taining only non–coding sequences in the parental genes.
Isoform chimeras with identical parental genes that were
identically orientally were removed, as were chimeras with
short–length parental genes of less than 50 bp. Follow-
ing such screening, a total of 74 223 high-quality human
chimeras remained (Figure 1A).

Non-redundant known human chimeras

A total of 74 223 (100%) high–quality chimeras were used
to prepare human chimeras with non-redundant unique
junction sequences. To calculate the junction region of a
chimera, the overlap length between the gene1 and gene2
sequences was calculated as follows:

Overlap start = IF (S2 < E1 then S2 else E1)

Overlap end = IF (S2 < E1 then E1 else S2)

Overlap length = (Overlap end − Overlap start) +1

Chimeras with overlap lengths of more than 40 bp were
filtered out (Figure 1B). The remaining chimeras were used
for the junction length calculations as follows:

Junction start = IF(overlap start − 15 >

= S1 then overlap start − 15 else S1)

Junction end = IF(overlap end + 15 <

= E2 then overlap end + 15 else E2)

Junction length = (Junction end − Junction start) +1

To identify non–redundant unique junction regions,
stand-alone BLASTn (41) of 65 761 junction sequences
were performed against the NCBI curated databases
of human genomic sequences (ref euk rep genomes;
taxids:9606) and human transcripts (refseq rna;
taxids:9606), a human reference genome (hg38), and
a human reference transcriptome (hg38:cDNA) with 95%
minimum identity and 100% query coverage. In total, 15
187 (20.46%) chimeras with identical junction sequences
as human sequences were filtered out (Figure 1D). The
remaining junction sequences were subjected to analysis us-
ing dedupe.sh (https://github.com/BioInfoTools/BBMap)
to detect duplicate junction sequences by pairwise align-
ment. In total, 4280 (5.76%) chimeras with duplicate
junction sequences were excluded (Figure 1E). The re-
maining junction sequences were used to calculate the
percentage of A, T and N nucleotides, using the faCount
(http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86 64/)
tool. Chimeras indicative of the possible presence of
a poly-A tail or ambiguous nucleotides containing a
high percentage of A, T, and N nucleotides at junction
sequences were filtered out (Figure 1F). Thus, 43 466
(58.56%) high-quality, non–redundant human chimeras
were obtained.

https://github.com/BioInfoTools/BBMap
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/
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Figure 1. Collection of non-redundant human chimeras from ChiTaRS 5.0. (A) Total number of ESTs/mRNAs analyzed. (B) Filtration of chimeras based
on overlap length. (C) Calculation of chimera junction lengths. (D) Filtration of chimeras based on BLAST analysis against human sequences. (E) Filtration
of chimeras based on duplicate junction sequences by pairwise sequence analysis. (F) Filtration of chimeras based on poly-A tail or ambiguous character.
(G) Final chimeras with non–redundant unique junction sequences.

ChiTaH workflow

ChiTaH uses 43 466 non–redundant unique human
chimeras, a human reference genome (hg38), and a human
reference transcriptome (hg38:cDNA) as a combined refer-
ence to map DNA-Seq or RNA-Seq sequencing reads us-
ing the bowtie2 aligner with a local alignment approach
(42) (Figure 2B). ChiTaH subsequently calculates chimeric
reads mapped at non-redundant unique junction regions of
chimeras using bedtools coverage (43). Then, ChiTaH cal-
culates final candidate chimeras and provides the output
of all identified chimeras across samples with junction read
counts offered in a single matrix table (Figure 2C).

Comparative assessment of chimera detection methods

We sought to comparatively evaluate the performances of
ChiTaH and the current best chimera detection methods.
Over the past decade, over 20 computational tools for iden-
tifying chimeras using high–throughput sequencing data
have become available. Earlier studies performed compre-
hensive evaluation of many of these methods (35–37). Based
on their conclusions, we downloaded and installed four
tools, i.e., EricScript (19), STAR-Fusion (16), JAFFA (15),
and FusionCatcher (20), for benchmarking (Table 1). All
four methods and ChiTaH were run on a simulated dataset
and bulk RNA-Seq sequencing data at default, using rec-
ommended parameters for each method, 25 CPUs, and
1000 Gb of RAM. The sensitivity and specificity of each
tool on the simulated dataset were assessed using the fol-
lowing criteria:

1. Sensitivity (%) = (TP/TF) × 100%
2. Positive Predictive Value (PPV) or Specificity (%) = (TP/

(TP + FP)) × 100%

TP: True positive, correctly identified known candidate
chimeras

TF: Total known chimeras in the simulated dataset
FP: False–positive chimeras identified

For each run of the simulated and bulk RNA-Seq se-
quencing datasets, the computational RAM used in giga-
bytes (Gb) and time consumed in minutes to complete the
analysis were also calculated.

