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The muscle myopathy wooden breast (WB) has recently appeared in broiler production
and has a negative impact on meat quality. WB is described as hard/firm consistency
found within the pectoralis major (PM). In the present study, we use machine learning
from our PM and liver transcriptome dataset to capture the complex relationships that
are not typically revealed by traditional statistical methods. Gene expression data was
evaluated between the PM and liver of birds with WB and those that were normal. Two
separate machine learning algorithms were performed to analyze the data set including
the sequential minimal optimization (SMO) of support vector machines (SVMs) and
Multilayer Perceptron (MLP) Artificial Neural Network (ANN). Machine learning algorithms
were compared to identify genes within a gene expression data set of approximately
16,000 genes for both liver and PM, which can be correctly classified from birds with
or without WB. The performance of both machine learning algorithms SMO and MLP
was determined using percent correct classification during the cross-validations. By
evaluating the WB transcriptome datasets by 5× cross-validation using ANNs, the
expression of nine genes ranked based on Shannon Entropy (Information Gain) from PM
were able to correctly classify if the individual bird was normal or exhibited WB 100%
of the time. These top nine genes were all protein coding and potential biomarkers.
When PM gene expression data were evaluated between normal birds and those with
WB using SVMs they were correctly classified 95% of the time using 450 of the top
genes sorted ranked based on Shannon Entropy (Information Gain) as a preprocessing
step. When evaluating the 450 attributes that were 95% correctly classified using SVMs
through Ingenuity Pathway Analysis (IPA) there was an overlap in top genes identified
through MLP. This analysis allowed the identification of critical transcriptional responses
for the first time in both liver and muscle during the onset of WB. The information
provided has revealed many molecules and pathways making up a complex molecular
mechanism involved with the progression of wooden breast and suggests that the
etiology of the myopathy is not limited to activity in the muscle alone, but is an altered
systemic pathology.

Keywords: wooden breast, machine learning, poultry transcriptomics, support vector machines, artificial neural
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INTRODUCTION

The occurrence of wooden breast (WB) in commercial poultry
production is rising, leaving producers with an inferior product
and, ultimately, unsatisfied consumers (Mudalal et al., 2014;
Petracci et al., 2015). Much of the incidence is thought to be
attributed to artificial selection that has led to the development
of broilers with greater muscle yield, better feed conversion rates,
and faster growth. Frequent detection of muscle myopathies has
been thought to be associated with increased growth rates and
breast muscle yields (Sihvo et al., 2014; Trocino et al., 2015;
Kuttappan et al., 2016; Abasht et al., 2019). WB is described as
a hard or firm consistency deep within the pectoralis major (PM)
muscle (Sihvo et al., 2014). Alterations of the meat composition
have been observed including increased moisture, collagen,
sodium, calcium and fat content (Zambonelli et al., 2014). When
compared to PM without the myopathy, the PM meat quality
with WB is lower due to greater cooking losses and greater shear
force when compared to PM without the myopathy (Zambonelli
et al., 2014; Trocino et al., 2015). Consequently, the meat texture
of the breast is tougher and less desirable to the consumer.
Extensive histological evaluation of WB has been characterized
by necrosis, chronic fibrosis, infiltration of fat and connective
tissue, and the presence of inflammatory cells and macrophages
(Sihvo et al., 2014; Trocino et al., 2015; Kuttappan et al., 2016;
Papah et al., 2017).

The severity of WB is often categorized on a scale ranging from
0 to 3 (0, normal; 1, mild; 2, moderate; 3, severe) (Trocino et al.,
2015). WB lesions can be detected through manual palpation of
the PM as early as 3 weeks of age (Mutryn et al., 2015). Research
covering muscle myopathies in broilers reveals that myopathies
have increased in recent years and have been correlated with the
selection of larger breast muscle (Petracci et al., 2015). The cause
of WB is currently unknown, but it is more prevalent in older,
heavier male broilers than young birds (Kuttappan et al., 2017;
Brothers et al., 2019). Larger breast muscle has been associated
with hypertrophied muscle fibers which is thought to impact
blood supply and number of satellite cells that are needed in
muscle regeneration (Daughtry et al., 2017; Malila et al., 2019).

The increase in prevalence and severity of WB has the
potential to result in excessive economic loses. It has been
projected that these losses could exceed more than $200 million
USD/yr (Kuttappan et al., 2016). Often, the PM muscle of birds
with WB can appear pale, bulging, and covered in a clear viscous
fluid (Sihvo et al., 2014). Considering consumers frequently
purchase chicken breasts based on visual appearance of the meat,
this unpleasant appearance will undoubtedly have a negative
impact on sales (Petracci et al., 2015). Even if WB is undetectable
by the outward appearance prior to purchase, the hardness of the
inner muscle will become evident once the meat is handled or
consumed. Ultimately, this is bad for the consumer, the company,
and poultry production as a whole by breaking consumer trust
and potentially initiating the desire for an alternative product.

