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We have used the pig, a large natural host animal for influenza with many physiological
similarities to humans, to characterize ab, gd T cell and antibody (Ab) immune responses
to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and
associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte
Antigen) and compared them to commercial outbred animals. High level of nasal virus
shedding continued up to days 4 to 5 post infection followed by a steep decline and
clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5
to 6 post infection reaching a peak at 9 to 14 days. gd T cells produced cytokines ex vivo at
day 2 post infection, while virus reactive IFNg producing gd T cells were detected from day
7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in
blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear
differences in cytokine production between these tissues. BAL contained the most highly
activated CD8, CD4, and gd T cells producing large amounts of cytokines, which likely
contribute to elimination of virus. The weak response in blood did not reflect the powerful
local lung immune responses. The immune response in the Babraham pig following
H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to
utilize these two swine models together will provide unparalleled power to analyze immune
responses to influenza.

Keywords: influenza, swine, pig, lung, T cell, Ab, gamma delta cells, H1N1pdm09
INTRODUCTION

Influenza viruses are a global health threat to humans and pigs, causing considerable morbidity and
mortality. Frequent zoonotic crossover between pigs and humans contributes to the evolution of
influenza viruses and can be a source for novel pandemic strains (1–3). Human and swine Influenza
viruses are prone to interspecies transmission, leading to regular incursions from human to pig and
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https://www.frontiersin.org/articles/10.3389/fimmu.2020.604913/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.604913/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.604913/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.604913/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:elma.tchilian@pirbright.ac.uk
https://doi.org/10.3389/fimmu.2020.604913
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.604913
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.604913&domain=pdf&date_stamp=2021-02-02


Edmans et al. Pig Immune Responses to Influenza
vice versa generally resulting in an influenza-like illness similar
to that of human seasonal influenza (4). The emergence of the
2009 pandemic H1N1 (H1N1pdm09) virus, which is now
globally endemic in both pigs and humans, illustrates the
importance of pigs in new outbreaks in humans (5). Influenza
A virus (IAV) infection in pigs causes significant economic loss
due to reduced weight gain, suboptimal reproductive
performance and secondary infections. Immunization with
inactivated influenza virus is currently the most effective way
of inducing strain-specific neutralizing antibodies, directed
against the surface glycoprotein hemagglutinin (HA). Because
of the constant evolution of the virus, broadly cross-protective
vaccines would be highly desirable and central to the control of
influenza in both pigs and humans.

Animal models are essential to develop better vaccines and
control strategies and to provide insight into human disease.
Most models have limitations in recapitulating the full range of
disease observed in humans. Mice, guinea pigs and non-human
primates are not generally susceptible to natural routes of
influenza infection and may require adapted strains,
physiologic stressors and/or unnatural inoculation procedures
(6–9). In contrast, pigs are an important, natural, large animal
host for IAV and are infected by the same subtypes of H1N1 and
H3N2 viruses as humans (10, 11). Pigs have a longer life span, are
genetically, immunologically, physiologically and anatomically
more like humans than small laboratory animals and have a
comparable distribution of sialic acid receptors in the respiratory
tract (12, 13). Pigs exhibit similar clinical manifestations and
pathogenesis when infected with IAV making them an excellent
model to study immunity to influenza. Furthermore, we have
defined the dynamics of H1N1pdm09 influenza virus
transmission in pigs and demonstrated the utility of the pig
model to test therapeutic antibody delivery platforms and
vaccines (14, 15).

Several inbred miniature pig breeds have been developed,
including NIH and Yucatan, with defined swine leukocyte
antigens (SLA type, the swine major histocompatibility
complex) (16, 17). However, the inbred Babraham is the only
example of a full-size inbred strain of pig, closely related to
commercial breeds, making them an appropriate model to study
diseases important to commercial pig production (18, 19). The
sharing of IAV strains between pigs and humans makes it an
obvious species in which to study immunity to influenza and to
test vaccines or therapeutic strategies prior to human clinical
trials. In addition we have developed a toolset to study immune
responses in Babrahams, including adoptive cell transfer and
peptide SLA tetramers allowing us to study the fine specificity of
immune responses (20, 21).

Despite extensive knowledge of the role of T cells in protection
against IAV in mice and humans, few studies in pigs have
evaluated this in depth. The duration and magnitude of T cell
and humoral responses has been assessed after swine H1N1,
H1N2, and H3N2 challenges in pigs (22–26). The frequency and
activation status of leucocytes in local and systemic tissues was also
determined after H1N1pdm09 infection (27). However no detailed
analysis of T cell immune responses in broncho-alveolar lavage
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(BAL) have been performed, a location which we have shown to
contain tissue resident memory cells that are essential for
heterosubtypic protection (28). Neither has there been a detailed
analysis of T cell and antibody (Ab) immune responses to
H1N1pdm09, although this continues to cross the species
barrier from humans to pigs. H1N1pdm09 circulating in swine
herds maintains antigenic similarity to human seasonal strains,
providing a unique opportunity to use a virus affecting both
humans and swine to examine immune responses induced
by infection.

Here we characterized ab, gd T cell and Ab immune responses
to H1N1pdm09 in local lung and systemic tissues in Babraham
pigs and compared them to commercial outbred animals. These
two pig models together will allow fine grain dissection of immune
responses to IAV in a species which is a natural host for the virus
and similar in many respects to humans.
MATERIALS AND METHODS

Animals and Influenza H1N1pdm09
Challenge
The animal experiments were approved by the ethical review
processes at the Pirbright Institute and Bristol University and
conducted according to the UK Government Animal (Scientific
Procedures) Act 1986 under project license P47CE0FF2. Both
Institutes conform to the ARRIVE guidelines.