Simulated dataset

The simulated dataset was generated for comparative as-
sessment analysis of the different chimera detection meth-
ods. Sequences of 100 known chimeras in humans were
used to assess the sensitivity of each method. The sequence
of each of the 100 known chimeras is available at NCBI
and contains unique parental genes and non–redundant
unique junction sequences. About 95% of known chimeras
contain exons in both parental genes, and can thus be
translated into protein (Supplementary Figure S1). Hu-
man CDS sequences with a minimum of 2000 bp were
obtained from Ensemble and merged with sequences of
100 known chimeras to generate an artificial mRNA as-
sembly ∼60 Mb in size, containing a total of 17 163
sequences. This artificial mRNA assembly was used to
generate simulated sequencing data using BBMap refor-
mat.sh (https://github.com/BioInfoTools/BBMap). In to-

https://github.com/BioInfoTools/BBMap
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Figure 2. Workflow of ChiTaH. (A) Paired-end and single-end NGS sequencing reads as input to ChiTaH. (B) Mapping of reads using Bowtie2 against a
reference database comprising a human genome, a human transcriptome and 43,466 non–redundant known human chimeras. (C) Prediction of candidate
chimeras based on calculation of junction reads.

Table 1. Four top-level chimera detection methods used for benchmarking

Tool name Read type supported Reference Version
Sequencing data
type Interface

Alignment
algorithm

EricScript Paired-end (19) 0.5.5 RNA-Seq Stand-alone BWA (44),
BLAT (40)

STAR-Fusion Paired-end & single-end (16) 1.9.1 RNA-Seq Stand-alone STAR (45)
JAFFA Paired-end & single-end (15) 2.00 RNA-Seq Stand-alone bowtie2 (42),

BLAT (40)
FusionCatcher Paired-end & single-end (150 bp) (20) 1.20 RNA-Seq Stand-alone STAR (45),

BLAT (40),
bowtie2 (42)

tal, 30, 20, 15 and 10 million paired-end reads of 50, 75,
100 and 150 bp in length were generated, respectively. Ad-
ditionally, 60, 40, 30 and 20 million single-end reads of
50, 75, 100 and 150 bp in length were also generated,
respectively.

Bulk RNA-Seq sequencing dataset

A bulk RNA-Seq sequencing dataset was prepared to eval-
uate parameters such as total detected junction reads, and
time and RAM needed to complete the run of real sequenc-
ing data. Three bulk RNA-Seq sequencing samples from
the K-562 cell line were downloaded from the NCBI SRA
database. This source, positive for the known fusion gene
BCR–ABL1, contains about 53, 50 and 54 million paired-
end reads of 101 bp for samples SRR9032085, SRR9032086
and SRR9032088, respectively.

Single-cell RNA-Seq sequencing dataset

To assess the potential of ChiTaH to determine the hetero-
geneity of BCR–ABL1 chimeras and their expression at the

single-cell level, single-cell sequences from the K-562 cell
line were downloaded from NCBI BioProject accession PR-
JNA430491. To generate the dataset, the Smart-Seq2 design
and BGISEQ-500 platform were used to sequence a total of
81 and 249 single cells as paired-end and single-end reads,
respectively.

Dataset of cancer cell lines and normal tissues

To assemble a catalog of cancer-specific fusion genes using
ChiTaH, 934 RNA-Seq samples of human cancer cell lines
from the CCLE (https://www.ebi.ac.uk/gxa/experiments/E-
MTAB-2770/Downloads) and 199 RNA-Seq samples of
32 normal human tissues from the ArrayExpress archive
of EBI (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-
2836/Downloads) were analyzed.