Currently, researchers are investigating the nutritional,
physiological, and genetic factors that surround this myopathy
through the use of many common techniques that span from the
inclusion of feed additives to molecular approaches using gene

expression analysis and histology (Velleman and Clark, 2015;
Kuttappan et al., 2016; Papah et al., 2018; Petracci et al., 2019).
In the present study, we use machine learning analysis of PM and
liver transcriptome datasets to capture the complex relationships
that are not typically revealed by traditional statistical methods.
This was achieved through the use of algorithms to identify genes
within an extensive RNA sequencing dataset whose expression
can be used to correctly distinguish normal tissue apart from
severe/moderate WB. Previous gene expression datasets have
characterized many molecular relationships present in birds with
WB (Mutryn et al., 2015; Papah et al., 2018; Brothers et al.,
2019). This study uses a different mechanism to evaluate gene
expression data in the hopes for a more concise evaluation of
the WB myopathy.

MATERIALS AND METHODS

Facilities and Rearing
This experiment was conducted at the North Carolina State
University Chicken Education Unit between the months of
March and April, 2019. All procedures used in this study were
reviewed and approved by the Institutional Animal Care and
Use Committee. Eggs were collected from a resident 25-week-
old broiler breeder flock of known, similar genetic background
and stored for no more than 7 days at 15◦C. Incubation
was performed based on the methods described by Livingston
(Livingston et al., 2018a). Day of hatch chicks were sex-sorted
and a total of 128 male chicks were individually neck tagged and
placed into eight replicate pens (1.2 m × 4.0 m; 4.8 m2) with
16 chicks per pen (blocked by location within the house). Each
pen was supplied with one bell water drinker, two tube feeders,
and bedded with fresh pine shavings (15 cm deep). Broilers
were provided ad libitum access to a common commercial
starter diet (1–14 days) and a common grower diet (14–45 days)
manufactured at the NC State University Feed Mill (Table 1).
Eight broilers from each pen, for a total of 64, were selected (based
on experiment-wise mean BW) for processing at 45 days. Birds
were evaluated for WB and samples of PM and liver tissue were
collected for analysis of gene expression and stored at −80◦C.
PM tissue was sampled from the deep medial region of the
birds left breast and liver tissue was sampled from caudal region
of the left lobe.

Processing
At 45 days, selected broilers were collected and transported
to the North Carolina State University Chicken Education
Unit’s broiler processing facility followed by shackling and
stunning in a salt saturated saline head stun cabinet. Birds
were head stunned with a 110v/60hz CF2000 poultry stun
knife set to 150 mA for 10 s. Broilers were exsanguinated
for 120 s by opening of the jugular vein and carotid artery
with a single knife cut by a trained technician followed by
scalding in hot water (60◦C) for 120 s. This was followed by
feather picking for 30 s (Meyn Food Processing Technology
B.V., Westeinde Amsterdam, Netherlands). Head and feet were
removed, vent opened (VC Poultry Vent Cutter, Jarvis Product
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TABLE 1 | Composition of basal starter and grower diets1.

Ingredients Starter Grower

Corn 55.22 57.45

Soybean meal (48% CP) 36.9 31.87

Poultry fat 2.36 5

Dicalcium phosphate (18.5% P) 2.02 2.39

Glycine 1.25 1.25

Limestone 0.77 0.6

Salt 0.5 0.5

DL-Methionine 0.28 0.24

Choline chloride (60%) 0.2 0.2

L-Threonine 0.1 0.09

L-Lysine 0.05 0.07

Selenium premix2 0.05 0.05

Vitamin premix3 0.05 0.05

Mineral premix4 0.2 0.2

Coccidiostat5 0.05 0.05

Total 100 100
Calculated nutrient content

Crude protein 22.5 20.2

Calcium 0.9 0.9

Available phosphorus 0.45 0.5

Potassium 0.89 0.82

Total lysine 1.27 1.14

Total methionine 0.62 0.55

Total threonine 0.85 0.76

Total methionine + cysteine 0.97 0.87

Sodium 0.21 0.2

Metabolizable energy (kcal/g) 2.85 3.03

1Starter diet was fed to approximately 14 days of age, 1820 g per bird. 2Selenium
premix provided 0.2 mg Se (as Na2SeO3) per kg of diet. 3Vitamin premix supplied
the following per kg of diet: 13,200 IU vitamin A, 4,000 IU vitamin D3, 33 IU vitamin
E, 0.02 mg vitamin B12, 0.13 mg biotin, 2 mg menadione (K3), 2 mg thiamine,
6.6 mg riboflavin, 11 mg d-pantothenic acid, 4 mg vitamin B6, 55 mg niacin, and
1.1 mg folic acid. 4Mineral premix supplied the following per kg of diet: manganese,
120 mg; zinc, 120 mg; iron, 80 mg; copper, 10 mg; iodine, 2.5 mg; and cobalt,
1 mg. 5Coccidiostat supplied monensin sodium at 90 mg/kg of food.