Thirty two outbred old Landrace x Hampshire cross (from a
commercial high health status herd) and 56 inbred Babraham
pigs (bred at Animal Plant Health Agency, APHA Weybridge,
UK) were screened for absence of influenza A infection by matrix
gene real time RT-PCR and for antibody-free status by HAI
using four swine influenza virus antigens - H1N1pdm09, H1N2,
H3N2, and avian-like H1N1. The average age of the outbred pigs
7 days before the challenge was 8.7 weeks and of the Babrahams
8.3 weeks. Pigs were challenged intra-nasally with 1 × 107 PFU of
MDCK grown swine A(H1N1)pdm09 isolate, A/swine/England/
1353/2009, derived from the 2009 pandemic virus, swine clade
1A.3. (H1N1pdm09) in a total of 4 ml (2 ml per nostril) using a
mucosal atomization device MAD300 (MAD, Wolfe-Tory
Medical). Two experiments with outbred (OB) pigs (referred to
as OB1 and OB2) and two with inbred Babraham (BM) pigs
(referred to as BM1 and BM2) were performed (Figure 1A). In
each experiment one pig was culled on days 1 to 7, 9, 11, and 13
post infection and a post-mortem examination performed with
collection of tissue samples. Uninfected controls were sampled:
two on the day prior to infection and two at day 8 post infection.
Two naïve pigs (referred to as in-contact) were co-housed with
the directly challenged pigs in experiments OB1, OB2, BM1,
BM2 and culled at days 11 and 13 post infection together with
the last two directly challenged pigs. A fifth experiment was
performed with Babraham pigs (experiment BM3) in which
three were culled on days 6, 7, 13, 14, 20, and 21 post infection
(Figure 1A). In the BM3 experiment six control animals were
included, three of which were culled 1 day before and three on
the day of infection.
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Tissue Sample and Processing
Two nasal swabs (one per nostril) were taken from all surviving
pigs following infection with H1N1pdm09 (Figure 1) on days 1
to 7, 9, 11, and 13 in OB1, OB2, BM1, and BM2, and on days 1 to
9 in BM3. Animals were humanely euthanized at the indicated
times with an overdose of pentobarbital sodium anesthetic.
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Peripheral blood (PBMC), tracheobronchial lymph nodes
(TBLN), lung, bronchial alveolar lavage (BAL) were processed
as previously described (28, 29). The tissue homogenate was
washed, red blood cells lysed and cell suspension passed through
100 mM cell strainer twice. Cells were cryopreserved in FBS
containing 10% DMSO.
A B

C

FIGURE 1 | Experimental design, viral load and cell subset dynamics following H1N1 pmd09 infection. (A) Pigs were infected with H1N1pdm09 and culled on the
days indicated. Two experiments with outbred (OB1 and OB2, black line) and two with inbred Babraham pigs (BM1 and BM2, red line) were performed. Two in-
contact animals were included in each experiment one culled at day 11 and one at day 13 post infection. An extended time course of 21 days was performed with
18 inbred Babraham pigs (BM3, red line) with animals culled on the indicated days. (B) Virus load was determined by plaque assay of daily nasal swabs at the
indicated time points. The thick line indicates the mean. (C) Proportions of CD4, CD8, and gd T cells were determined by flow cytometry at the indicated time points.
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Plaque Assays
Virus titer in nasal swabs was determined by plaque assay on
MDCK cells (Central Service Unit, The Pirbright Institute, UK).
Samples were 10-fold serially diluted in Dulbecco’s Modified
Eagle’s Medium (DMEM) and 200 µl overlayered on confluent
MDCK cells in 12 well tissue culture plates. After 1 h, the plates
were washed and overlayered with 2 ml of culture medium
containing 0.66% Agar. Plates were incubated at 37°C for 48 to
72 h and plaques visualized using 0.1% crystal violet. plaques
were counted at the appropriate dilution and expressed as plaque
forming units (PFU) per ml of nasal swab.

IFNg ELISpot Assay
Frequencies of IFNg spot forming cells (SFC) were determined
using cryopreserved cells a previously described (28, 29). Cells were
stimulated with live MDCK-grown H1N1pdm09 (MOI 1), medium
control, or 4 mg/ml Con A (Sigma-Aldrich). Results were expressed
as number of IFNg producing cells per 106 cells after subtraction of
the average number of spots in medium control wells.

Flow Cytometry
Cryopreserved single cell suspensions from blood, TBLN, BAL
and lung were thawed, rested for 1 to 2 h and aliquoted into 96
well plates at 1 × 106 cells/well. Cells were stimulated with live
MDCK-grown H1N1pdm09 (MOI 1) or medium control and
incubated at 37°C for 18 h. Golgi plug (BD Biosciences) was
added for the last 4 h of stimulation. PMA Ionomycin (Biolegend)
was added to appropriate control wells as a positive control at the
same time as the Golgi plug. Following incubation cells were
washed at 1,000g for 5 min and re-suspended followed by addition
of primary antibodies, Near-Infrared Fixable LIVE/DEAD stain
(Invitrogen) and secondary antibodies (Table 1). Unstimulated
controls were stained with the same antibodies and their response
deducted. For ex vivo staining, gating was set by the response in
the naïve animals which was negligible (Cells were fixed and
permeabilized with BD Fix and perm buffer (BD Biosciences) as
per the manufacturer’s instructions prior to the addition of
internal cytokine antibodies. Cells were washed and re-
suspended in PBS prior to analysis using a MACSquant
analyser10 (Miltenyi).

The NP290-298 SLA tetramer binding was performed as
previously described (20). Briefly, biotinylated NP peptide loaded
SLA monomers, were freshly assembled into tetramer with
streptavidin BV421 (Biolegend, UK) and diluted with PBS to a
final concentration of 0.1 mg/ml. Two million mononuclear cells
were incubated with protease kinase inhibitor (Dasatinib, Axon
Medchem) in PBS for 30 min at 37°C and 0.3 µg of tetramer was
added to the cells on ice for another 30 min. Surface staining with
optimal antibody concentrations in FACS buffer (PBS
supplemented with 2% FCS and 0.05% sodium azide) was
performed on ice for 20 min (Table 1). Responses with SLA
matched non-influenza tetramers were used as controls and
deducted (Supplementary Figure 7). Samples were washed twice
with FACS buffer and fixed in 1% paraformaldehyde before analysis
on MACSquant analyser10 (Miltenyi). All flow cytometry data was
analyzed by Boolean gating using FlowJo v10.6 (TreeStar, US).
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Serological Assays
ELISA was performed using live H1N1pdm09 virus or
recombinant hemagglutinin from H1N1pdm09 (pH1)
containing a C-terminal thrombin cleavage site, a trimerization
sequence, a hexahistidine tag and a BirA recognition sequence as
previously described (30). Cut-off values determined as average
naïve values plus three-fold standard deviation at optimal
starting dilution. Starting dilutions were 1:20, 1:2, and 1:4 for
serum, BAL and nasal swab respectively. Hemagglutination
inhibition (HAI) Ab titers were determined using 0.5% chicken
red blood cells and H1N1pdm09 at a concentration of 4 HA
units/ml. Microneutralization (MN) was performed using
standard procedures as described previously (15, 31).