Hardware, software and statistical analysis

Development and comparative analysis were performed
on the RedHat Enterprise Linux 7.4 server of an Intel(R)
Xeon(R) CPU E5-2620 v2 server with 25 CPUs and 1000

https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2770/Downloads
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2836/Downloads
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Gb of RAM. The in-house script for ChiTaH was written
in Bash programming. Scripts were applied in the Linux en-
vironment. The script of ChiTaH and its dependencies are
publicly available at the GitHub directory (https://github.
com/Rajesh-Detroja/ChiTaH). Statistical analysis was con-
ducted using in-house scripts written in R programming.
Plots were generated using Microsoft Excel and custom in-
house scripts written in R programming.

Experimental validation of BCR-ABL1 chimeras in the K562
cell line

Cell culture, RNA isolation, cDNA production, PCR anal-
ysis and Sanger sequencing was performed to validate BCR-
ABL1 chimeras. K562 cells purchased from ATCC (CCL-
243) were cultured in RPMI 1640 with 10% FBS and
Penicillin-Streptomycin-Amphotericin B Solution (Biolog-
ical Industries, Beit Haemek, Israel) at 37◦C in 5% CO2.
At 60–80% confluency, cultures were routinely sub-cultured
using 0.05% Trypsin-EDTA (Biological Industries). Total
RNA was extracted from the cells with a RNeasy Mini
Kit (Qiagen, Venlo, Netherlands). RNA quality was as-
sessed with a NanoDrop 1000 spectrophotometer (Ther-
moFisher, Waltham, MA). cDNA was produced using
a High-Capacity cDNA Reverse Transcription Kit (Ap-
plied Biosystems; ThermoFisher, Waltham, MA). A for-
ward primer from the BCR gene with the sequence AAGA
TGATGAGTCTCCGGGG and a reverse primer from the
ABL gene with the sequence GGTCCAGCGAGAAGGT
TTTC were used to detect the FUS390 chimera, produc-
ing a 172 bp fragment. The same forward primer and a re-
verse primer with the sequence AATATGGCTTCATCTG
CATGGC were used to detect the M19695 chimera, pro-
ducing a 149 bp fragment. The PCR products were eluted
from the gel and subjected to Sanger sequencing by Macro-
gen Europe, using the same primers.

RESULTS

ChiTaH: a reference-based approach for detection of human
chimeras

After pre-processing human EST and mRNA sequences
from NCBI, a total of 43 466 high–quality, non–redundant
human chimeras were curated. A total of 38 550 (88.69%)
chimeras contained 1–10 bp of overlap length, followed
by 3652 (8.40%) chimeras containing 11–20 bp overlap
length, 855 (1.96%) chimeras containing 21–30 bp overlap
length and 409 (0.94%) chimeras containing 31–40 bp over-
lap length were identified. Each chimera junction length
was calculated by adding 15 bp to both sides of the over-
lap region. Hence, junction length is correlated with over-
lap length of the chimera. This yielded 38 550 (88.69%)
chimeras containing 31–40 bp of junction length, followed
by 3652 (8.40%) chimeras containing 41–50 bp of junction
length, 855 (1.96%) chimeras containing 51–60 bp of junc-
tion length, and 409 (0.94%) chimeras containing 61–70 bp
of junction length. Moreover, 25 252 (58%) chimeras con-
tain exons in both parental gene sequences, with the po-
tential of translation into a complete chimeric protein. In
contrast, a total of 9004 (21%) and 9210 (21%) chimeras
contain intron-exon and exon-intron combinations in their

parental gene sequences, respectively, and thus have the
potential of translation into a partially chimeric protein
(Supplementary Figure S4). ChiTaH uses these chimeras
to identify chimeric reads from the DNA-Seq or RNA-
Seq sequencing data. Specifically, ChiTaH uses only non–
redundant junction regions to identify chimeric reads or
chimeras, which makes ChiTaH more accurate and ro-
bust when considering paired-end or single-end sequencing
reads of variable lengths of more than 35 bp.

Comparative assessment of chimera detection methods using
a simulated dataset

ChiTaH and four current best methods, namely, EricScript
(19), STAR-Fusion (16), JAFFA (15) and FusionCatcher
(20), were run on simulated datasets. For each method, de-
fault pre-defined alignment and analysis parameters were
used. Using simulated datasets, the performance of each
method was evaluated in terms of various parameters, such
as sensitivity, specificity, quantification of junction reads,
and total time and RAM utilized to complete the analysis.
Sensitivity in identifying the 100 known chimeras was first
assessed. Sensitivity was calculated by considering the num-
ber of known chimeras identified by each method from the
total of 100 known chimeras in the simulated datasets (Sup-
plementary Figure S2C, D). The average sensitivity of Chi-
TaH was found to be 100% for identifying know chimeras
from paired-end datasets, followed by FusionCatcher and
EricScript, with average sensitivities of 89.75% and 80.75%,
respectively. In identifying known chimeras from single-end
datasets, the average sensitivity of ChiTaH was found to be
100%, followed by FusionCatcher and JAFFA, with average
sensitivities of 89% and 81.50%, respectively (S4 File).