Corp., Middleton, CT, United States), and viscera and giblets
removed manually. Liver and PM tissue were removed and
snap frozen on liquid nitrogen for RNA sequencing analysis.
Hot carcass weights (HCW) were collected prior to carcasses
being air chilled at 3.0◦C for approximately 24 h. At 24 h
postmortem examination of the PM muscle was evaluated after
breast muscle was removed from carcass and bones by a trained
and experienced technician for WB using a one to four-point
ordinal scale of measurement in accordance with the methods
described previously by Livingston with a score of one being
normal and four being most severe (Livingston et al., 2018b).

RNA Sequencing Analysis
Pectoralis major and liver tissue samples from 45 d broilers with
varying severities of WB scores were obtained and preserved
in RNALater. RNA extracted from the PM of 15 birds with
moderate to severe WB was compared to RNA extracted from five
normal PM. For liver RNA evaluation, 10 samples from birds with
moderate to severe WB and five livers from birds with normal

PM were used. RNA was extracted from the tissues using Qiagen
RNeasy Mini protocol (Qiagen, Valencia, CA, United States)
following the manufacturer’s instructions. The RNA quality
was assessed by Nanodrop 2000 spectrophotometer (Thermo,
United States). Two micrograms of RNA from each sample
were taken to the North Carolina State University Genomics
Sciences Laboratory for library preparation and sequencing
on the Illumina HiSeq 2500 sequencer. RNA sequencing was
analyzed using CLC Genomics Workbench (Qiagen, Valencia,
CA, United States; licensed to NCSU) version 11 following
the software manual1. RNA sequencing reads and annotations
were mapped to the chicken genome (galgal5) from NCBI.
Raw reads were processed by the default settings of reads’
quality control and adapter trimming. The false discovery rate
p-value (FDRp) was calculated to correct for multiple testings’
and an FDR adjusted p ≤ 0.05 was considered statistically
significant. Fold change and Log2 fold change differences in gene
expression between WB scores moderate to severe and normal
were also calculated.

Machine Learning Analysis
Gene expression data were analyzed from the PM and liver using
the Waikato Environment for Knowledge Analysis (WEKA)
version 3.8.3. Two different pattern recognition machine learning
algorithms were performed to analyze the data set: sequential
minimal optimization support vector machines (SVMs) and
artificial neural network multilayer perceptron (MLP) (Cortes
and Vapnik, 1995; Eibe et al., 2016). The machine learning
algorithms were compared to identify gene expression patterns
within the data set of 15,569 genes, which could be used
to correctly classify birds as either exhibiting moderate to
severe WB or normal (dichotomous class assignment). Briefly,
the 15,569 genes from the gene expression dataset were
ranked based on Shannon Entropy (Information Gain) in
dichotomous classification assignment by SVMs (Keerthi et al.,
2001; Eibe et al., 2016). Information gain ranking was then
used to identify those gene expression patterns most relevant
to assignment of each bird as having WB or normal by either
MLP or SVMs. Reduction of data dimensionality for each
machine learning algorithm was then performed by sequential
exclusion of those gene expression patterns least relevant
to the class assignment (50–2,000 per sequence). This step
eliminates overfitting of the machine learning classifiers. To
identify the minimum number of gene expression patterns
required for classification, 1–50 genes were sequentially excluded
from the dataset until only the top 2–7 remained. This step
identifies underfitting of the machine learning classifiers and
the point of optimal classification for the MLP and SVMs was
determined to be the intersection between the underfitting and
overfitting curve plots.

Class assignment of all machine learning algorithms
was evaluated vis-à-vis by two cross-validation strategies
(classification as either WB or normal). The first being a
percentage split, where 66% of the total data were randomly

1http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/
current/User_Manual.pdf
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used for training and the remaining 34% of the data were used
in testing. The second cross-validation was a stratified hold-out
(n-fold) method with 5-fold, where 4-fold of the randomized
gene expression data were used for the training and 1-fold
was used for testing. This was repeated five times, such that all
normal replicate samples were used at least once in testing and
the average model performance was recorded.