The porcine sera were also tested for binding to MDCK-SIAT1
cells stably expressing pH1 from H1N1pdm09 (A/England/195/
2009), H1 from A/Puerto Rico/8/1934 (PR8, H1N1) and H5 HA
(A/Vietnam/1203/2004). Confluent cell monolayers in 96-well
microtiter plates were washed with PBS and 50 ml of the serum
dilution was added for 1 h at room temperature. The plates were
washed three times with PBS and 100 ml of horseradish peroxidase
(HRP)-conjugated goat anti-pig Fc fragment secondary antibody
(Bethyl Laboratories, diluted in PBS, 0.1% BSA) was added for 1 h
at room temperature. The plates were washed three times with
PBS and developed with 100 µl/well TMB high sensitivity
substrate solution (Biolegend). After 5 to 10min the reaction
was stopped with 100 µl 1 M sulfuric acid and the plates were read
at 450 and 570 nm with the Cytation3 Imaging Reader (Biotek).
The cut off value was defined as the average of all blank wells plus
three times the standard deviation of the blank wells.
Enzyme-Linked Lectin Assay (ELLA)
Neuraminidase inhibiting Ab titers were determined in serum
and BAL fluid using an Enzyme-linked lectin assay (ELLA).
Ninety six-well microtiter plates (Maxi Sorp, Nunc, Sigma-
Aldrich, UK) were coated with 50 ml/well of 25 mg/ml fetuin
and incubated at 4°C overnight. Heat inactivated sera samples
were serially diluted in a separate 96-well plate. An equal volume
of (H7(Net219) N1(Eng195) S-FLU (H7N1 S-FLU) (kindly
provided by Professor Alain Townsend, University of Oxford)
was added to each well and incubated at room temperature on a
rocking platform for 20 min. The H7N1 S-FLU was titered
beforehand in the absence of serum to determine optimal
concentration for the assay. Fetuin plates were washed with
PBS four times before 100 ml/well of the serum/virus mix was
transferred and incubated overnight at 37°C. The serum/virus
mix was removed, and the plate washed four times with PBS
before adding 50 ml/well of Peanut Agglutinin-HRP at 1 mg/ml
and incubating for 90 min at room temperature on a rocking
platform. Plates were washed and 50 ml/well of TMB High
Sensitivity substrate solution (BioLegend, UK) was added.
Plates were developed for 6 min, the reaction stopped with 50
ml of 1 M H2SO4 and the plates were read at 450 and 630 nm
using a Biotek Elx808 reader. Samples were measured as end titer
representing the highest dilution with signal greater than cut-off.
The cut off value was defined as the average of all blank wells plus
three times the standard deviation of the blank wells.
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B Cell ELISpot
B cell ELISpots were performed for the detection and enumeration
of antibody-secreting cells in single cell suspensions prepared from
different tissues and peripheral blood. ELISpot plates (Multi Screen-
HA, Millipore, UK) were coated with 100 µl per well of appropriate
antigen or antibody diluted in carbonate/bicarbonate buffer for 2 h
at 37°C. To detect HA-specific spot-forming cells, plates were coated
with 2.5 µg per well of recombinant pHA from H1N1pdm09 (A/
England/195/2009) and for the enumeration of total IgG-secreting
cells with 1 µg per well of anti-porcine IgG (mAb, MT421, Mabtech
AB, Sweden) or with culture medium supplemented with 10% FBS
(media background control). The coated plates were washed with
PBS and blocked with 200 µl/well 4% milk (Marvel) in PBS. Frozen
cell suspensions from different tissues were filtered through sterile
70 µM cell strainers, plated at different cell densities in culture
medium (RPMI, 10% FBS, HEPES, Sodium pyruvate, Glutamax
and Penicillin/Streptomycin) on the ELISPOT plates and incubated
for a minimum of 18 h at 37°C in a 5% CO2 incubator. After
incubation the cell suspension was removed, the plates washed once
with ice-cold sterile H2O and thereafter with PBS/0.05% Tween 20,
before incubation with 100 µl per well of 0.5 µg/ml biotinylated anti
porcine IgG (mAb, MT424, Mabtech AB, Sweden) diluted in PBS/
0.5% FBS for 2 h at room temperature. Plates were washed with
PBS/0.05% Tween 20 and incubated with streptavidin – alkaline
phosphatase conjugate (Strep-ALP, Mabtech AB, Sweden). After a
final wash, the plates were incubated with AP Conjugate Substrate
(Bio-Rad, UK) for a maximum of 30 min. The reaction was stopped
by rinsing the plates in tap water and dried before spots
were counted.
Statistical Analysis
All statistical analyses were performed using Prism 8.1.2. The
kinetics of viral shedding were analyzed using a linear mixed
model. The model included viral titer (log10 PFU/ml) as the
response variable, day post infection (as a categorical variable)
and pig type (OB or BM) and an interaction between them as
fixed effects and pig ID nested in experiment as random effects.
The model was implemented using the lme4 package (32) in R
(version 3.6.1) (https://www.R-project.org/).

ELISpot data were analyzed using a linear model. The model
included log10 SFC/10

6 cells+1 as the response variable and day post
infection (as a categorical variable), source (BAL, lung, PBMC,
TBLN) and pig type (OB or BM) and two- and three-way
interactions between them as fixed effects. Model simplification
proceeded by stepwise deletion of non-significant (P>0.05) terms as
judged by F-tests. The model was implemented in R (version 3.6.1).

Because of possible non-normality and non-constant variance
the percentage of different T cells (NP290-298 CD8, IFNg CD8b, IL-2
CD8b, TNF CD8b, IFNg CD4, IL-2 CD4, TNF CD4, IFNg CD2 gd
ex vivo, TNF CD2 gd ex vivo, IFNg/TNF CD2 gd ex vivo, IFNg CD2
gd, TNF CD2 gd, IL-17A CD2 gd) from each source (BAL, lung,
PBMC, TBLN) and pig type (OB and BM) at each day post infection
were analyzed using Kruskal-Wallis tests. If significant (P<0.05),
pairwise Wilcoxon rank-sum (also known as Mann-Whitney) tests
were used to compare groups. These analyses were implemented in
Frontiers in Immunology | www.frontiersin.org 5
R (version 3.6.1). A similar approach was used to compare the
percentage of different T cells in all sources from inoculated and
uninfected control pigs at each time point and in BAL from in-
contact and experimentally inoculated pigs (in this case
observations from 6 to 11 dpi were combined).