Specificity or positive predictive value (PPV) was next as-
sessed to identify known chimeras. Specificity (%) was cal-
culated by considering both the number of known chimeras
and the number of false-positive chimeras identified by
each method from simulated datasets (Supplementary Fig-
ure S2E, F). The average specificity of ChiTaH in identi-
fying chimeras from paired-end datasets was found to be
100%, followed by STAR-Fusion and FusionCatcher, with
average specificities of 92.40% and 88.02%, respectively. In
identifying chimeras from single-end datasets, the average
specificity of ChiTaH was found to be 100%, followed by
STAR-Fusion and FusionCatcher, with average specificities
of 92.34% and 84.76%, respectively.

The ability to accurately estimate the expression or abun-
dance of identified known chimeras by counting junction
reads was next determined. To calculate identified junc-
tion reads by each method, a total of 45 commonly iden-
tified known chimeras by all five methods in paired-end
and/or single-end simulated datasets were listed. Next, a
total number of average simulated junctions reads gener-
ated for these 45 chimeras was calculated. Thus, on average,
25.91 and 27.88 simulated junctions read were generated for
45 chimeras in paired-end and single-end datasets, respec-
tively. These were considered as control (Min-Expected).
From paired-end datasets, ChiTaH identified an average of
28.41 junction reads, followed by STAR-Fusion and Er-
icScript, which identified an average of 25.76 and 22.66
junction reads, respectively. In single-end datasets, ChiTaH

https://github.com/Rajesh-Detroja/ChiTaH
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identified an average of 29.92 junction reads, followed by
STAR-Fusion and FusionCatcher, which identified an av-
erage of 24.54 and 23.27 junction reads, respectively (Fig-
ure 3E, F). Moreover, it was noted that ChiTaH identified
a few more junction reads than expected, possibly because
the sensitivity of ChiTaH also allows for the recognizing of
junction reads presenting mutations.

The total time in minutes used by each method to com-
plete runs on the simulated datasets was next determined.
START-Fusion utilized an average of 9.5 minutes to com-
plete runs of paired-end datasets followed by ChiTaH and
FusionCatcher which utilized an average of 11.32 and 51.96
min, respectively. Where, to complete runs of single-end
datasets ChiTaH utilized an average of 2.96 min followed
by STAR-Fusion and JAFFA which utilized an average of
7.99 and 224.24 min respectively (Figure 4A, B). Finally,
the total RAM consumed in Gb by each method to com-
plete analysis of the run-on simulated datasets was assessed.
ChiTaH consumed an average of 4.52 Gb of RAM to com-
plete runs of paired-end datasets followed by EricScript and
JAFFA which consumed an average of 18.87 and 20.82 Gb
of RAM. To complete runs of single-end datasets, ChiTaH
utilized an average of 4.32 Gb of RAM, followed by JAFFA
and FusionCatcher, which consumed 9.53 Gb and 34.19 Gb
of RAM, respectively (Figure 4C, D). Altogether, compar-
ative benchmarking of ChiTaH and the four other meth-
ods on simulated datasets found ChiTaH to be the most
accurate and fastest method for identifying known human
chimeras, followed by STAR-Fusion.

Comparative assessment of chimera detection methods using
real sequencing datasets

After benchmarking all five methods on simulated datasets,
correlation of the same results with real sequencing
datasets was tested. For this, three bulk RNA-Seq samples
from the myelogenous leukemia K-562 cell line, namely,
SRR9032085, SRR9032086 and SRR9032088, were down-
loaded from SRA. In these sequencing datasets, the true
number of chimeras was not known. As such, parameters
such as sensitivity and specificity could not be assessed.
Nevertheless, the K-562 cell line-derived samples are pos-
itive for the chimera BCR-ABL1, allowing for evaluation
of the quantification of BCR-ABL1 junction reads, the to-
tal time required, and RAM utilized. Each method was run
on the K-562 cell line sequencing datasets using the same
server, 25 CPUs, and 1000 Gb of RAM. The total number
of junctions reads detected by each method was first cal-
culated. ChiTaH detected an average of 119.33 BCR-ABL1
junctions reads, followed by STAR-Fusion and EricScript,
which detected an average of 99.33 and 83 junctions reads,
respectively (Figure 5A).