The dynamics of antibody responses were analyzed by fitting
logistic growth curves to the data, y=k/(1+exp(-b(t-d)), where y is
the log10 antibody titer, t is days post infection, k is the upper
asymptote, b is the rate of increase and d is the time of maximum
increase. The parameters (i.e. k, b and d) were allowed to vary
between BM and OB pigs. Model fitting using the nlme package
(https://CRAN.R-project.org/package=nlme) in R (version 3.6.1).
RESULTS

Experimental Design, Virus Shedding,
and Lymphocyte Dynamics During
H1N1pdm09 Infection
Five experiments were performed to characterize local and
systemic immune responses. In the first four experiments ten
pigs were infected intranasally with H1N1pdm09 virus and
monitored for clinical signs. One infected pig was culled on
each of days 1 to 7, 9, 11, and 13 post infection. A full post-
mortem examination was performed and BAL, lung, TBLN and
PBMC samples collected. Four uninfected controls were sampled
in parallel, two on the day prior to infection and two at day 8 post
infection. Two experiments with outbred (OB) pigs (referred to
as experiments OB1 and OB2) and two with inbred Babraham
(BM) pigs (referred to as BM1 and BM2) were performed
(Figure 1A). In addition, two naïve pigs (referred to as in-
contact pigs) were co-housed with the directly challenged pigs in
experiments OB1, OB2, BM1, BM2 and culled at days 11 and 13
post contact. A fifth experiment was carried out with 18 BM
(experiment BM3) in which 3 pigs were culled on each of days 6,
7, 13,14, 20, and 21 post infection (Figure 1A). In the BM3
experiment six uninfected controls were sampled, three 1 day
before and three on the day of infection.

Viral load was determined in daily nasal swabs taken from
both the directly challenged and in-contact pigs (Figure 1B). In
directly challenged pigs, peak virus load was reached 1 to 3 days
post infection (DPI), declined sharply after 4 DPI and was not
detectable after 7 DPI. No differences in virus shedding between
OB and BM were detected (p=0.65). Although the onset of viral
shedding was delayed, most in-contact pigs showed similar
kinetics to directly challenged ones, indicating that the natural
contact infection is very similar to intra-nasal challenge with
mucosal atomization device (MAD).

We determined the proportion of CD8b, CD4, and gd T cells
over the time course in BAL, lung, TBLN and PBMC (Figure 1C,
Supplementary Figure 1). BM animals had a significantly lower
proportion of CD8b T cells than OB, apparent in all tissues in
naïve unexposed animals (6.6% in BM vs 24.2% in OB in BAL,
4.2% vs 16.2% in lung, 3.2% vs 9.4% in PBMC and 7.6% vs 11.5%
in TBLN) (Supplementary Figure 1A). BM animals also showed
a significantly higher proportion of gd T cells in BAL, lung and
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PBMC (Supplementary Figure 1A). No significant differences in
CD4 T cells were detected between OB and BM. The proportion
of CD4, CD8, and gd T cells did not change significantly over the
time course of H1N1pdm09 infection, although an increase in
the proportion of CD8b in the BAL for the BM animals was
observed, as previously reported (26).

Overall the kinetic of virus infection and shedding were
similar between BM and OB, although there were differences
in the proportions of CD8 and gd T cells.
Frontiers in Immunology | www.frontiersin.org 6
T-Cell Responses During H1N1pdm09
Infection in Pigs
As T cells are crucial for control of virus replication, we
examined in detail the CD8 and CD4 responses during
H1N1pdm09 infection (33–36). First, we enumerated IFNg-
secreting cell by ELISpot following re-stimulation with
H1N1pdm09 (Figures 2A, B). IFNg spot forming cells (SFC)
were detectable from 6 DPI and maintained in all tissues until 21
DPI. During the early stage of infection the strongest responses
A

B

C

D

FIGURE 2 | IFNg ELISpot and tetramer responses. (A, B) IFNg-secreting spot forming cells (SFC) in BAL, lung, TBLN and PBMC in outbred (black boxes) and
inbred (red circles) pigs were enumerated after stimulation with H1N1pdm09 or medium control. (B) The mean percentages for each population are shown. DPI 1 to
7, 9, 11, and 13 each show results from two outbred and two inbred pigs. DPI 6, 7, 13, 14, 20, and 21 also include results from three additional inbred pigs.
(C, D) Proportions of NP290-298 CD8 T cells in tissues from Babraham pigs. Background staining with SLA matched tetramers containing irrelevant peptide has been
subtracted. Dotted lines indicate proportions of tetramer positive cells in uninfected animals. Data from 2 outbred and 2 inbred pigs is shown for days 1 to 5 and 9
to 11. DPI 6, 7, 13, 14, 20, and 21 show data from 3 additional inbred pigs. Data in C and D is from 2 pigs (DPI 1–5, 9, 11), 3 pigs (DPI 14, 20, 21) or 5 pigs (DPI 6,
7, and 13).
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were in the TBLN (mean 474 SFC/106 cells at 7 DPI), whereas
from 14 to 21 DPI the highest number of IFNg-secreting cells was
detected in the lung, with SFC continuing to expand in this tissue
(mean 368 SFC/106 cells at 14 DPI and 972/106 cells SFC at 21
DPI). The response in the BAL was lower than lung (p=0.04),
due to the low proportion of T cells present in the BAL (Figure
1C). The IFNg ELISpot response in the PBMC was low with a
peak of 296 SFC/106 cells at 13 DPI. No differences in responses
between the same tissues in OB and BM were detected (p > 0.11).

To further dissect the T cell response, we enumerated antigen
specific cytotoxic CD8b T cells against the nuclear protein (NP)
using peptide NP290-298 (DFEREGYSL) tetramer, which we have
previously shown to be dominant in BM animals infected with
H1N1pdm09 (20). Tetramer responses were measured in
experiments BM1, BM2, and BM3 (Supplementary Figure 1B;
Figures 2C, D). NP290-298 responses were detected in BAL and
lung at 6 DPI, reaching a peak at 9 DPI and still present at 20 to
21 DPI. In TBLN one animal responded at 5 DPI, but the peak
was at 9 to 11 DPI and still present at 21 DPI. The responses in
PBMC were low (0.2% at 6 DPI) and there were no detectable
responses at 20 to 21 DPI (Table 2).

Cytokine Production by CD4
and CD8 T Cells
We analyzed production of IFNg, TNF and IL-2 by CD8b and
CD4 T cells by intracellular staining (ICS) (Supplementary
Figure 2A). The kinetics of the CD8 cytotoxic T cell response
was similar when analyzed by ICS, ELISpot and tetramer
binding. There was a minimal response up to 5 - 6 DPI,
followed by a marked increase in cytokine-producing T cells
particularly in the BAL (peak of 7.9% IFNg and 7.6% TNF at 9
DPI) and lung (peak of 1.3% IFNg and 0.6% TNF at 9 DPI). CD8
T-cells produced minimal IL-2 in all tissues except for BAL,
where 0.7% to 1.3% positive cells were detected between 7 and 13
DPI. PBMC had much lower proportion of cytokine producing
CD8 T cells with maximum 0.3% IFNg and 0.2% TNF
production in PBMC at 9 DPI. The high cytokine responses
Frontiers in Immunology | www.frontiersin.org 7
were maintained in BAL and lung until 21 DPI, with lower
responses in the TBLN and none in PBMC (Figure 3).

We next determined the quality of cytokine responses of
CD8b T cells. The CD8b T-cell cytokine response was
dominated by IFNg single producing cells with some IFNg/
TNF double producing cells also present in all tissues (Figure
3A). However, the highest proportion of double IFNg/TNF
producing cells was present in the BAL (Table 2). A triple
secreting IFNg/IL-2/TNF population was detected only in the
BAL and these cells produced greater levels of IFNg per cell as
measured by MFI (Supplementary Figure 2B). The individual
cytokine profiles of the BM and OB were similar during the time
course of H1N1pdm09 infection and shown in Supplementary
Figure 3. We also analyzed the responses in the in-contact
animals from experiments OB1, OB2, BM1, and BM2. These
animals had the same profiles of cytokine production in BAL
(Supplementary Figure 4) and in the other tissues (data not
shown) as directly challenged animals (Table 3).

The CD4 response was lower than the CD8 and developed
earlier at 4 to 5 DPI in some animals (Figure 4). It was greatest in
the BAL and peaked at 9 DPI similarly to CD8 (1.6% IFNg and 2.1%
TNF) and almost disappeared by 21 DPI. The CD4 response was
lower in TBLN, lung and PBMC (Table 2). CD4 cytokine secretion
differed between tissues. Single cytokine-secreting IFNg and TNF
CD4 T cells were dominant in the lung and TBLN respectively,
while in the BAL and PBMC both single IFNg, single TNF and
double IFNg/TNF were present. The individual cytokine profiles of
the BM and OB animals were comparable (Supplementary Figure
3). The in-contacts also showed a similar pattern of cytokine
production except for TNF (Supplementary Figure 4, Table 3).

These results demonstrate that there is a strong antigen specific
CD8 T cell response in the local lung tissues and in particularly in
the BAL. Cytokine production by CD8 was dominated by IFNg
and TNF, but the BAL also had a significant population of IL-2–
producing cells and more double- and triple-producing cells,
compared to TBLN, lung and PBMC. The CD4 T cell response
was also greatest in the BAL, although much lower and declining
TABLE 1 | Antibodies used.

Antigen Clone Isotype Fluorochrome Source of primary Ab Details of secondary Ab

Staining for conventional T cells
CD4 74-12-4 IgG2b PerCP-Cy5.5 BD Biosciences
CD8b PPT23 IgG1 FITC Bio-Rad Laboratories
TNF MAb11 IgG1 BV421 BioLegend
IFNg P2G10 IgG1 APC BD Biosciences
IL-2 A150D 3F1 2H2 IgG2a PE-Cy7 ThermoFisher rat-anti-mouse, IgG2a,

BioLegend
Staining for gd T cells
TCR gd PGBL22A IgG1 PE-Cy7 Cambridge bioscience rat-anti-mouse, IgG1,

BioLegend
CD8a 76-2-11 IgG2a FITC BD Biosciences
CD2 MSA4 IgG2a PerCP-Cy5.5 Cambridge bioscience rat-anti-mouse,

IgG2a,
BioLegend

TNF MAb11 IgG1 BV421 BioLegend
IFNg P2G10 IgG1 APC BD Biosciences
IL-17A SCPL1362 IgG1 PE BD Biosciences
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more rapidly than the CD8 response. The cytokine responses were
similar between the in-contact and directly infected animals,
indicating the similarities between experimental intra-nasal
challenge and natural infection. No differences in magnitude,
kinetic and quality of cytokine responses were observed between
the OB and BM animals.

gd T-Cell Responses During H1N1pdm09
Infection in Pigs
The importance of gd T cells in control of influenza infection has
been demonstrated in mice and humans (37–40). In pigs gd T cells
Frontiers in Immunology | www.frontiersin.org 8
are a prominent population in blood and secondary lymphoid
organs and can produce IFNg, TNF and IL-17A following
polyclonal stimulation (41–43). Porcine gd T cells have been
divided into different subsets based on the expression of CD2
and CD8a (44).

We measured IFNg, TNF and IL-17A production in CD2+ gd T
cells immediately ex vivo and following H1N1pdm09 re-
stimulation. The cytokine production by CD2- gd T cells was
very low (data not shown) and thus we focused on CD2+ gd T cells.
Ex vivo, BAL CD2+ gd T cells, without H1N1pdm09 stimulation,
secreted IFNg and TNF early post infection with the highest
A

B

FIGURE 3 | CD8b T cell cytokine responses. (A) Cytokine response of CD8b T cells in outbred (black boxes) and inbred (red circles) pigs at each time point
following influenza infection. BAL, lung, TBLN or PBMC cells were stimulated with H1N1pdm09 and cytokine secretion measured using intra-cytoplasmic staining.
The mean of the 22 uninfected control animals is represented by a dotted line. DPI 1 to 7, 9, 11, and 13 each show results from 2 outbred and 2 inbred pigs. DPI 6,
7, 13, 14, 20, and 21 also include results from 3 additional inbred pigs. Pie charts show the proportion of single, double and triple cytokine-secreting CD8 T cells for
IFNg, TNF and IL-2 in outbred and inbred pigs at 7, 9, 13, and 21 DPI. (B) The mean percentages for IFNg, TNF, and IL-2 in each tissue for both OB and BM
together are shown over the time course.
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frequency of 0.6% IFNg and 1.6% TNF at 3 DPI. The cells co-
produced IFNg/TNF at low levels (Figure 5). A minimal amount
of IL-17A was detected in BAL and no IFNg, TNF or IL-17 in the
other tissues ex vivo (data not shown).

We also measured cytokine production after H1N1pdm09
stimulation in vitro and the highest proportion of IFNg
producing cells was detected in BAL and lung at 7 DPI and
maintained until 13 DPI (0.4% at 11 DPI for BAL) while in lung
the highest frequency was 0.4% at 7 DPI (Figure 6). TNF showed
similar pattern in BAL: increased at 9 DPI reaching a peak at 11
DPI with a mean of 0.7%. At later stages of infection, the
frequency of cytokine producing cells were much lower. The
majority of the H1N1pdm09 stimulated cells were IFNg/TNF co-
producing (Supplementary Figure 5). The responses in the
contacts (0.5% for IFNg and more than 1% for TNF) were
similar to those in the directly challenged animals following
H1N1pmd09 stimulation (Table 3). The proportion of IL-17A–
Frontiers in Immunology | www.frontiersin.org 9
secreting CD2+ cells was much lower compared to IFNg and
TNF with the greatest response in the BAL at 11 DPI (0.2%).