The total time in minutes used to complete the run
by each method was also determined. STAR-Fusion uti-
lized an average of 19.97 minutes, followed by ChiTaH and
JAFFA, which utilized an average of 33.86 and 171.72 min,
respectively. Finally, the total RAM in Gb to complete the
run by each method was assessed. ChiTaH consumed an
average of 4.67 Gb of RAM, followed by JAFFA and Eric-
Script, which consumed an average of 16.36 and 23.49 Gb
of RAM, respectively (Figure 4E, F). Thus, again in agree-

ment with the results obtained using the simulated datasets,
ChiTaH and STAR-Fusion were found to be the most ac-
curate and fastest method to identify BCR-ABL1 chimeras
from real sequencing datasets of K-562 cell line.

Expression of BCR-ABl1 chimeras in bulk and single cells of
the K-562 cell line

BCR-ABL1 chimera was detected by all five methods from
bulk RNA-Seq of the K-562 cell line. However, ChiTaH
uniquely identified two different chimeric sequences of
BCR-ABL1, namely FUS390 and M19695. FUS390 con-
tains exons in both of the parental genes, with the potential
of being translating into a complete chimeric protein, while
M19695 contains exons in the BCR gene and introns in the
ABL1 gene, with the potential of being partially translated
into a chimeric protein. A total of 76, 103 and 96 FUS390
junction reads were identified from samples SRR9032085,
SRR9032086 and SRR9032088, respectively. A total of 38,
25 and 20 M19695 junction reads were identified from sam-
ples SRR9032085, SRR9032086 and SRR9032088, respec-
tively (Figure 5C). To confirm differences at the sequence
level, more than 100 bp of junction sequences of FUS390
and M19695 were aligned using the EBI ClustalW (46) pro-
gram. The alignment of junction sequences showed BCR
gene regions to be identical between FUS390 and M19695,
while ABL1 regions were unrelated. Further, in order to val-
idate two different version of BCR-ABL1 chimeras in the
K562 cell line, we performed a PCR assay designed to detect
and amplify these chimeras in K-562 cell cDNA. The PCR
product were of the expected sizes. The product was eluted
from the gel and subjected to Sanger sequencing with the
same primers used for PCR amplification. The sequencing
results of both DNA strands were identical to the sequences
found by ChiTaH, confirming the presence of FUS390 and
M19395 chimeras in the K-562 cell line (Supplementary
Figure S5).

Taken together, this result shows the existence of two dif-
ferent versions of BCR-ABL1 chimeras in the K-562 cell
line, namely, FUS390, with significantly high expression,
and M19695, with significantly low expression (P-value:
0.042) (Figure 5B). Based on the discovery of distinct BCR-
ABL1 chimeras by ChiTaH in bulk RNA-Seq data of K-
562 cells, it was hypothesized that these differences in the
BCR-ABL1 chimera could be due to cellular heterogene-
ity in the K-562 cell line at the single-cell level. To validate
this hypothesis, a publicly available total of 81 and 249 K-
562 cell line single cells with RNA-Seq sequencing data as
paired-end and single-end reads, respectively, were down-
loaded and analyzed using ChiTaH. With the paired-end
single-cell dataset, BCR-ABL1 chimeras were found in a
total of 12 (14.81%) cells, with the FUS390 chimera be-
ing found in 9 (11.11%) cells, and the M19695 chimera be-
ing found in 3 (3.70%) cells. In the single-end single-cell
dataset, BCR-ABL1 chimeras were found in a total of 16
(6.41%) cells, with the FUS390 chimera being found in 11
(4.41%) cells, and the M19695 chimera being found in 5
(2%) of cells. In the paired-end or single-end datasets, no
cells containing both versions of the BCR-ABL1 chimera
were detected. Furthermore, the expression of each chimera
in the cell was normalized to RPM (reads per million) and
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Figure 3. Comparative assessment of ChiTaH using simulated datasets. (A) Sensitivity (%) of the five methods tested on paired-end simulated datasets.
(B) Sensitivity (%) of four methods on single-end simulated datasets. (C) PPV (%) of the five methods on paired-end simulated datasets. (D) PPV (%) of
four methods on single-end simulated datasets. (E) Average junction reads detected by the five methods from paired-end simulated datasets. (F) Average
junction reads detected by four methods from single-end simulated datasets.