Overall these data demonstrate that gd T cells produce
cytokines ex vivo early post infection, but that H1N1pdm09 in
vitro stimulation increases cytokine production in CD2+ gd T
cells from 7 to 13 DPI. No difference between OB and BM pigs
were detected of response of ex vivo or stimulated gd T cells.

Antibody and B-Cell Responses During
H1N1pdm09 Infection in Pigs
The antibody response after H1N1pdm09 infection was
determined in serum, BAL and nasal swabs. Virus specific IgG
and IgA were measured by end point titer ELISA against
H1N1pdm09 virus or recombinant HA from H1N1pdm09/A/
England/195/2009 (pH1) (Figures 7A, B). Serum IgG against
H1N1pdm09 virus was detectable at 5 to 6 DPI, reached its peak
at 14 DPI (1:13,650) and was maintained until 21 DPI (1:8,530).
TABLE 2 | Comparison of different populations of T cells from Babraham pigs infected with H1N1pdm09 virus.

% T cells binding to tetramer or/
cytokineproducing

Days Post Infection (DPI)

6 DPI 7DPI 13 DPI

CD8b NP290-298 no significant (P>0.05) differences* BAL†>PBMC (P=0.01)
lung>PBMC (P=0.04)
lung>TBLN (P=0.04)

BAL>lung (P=0.04)
BAL>TBLN (P=0.01)
BAL>PMBC (P=0.01)
lung>PMBC (P=0.01) TBLN>PMBC (P=0.01)

CD8b IFNg BAL>PBMC (P=0.01)
BAL>TBLN (P=0.01)
lung>PBMC (P=0.01)
lung>TBLN (P=0.03)

BAL>PBMC (P=0.01)
BAL>TBLN (P=0.01)
lung>PBMC (P=0.01)
lung>TBLN (P=0.03)

BAL>PBMC (P=0.01)
BAL>TBLN (P=0.01)
lung>PBMC (P=0.01)
lung>TBLN (P=0.03)

IL-2 no significant (P>0.05) differences BAL> lung (P=0.06)
BAL>PBMC (P=0.02)
BAL>BM TBLN (P=0.02)

BAL>lung (P=0.01)
BAL>PBMC (P=0.01)
BAL>TBLN (P=0.01)

TNF BAL>lung (P=0.01)
BAL>PBMC (P=0.01)
BAL>TBLN (P=0.01)
lung>PBMC (P=0.02)

BAL>lung (P=0.02)
BAL>PBMC (P=0.01)
BAL>TBLN (P=0.01)
lung>PBMC (P=0.02)

BAL>lung (P=0.01)
BAL>PBMC (P=0.01)
BAL>TBLN (P=0.01)
lung>PBMC (P=0.02)
lung>TBLN (P=0.06)

CD4 IFNg no significant (P>0.05) differences lung>TBLN (P=0.02)
lung>PBMC (P=0.01)

BAL>PBMC (P=0.06)
lung>PBMC (P=0.06)

IL-2 BAL>PBMC (P=0.01)
lung>PBMC (P=0.03)
TBLN>PBMC (P=0.01)

BAL>PBMC (P=0.01)
lung>PBMC (P=0.01)
TBLN>PBMC (P=0.01)

BAL>PBMC (P=0.01)
lung>PBMC (P=0.01)
TBLN>PBMC (P=0.01)

TNF no significant (P>0.05) differences no significant (P>0.05) differences BAL>PBMC (P=0.06)
TBLN> lung (P=0.06)
TBLN>PBMC (P=0.02)
*P-values based on pairwise Wilcoxon rank-sum tests following a significant (P<0.05) Kruskal-Wallis test.
†BAL, broncho-alveolar lavage; PBMC, peripheral blood mononuclear cell; TBLN, tracheobronchial lymph node.
TABLE 3 | Comparison of T cells in broncho-alveolar lavage from experimentally inoculated (I) and in-contact (C) Babraham (BM) and outbred (OB) pigs infected with
H1N1pdm09 swine influenza virus.

T cells % cells producing

IFNg TNF IL-2 or IL-17a*

CD8b no significant (P>0.05) differences† no significant (P>0.05) differences† no significant (P>0.05) differences†

CD4 no significant (P>0.05) differences† OB, C>BM, C (P=0.03)
OB, C>BM, I (P=0.02)

no significant (P>0.05) differences†

gd ex vivo no significant (P>0.05) differences† no significant (P>0.05) differences† not tested
gd H1N1pdm09 stimulated no significant (P>0.05) differences† no significant (P>0.05) differences† no significant (P>0.05) differences†
February 2
*IL-2 for CD8b and CD4 T cells; IL-17a for gd T cells.
†P-values based on pairwise Wilcoxon rank-sum tests following a significant (P<0.05) Kruskal-Wallis test.
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IgA titers were lower compared to IgG. In contrast in BAL, IgG
and IgA against H1N1pdm09 were present at the same levels.
BAL IgG reached a peak of 1:2,370 at 13 DPI which was
maintained up to 21 DPI. IgG and IgA were also measured in
nasal swabs from experiment BM3 up to 9 DPI. Responses were
detected at 6 DPI reaching a peak of 1:48 and 1:28 respectively by
9 DPI. We measured the ELISA response to pH1, which had a
similar kinetic as the response to H1N1pdm09 virus but with
approximately a log lower titer (Figure 7B). No significant
differences in the upper asymptote, rate of increase in titer or
time of maximum increase were detected for IgG or IgA between
OB and BM, except for serum IgA H1N1 ELISA (upper
asymptote OB 1:2,700 > BM 1:2,100, p=0.05) (Supplementary
Table 1).
Frontiers in Immunology | www.frontiersin.org 10
To assess the breadth and cross-reactivity of the Ab, we tested
the binding of sera from 21 DPI to MDCK cells expressing pH1,
H5 (from A/Vietnam/1203/2004) and HA from PR8 in which,
unlike in ELISA, the natural conformation of HA is maintained.
There was strong binding to the MDCK expressing pH1 and
weaker binding to H5 and HA from PR8 suggesting that
H1N1pdm09 induces cross reactive responses to other group 1
H1 and H5 viruses (Figure 7C).

The function of antibodies in serum and BAL was tested by
microneutralization (MN) assessing inhibition of virus entry,
inhibition of hemagglutination (HAI) and inhibition of
neuraminidase activity by enzyme-linked lectin assay (ELLA)
(Figure 8A). MN was first detected in serum at 5 or 6 DPI
mirroring Ab production in the tissues, increasing to 1:140 at 11
A

B

FIGURE 4 | CD4 T cell cytokine responses. (A) Cytokine response of CD4 T cells in outbred (black boxes) and inbred (red circles) pigs at each time point following
influenza infection. BAL, lung, TBLN or PBMC cells were stimulated with H1N1pdm09 and cytokine secretion measured using intra-cytoplasmic staining. The mean
of the 22 uninfected control animals is represented by a dotted line. DPI 1 to 7, 9, 11, and 13 each show results from 2 outbred and 2 inbred pigs. DPI 6, 7, 13, 14,
20, and 21 also include results from 3 additional inbred pigs. Pie charts show the proportion of single, double and triple cytokine-secreting CD4 T cells for IFNg, TNF
and IL-2 in outbred and inbred pigs at 7, 9, 13, and 21 DPI. (B) The mean percentages for IFNg, TNF, and IL-2 in each tissue for OB and BM together are shown
over the time course.
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DPI at and 1:480 at 21 DPI. HAI and ELLA followed a similar
pattern reaching 1:746 HAI or 1:160 ELLA at 21 DPI. BAL
showed much lower MN, HAI and ELLA responses compared to
serum. MN and ELLA titers in BAL peaked at 13 DPI and were
maintained until 20 DPI. HAI reached a peak at 11 DPI and was
undetectable at DPI 21. No significant differences in MN, HAI
and ELLA in the upper asymptote, rate of increase in titer or time
of maximum increase between OB and BM animals were
detected (Supplementary Table 1).

To determine the major sites of Ab production following
H1N1pdm09 infection BAL, lung, TBLN, spleen and PBMC
from experiment BM3 were tested for total IgG and HA-specific
Ab-secreting cells (ASC) (Figure 8B). IgG producing cells were
detected in all tissues with a trend for increasing numbers over
time up to 21 DPI. TBLN showed the highest frequency of HA
specific ASC reaching 200 ASC/106 cells at 20/21 DPI. Lung
demonstrated a similar pattern but with 18 ASC/106cells at 20/
21 DPI.

In summary a strong Ab response was detected in serum,
which was dominated by IgG, while in BAL the ELISA titers of
IgG and IgA were comparable. Antibodies cross reacted with HA
from H1 and H5 viruses. Microneutralization, HAI and ELLA
titers were much higher in serum than BAL. HA specific ASC
were detected in TBLN and lung. No differences were observed in
the Ab responses between OB and BM animals.

All raw data in numerical formal is included as Supplementary
File 8 with tabs corresponding to each figure.
DISCUSSION

In this study we investigated the kinetic and magnitude of T cell
and Ab responses in respiratory tissues and blood in outbred
Landrace x Hampshire cross and inbred Babraham pigs
following H1N1pdm09 infection. The relationship between
these parameters and the virus load is illustrated in Figure 9.
After experimental infection with H1N1pdm09 virus shedding
plateaued between 1 and 4 to 5 DPI, followed by a steep decline
so that by 9 DPI no virus could be detected in any animal. An ex
Frontiers in Immunology | www.frontiersin.org 11
vivo gd T cell IFNg and TNF response was apparent from 2 DPI,
although this declined by 7 DPI. In contrast, virus reactive IFNg
producing gd T cells were detected at 7 DPI and maintained to 13
DPI. Significant virus specific CD4 and CD8 T cell response were
present at 6 DPI. Similarly, virus-specific IgG and IgA were
detected in serum and BAL at 5 - 6 DPI by which time the viral
load had declined by 2 to 3 logs. By the time of the peak of the T
cell and Ab responses (9–14 DPI), no virus was detectable. These
kinetics suggest that innate mechanisms, including perhaps early
gd T cell cytokine secretion, contain viral replication at a plateau
level in the first 4 to 5 days post infection, while adaptive T and
Ab responses contribute to the complete clearance of virus after 5
DPI in primary infection and prevent future infections by a more
rapid secondary immune response.

Similar kinetics of adaptive T cell responses have been
reported in mice, with antigen specific cells detected as early 4
to 5 days post infection, increasing in number between 5 and 12
DPI in lung tissues (45, 46). Experiments in mice have shown
that depletion of B or CD8 T cells results in delayed clearance of
IAV (47–50). CD4 T cells also contribute to control of influenza
infection, although depletion of this cell subset alone only slightly
delayed viral clearance (51–53). The strong CD8 and Ab
responses detected in the present study suggest that these cell
types are also important for viral clearance in pigs. This could be
confirmed by depletions studies or cell transfer in inbred
Babraham pigs.

Few studies have analyzed in depth the conventional T cell
response in pigs. The most comprehensive study showed a low
frequency of virus specific IFNg producing CD4 and CD8 in the
lung as early as 4 DPI after H1N2 intratracheal challenge, reaching
a peak at 9 DPI, with the highest response in lung compared to
TBLN or PBMC (25). Here, for the first time, we have analyzed the
cytokine responses in BAL as well as lung interstitial tissues, which
showed a similar kinetic. However, the response in the BAL was
much stronger in terms of frequency of cytokine producing T cells.
The BAL T cells produced multiple cytokines and more per cell,
indicating that they may be most efficient in clearing the virus.
Cytokine production differed between CD8 and CD4 T cells and
between BAL, lung, and TBLN, perhaps reflecting the extensive
FIGURE 5 | gd T cell ex vivo responses in BAL. Cytokine response of gd T cells in outbred (black boxes) and inbred (red circles) pigs at each time point following
H1N1pdm09 infection. IFNg and TNF production in BAL cells ex vivo without stimulation was measured using intra-cytoplasmic staining. The right hand panel shows
the IFNg/TNF double producing cells. The mean of the 22 uninfected control animals is represented by a dotted line. DPI 1 to 7, 9, 11, and 13 each show results
from 2 outbred and 2 inbred pigs. DPI 6, 7, 13, 14, 20, and 21 also include results from 3 additional inbred pigs.
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tissue compartmentalization in the respiratory tract and
differential localization of CD4 and CD8 T cells (54). Whether
specialized CD4 and CD8 T cells are compartmentalized due to
the migration of different subsets to specific sites, as has been
proposed in mice, or because tissue environments alter cytokine
production remains to be established (55).

An important difference between the present study and
Talker et al. is that they used the more pathogenic swine
H1N2 virus, which was delivered in a large volume and high
dose (15 ml of 107 TCID50/ml) intratracheally (25). This might
explain the stronger and more prolonged lung, TBLN and PBMC
responses they observed. The pigs in the present study were
infected intranasally with a MAD and the response here was
similar to the in-contact animals, suggesting that this method is
Frontiers in Immunology | www.frontiersin.org 12
more similar to natural infection. Furthermore our scintigraphy
study also indicates that this method of challenge targets both the
upper and lower respiratory tract (56).