8 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4

Figure 4. Comparative assessment of ChiTaH using simulated and real datasets. (A) Total time in minutes used by the five methods to complete a run of
paired-end simulated datasets. (B) Total time in minutes used by four methods to complete a run of single-end simulated datasets. (C) Total memory in Gb
used by the five methods to complete a run of paired-end simulated dataset. (D) Total memory in Gb used by four methods to complete a run of single-end
simulated datasets. (E) Total time in minutes used by the five methods to complete a run of the K-562 cell line sequencing datasets. (F) Total memory in
Gb used by the five methods to complete a run of the K-562 cell line sequencing datasets.
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Figure 5. Expression of BCR-ABL1 chimeras calculated by ChiTaH. (A) Total junction reads detected by the five methods in the K-562 cell line sequencing
datasets. (B) Expression of BCR-ABL1 chimeras in the K-562 cell line bulk RNA-Seq dataset. (C) ChiTaH identified a distinct junction in BCR-ABL1 in
the K-562 cell line bulk RNA-Seq dataset. (D) Expression of BCR-ABL1 chimeras in the K-562 cell line paired-end single-cell dataset. (E) Expression of
BCR-ABL1 chimeras in the K-562 cell line single-end single-cell dataset.
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an unpaired t-test was performed to compare the expres-
sion of FUS390 and M19695 at the single cell level. With
paired-end or single-end single-cell data, no significant dif-
ferences were found between the expression of FUS390 and
M19695 (Figure 5D, E), which is completely distinct from
what was observed with the bulk RNA-Seq data. This dis-
crepancy could be due to the significantly lower expression
of FUS390 in most of the cells. Overall, these finding sup-
port the presented hypothesis and revealed the heterogene-
ity of BCR-ABL1 chimeras at the single-cell level using
ChiTaH. Unlike other chimera detection methods, ChiTaH
identified chimeras at the bulk and single-cell levels and was
quite accurate in detecting heterogeneity in known human
chimeras.

Chimera analysis of cancer cell lines and normal human tis-
sues

To build a catalog of cancer-specific chimeras using Chi-
TaH, 934 RNA-Seq samples of human cancer cell lines from
the CCLE and 199 RNA-Seq samples of 32 normal hu-
man tissues from the ArrayExpress archive of EBI were
analyzed. In the CCLE, 934 cell lines of 26 different can-
cer tissues were sequenced, including 173, 162, 54, 50 and
49 cancer samples from lung, hematopoietic/lymphoid tis-
sues, large intestine, breast, and central nervous system, re-
spectively (Supplementary Figure S3A). After analysis of
these datasets using ChiTaH, a total of 2066 and 7673
chimeras were found in the EBI and CCLE samples, re-
spectively. Of these, 1717 chimeras were found to be com-
mon to the EBI and CCLE lists, and were considered as
normal population chimeras (S2 File) (S3 File). A total of
5956 chimeras were found to be unique to the CCLE cancer
samples, and were considered as cancer-specific chimeras
(S1 File). Distribution of the junction type in the 5956
chimeras showed that about 3666 (62%) chimeras contain
exons in both parental genes, with the potential of being
translated into a complete chimeric protein, while 1133
(19%) and 1157 (19%) chimeras contained exon-intron and
intron-exon pairs in their parental genes, with the potential
to be partially translated into a chimeric protein (Supple-
mentary Figure S3B, C). A total of 3073, 3060, 2009, 1946
and 1568 chimeras were identified from the cancerous lung,
hematopoietic/lymphoid tissues, large intestine, breast, and
central nervous system, respectively. Moreover, a total of
six distinct versions of the BCR-ABL1 chimera was found
across 14 cell lines of hematopoietic and lymphoid tissues
in the CCLE samples. In agreement with the results for the
bulk and single cell RNA-Seq datasets, chimera FUS390
was found to be highly expressed and chimera M19695 was
determined to be lowly expressed in the K-562 cell line from
the CCLE. The BCR-ABL1 chimera KT696168 was found
in a total of eight cell lines of hematopoietic and lymphoid
tissues. Chimeras FUS391 and FUS390 were seen in five cell
lines, M19695 was noted in two cell lines, and FUS2195 and
MH401088 were detected in only a single cell line.

We considered 2066 chimeras found in normal tissues
of EBI as population reference chimeras. This population
chimeras can be used to filter out chimeras that are fre-
quently expressed in normal human tissues and do not as-
sociate with complex diseases, such as cancer. Next, 5956

cancer-specific chimeras found in CCLE cancer cell lines
were used for downstream biological analysis. First, a list of
unique fusion genes for each cancer was prepared to classify
them as a driver gene, oncogene, or tumor suppressor gene.
This list was uploaded to the CancerMine (47) database
for annotation. Such annotation provides biological insight
in terms of fusion genes and their classification as driver,
onco-, or tumor suppressor genes for each cancer (S5 File).
Moreover, 1647 unique fusion genes from all cancers were
uploaded into WebGestalt (48) for gene ontology analysis.
The enrichment of these genes shows their significant as-
sociation with pathways in cancers, such as the Ras signal-
ing pathway, focal adhesion, and proteoglycans in cancer
(FDR ≤ 0.05) (Supplementary Figure S6).

DISCUSSION

Access to an accurate and rapid chimera detection method
is important both in cancer and complex disease research
and for the precision medicine pipeline. With the advent
of NGS technologies, global identification of chimeras be-
came feasible. However, despite the development of over 20
computational methods designed to identify chimeras from
high-throughput sequencing data, prediction sensitivity,
specificity, accurate quantification of junction reads, execu-
tion time and hardware requirements remain challenging.
Therefore, we developed ChiTaH, a fast ‘reference-based’
approach for the discovery of known human chimeras with
superior accuracy. Currently, ChiTaH contains total of 43
466 non-redundant unique human chimeras combining ex-
ons of their parental genes, and thus with the potential of
being translated into chimeric proteins.

In all scenarios tested, ChiTaH out-performed the cur-
rent best methods for identifying chimeras. Specifically,
in simulated datasets, ChiTaH out-performed these other
methods in terms of sensitivity, specificity, estimating junc-
tion reads, execution time, and RAM required to complete
the analysis (Figures 3 and 4). The same conclusion was
drawn in the case of a true sequencing dataset from the K-
562 cell line. The sole limitation in testing ChiTaH is that
this tool cannot identify chimeras that are not available in its
reference database of known human chimeras. Despite this
limitation, the pipeline presented here is entirely customiz-
able, such that user can easily incorporate known chimeras
in which they are interested. Moreover, we have been up-
dating our database ChiTaRS on a daily basis since 2012,
resulting in addition of thousands of new known human
chimeras annually (39, 49–51).

Finally, a unique future of ChiTaH reported here is the
ability to identify variable junctions of the same chimera.
Of all five tested methods, only ChiTaH discovered two
distinct BCR-ABL1 chimeras in the K-562 cell line bulk
RNA-Seq dataset, as well as in the single-cell RNA-Seq
data. ChiTaH also accurately determined that BCR-ABl1
chimera FUS390 was significantly highly expressed, while
chimera M19695 was poorly expressed in the bulk RNA-
Seq dataset from K-562 cells. However, in the case of the
single cell RNA-Seq dataset from K-562 cells, no signif-
icant differences between the expression of FUS390 and
M19695 were noted, likely because chimera FUS390 was
found to be expressed at only low levels in the majority of K-
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562 cells (Figure 5). Moreover, hundreds of RNA-Seq sam-
ples from EBI and CCLE were analyzed in just one month,
showing that ChiTaH is well suited to meet the demands of
large-scale tumor or population sample screening. In sum-
mary, the unique features of ChiTaH that allow it to utilize
non–redundant junction sequence data for the identifica-
tion of known chimeras also allow for the use of DNA-Seq
or RNA-Seq sequencing datasets from bulk or single cell
datasets. Finally, ChiTaH was also found to be efficient for
the identification of sense-antisense (SAS) chimeras, given
of its unique reference-based approach (52).

CONCLUSIONS

In this report, we introduced ChiTaH, a fast and accurate
method for the discovery of known human chimeras or fu-
sion genes using DNA-Seq or RNA-Seq data generated
using NGS technologies. ChiTaH, a user-friendly pipeline
that will enable other research groups to make discover-
ies with ease of installation, is publicly available at GitHub
(https://github.com/Rajesh-Detroja/ChiTaH).
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