We detected a 27 times lower proportion of CD8 antigen-
specific T cells in the blood compared to BAL. Similarly, antigen-
specific CD8 T cells responses were much higher in the BAL of
patients with H1N1pdm09 compared to blood (57). This
indicates that sampling blood is not reflective of the true
response in the lung and local tissues, which has implications
for the design and analysis of clinical trials for T cell targeted
vaccines. In contrast, CD4 responses were more similar in
magnitude in blood and BAL, although less long lived than CD8.

In pigs, gd T cells comprise up to 50% of lymphocytes in the
blood (particularly in young animals) in contrast to humans
B

A

FIGURE 6 | gd T cell responses after H1N1pdm09 stimulation. (A) Frequencies of IFNg, TNF, and IL-17A–producing CD2+ gd T cells in outbred (black boxes) and
inbred (red circles) pigs following influenza infection. BAL, lung, TBLN and PBMC were stimulated with H1N1pdm09 and cytokine secretion measured using intra-
cytoplasmic staining. The mean of the 22 uninfected control animals is represented by a dotted line. DPI 1 to 7, 9, 11, and 13 each show results from 2 outbred and
2 inbred pigs. DPI 6, 7, 13, 14, 20, and 21 also include results from 3 additional inbred pigs. (B) Mean percentages for IFNg and TNF in each tissue are shown over
the time course.
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where they usually represent 1% to 5% of lymphocytes (27, 58).
The effect that this difference in the frequency of gd T cells has in
lung homeostasis and influenza immunity remains incompletely
explored and must be considered when the pig is used as a model
for human influenza. gd T cell have previously been reported to
increase late after IAV infection in mice, although an early
increase in gd T cells in mice and pigs has also been reported
(26, 37, 38). Human gd T cells can expand in a TCR-independent
manner in response to IAV, and the human Vg9Vd2 T cell subset
Frontiers in Immunology | www.frontiersin.org 13
kills IAV-infected A549 airway cells (39). Although we did not
observe a significant increase in gd T cells after H1N1pdm09
infection, we showed that gd T cells produce IFNg and TNF as
early as day 2 post infection ex vivo, in agreement with studies in
mice (40). gd T cells are a major source for IL-17 production,
which has been shown to play a role in IAV infection, but we
detected only low levels of IL-17A after H1N1pdm09 stimulation
of BAL cells (37, 59, 60). Surprisingly, we demonstrated that in
vitro stimulation with H1N1pdm09 induces IFNg and TNF
A

B

C

FIGURE 7 | Ab ELISA responses and binding to MDCK-HA expressing cells. Influenza H1N1pdm09 virus specific IgA and IgG (A) and hemagglutinin (pHA) specific
(B) responses in serum, BAL and nasal swabs (NS) were determined by ELISA and shown as black boxes (for OB) and red circles (for BM). NS were analyzed in
BM3 only. (C) Binding of serum at 21 DPI to MDCK-pH1, MDCK-H1 PR8, and MDCK-H5 expressing cells.
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production in CD2+ gd T cells from 7 to 13 DPI. This is
reminiscent of an adaptive T cell response. Recombinant
hemagglutinin from H5N1 has been previously demonstrated
to activate human PBMC gd T cells in vitro and this was not
mediated by TCR or pattern recognition receptors (61). Further
studies will elucidate the mechanisms of cytokine induction and
whether it is TCR dependent.

H1N1pdm09 infection was characterized by high IgG and
IgA titers in serum and BAL, and a detectable antibody titer in
nasal swabs. The IgG titer was higher than IgA in serum, while
similar levels of IgA and IgG were detected in BAL and nasal
Frontiers in Immunology | www.frontiersin.org 14
swabs, suggesting local production of this isotype or more
efficient translocation. Neutralization, HAI and neuraminidase
inhibition titers peaked at 11 - 21 DPI. Our findings are in
agreement with previous studies showing that in experimentally
H1N1 infected pigs HA-specific antibodies peaked at 2 to 3
weeks (23). Similarly we detected HA-specific antibody-secreting
cells in the local TBLN and lung tissues, but not PBMC (23).
However, it might be that antibody-secreting cells are largely lost
in these liquid nitrogen frozen and thawed samples.

Despite centuries of agricultural selective breeding, the pig
has maintained a significant level of SLA genetic diversity, with
A

B

FIGURE 8 | Ab function and antibody-secreting cells in tissues. (A) The mean neutralization (MN), hemagglutination inhibition (HAI) and ELLA titers in serum and
BAL over time are shown as red circles (BM) and black boxes (OB). (B) IgG and pHA specific spot forming cells (SFC) were enumerated in blood of animals from
experiment BM3 at the indicated time points in TBLN, lung, spleen, BAL and PBMC.
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227 class I and 211 class II alleles identified for Sus scrofa in the
Immuno‐Polymorphism Database (IPD) MHC database to date,
making analysis of the fine specificity of immune responses
extremely difficult (62). The inbred Babraham line of pigs, on
the other hand, is SLA homozygous for class I SLA‐1*14:02; SLA‐
2*11:04 and SLA‐3*04:03 and class II DRB1-*05:01, DQA-
*01:03, and DQB1-*08:01 (19). This homozygosity enabled the
use of peptide-SLA tetramers to the dominant NP antigen to
track the CD8 response in tissues in this study (20). The ab, gd T
cell and Ab responses in the OB and BM animals were
comparable, although there was lower proportion of CD8 T
cells and higher proportion of gd T cells in the BM pigs. This may
be due to a genetic difference, although it may also be a result of
different housing conditions, since the Babraham pigs are
maintained under specific pathogen-free conditions, whereas
the outbred pigs were obtained from a commercial breeder.

Our detailed analysis of immune responses in pigs showed that
the viral load is contained in the period before the adaptive
response is detectable, indicating the importance of innate
immune mechanisms in influenza infection. As in other species
however it appears that the adaptive response is essential for
elimination of virus. BAL contains the most highly activated CD8,
CD4, and gd T cells producing large amounts of cytokines, which
likely contribute to clearance of virus. We further show clear
differences between the function of CD4, CD8, and gd T cells
between the lung, BAL and TBLN, while the blood is a poor
representation of the local immune response. Although some
differences were observed in the proportion of CD8 and gd T
cells in naïve outbred and Babraham pigs, we did not detect any
differences in their immune response to H1N1pdm09 infection.
Frontiers in Immunology | www.frontiersin.org 15
The availability of fine grain immunologic tools in Babraham pigs
will allow the unraveling of immune mechanisms and confirm and
extend findings in outbred populations.
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