The performance of the two machine learning algorithms
SVMs and MLP was determined using percent correct
classification during the cross-validations, which indicated
the likelihood that each individual biological replicate could
accurately be assigned into the classes of WB or normal based on
the gene expression data provided. Kappa statistic and ROC score
also were recorded. Any kappa statistic greater than 0 indicated
that the machine learning classifier is performing better than
random chance along with a ROC score of greater than 0.500.
The random probability of chance for dichotomous assignment
was assumed to be 50% based on the Law of Probability.

A negative control of machine learning was created through
10 separate randomizations of the individual birds within the
dataset. The SVMs and MLP were unable to predict WB or
normal, indicating the machine learning herein is true.

Pathway Analysis
Ingenuity Pathway Analysis (IPA; Qiagen, Valencia, CA,
United States)2 software was used for canonical pathway analysis,
upstream regulatory analysis, and gene network discovery. SVM
analysis of the top 450 performing differentially expressed genes
from the PM of birds with moderate/severe to normal WB
were used in IPA and the top 150 were used from the liver
dataset. IPA calculation of z-scores using the gene expression fold
change values measures the state of activation or inhibition of the
molecules involved in the molecular networks. The analysis of
biological mechanisms occurring in the differentially expressed
genes of the chicken in IPA are based on mammalian systems for
human, rat, and mouse.

RESULTS

Multilayer Perceptron
By using the novel approach of evaluating the WB PM
transcriptome dataset by 5-fold cross-validation using MLP, the
expression of nine genes (NUP43, KPNA7, DEAF1, NUD19,
CCDC85A, SLC25A30, ENSGAL00000015075, PACSIN3, and
RPL19) were able to correctly classify if the PM tissue from
an individual bird was normal or exhibited WB in 100% of
the individual genomes when using the top nine genes ranked
based on Shannon Entropy (Information Gain) (Figure 1).
MLP is an artificial neural network, which can distinguish data
that are not linearly separable, but instead is a feed forward
mechanism that maps a dataset into suitable outputs. The top
nine genes in the PM were further analyzed for their individual
biological roles (Table 2). When the liver transcriptome dataset
was evaluated by 66% split using MLP, the expression of

2http://www.ingenuity.com

75 genes were capable of correctly classifying the PM tissue
of an individual bird as exhibiting WB or normal in 100%
of the individual genomes (Figure 2). The kappa statistic
and ROC score were optimal at 1 for both PM and liver.
The individual expression of transcripts CARD19 and ITCH
predicted WB or normal using MLP 5-fold cross validation
93.333% of the time whereas BUD13 and ENSGALG00000039590
individually predicted WB or normal 100% of the time using 66%
split (Table 3).

Sequential Minimal Optimization
When the PM gene expression data set was evaluated between
birds with WB and those that were normal using WEKA SMO
function of SVMs by a 5-fold cross-validation method they were
correctly classified 95% of the time using 450 of the top genes
ranked based on Shannon Entropy (Information Gain) as a
preprocessing step (Figure 3). The kappa statistic and ROC score
were optimal at 0.8571 and 0.9000, consecutively. The liver gene
expression data set was evaluated using the SMO function of
SVMs by both a 5-fold cross-validation method and the 66%
split method was capable of predicting WB or normal 100%
of the time with 100 to 200 of the top genes ranked based on
Shannon Entropy (Information Gain) (Figure 4). Optimal kappa
statistic and ROC scores of 1 were achieved for both methods. In
both machine learning algorithms, the stratified hold-out method
appeared to accurately estimate the machine learning classifier
correctly more often than the percentage split method.

Ingenuity Pathway Analysis
Lastly, Ingenuity Pathway Analysis (IPA) was used to evaluate the
top 450 genes ranked based on Shannon Entropy (Information
Gain) from the PM transcriptome using SMO and 150 of the
top genes ranked based on Shannon Entropy (Information Gain)
for the liver transcriptome using SMO. Interestingly, many of
the top analysis ready molecules detected in IPA were the
same molecules detected using the completely separate machine
learning approach of MLP. The repeatability in identification
of these genes leads to greater confidence in the role they are
having in the WB myopathy. These included BUD13 from the

FIGURE 1 | WB PM transcriptome dataset by 5x cross-validation and 66%
percent split using Multilayer Perceptron (MLP).
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TABLE 2 | Top nine regulators of differential expressed genes in the PM of birds with normal PM compared to severe/moderate WB by 5-fold cross-validation with 100%
correct classification and percent split with 85.71% correct classification using MLP.

Gene Gene type Short description Log-fold change P-value

NUP43 Protein Coding Forms Nuclear Pore Complex (NPC) 0.2005 0.4900

KPNA7 Protein Coding Forms Nuclear Pore Complex (NPC) −3.4539 2.62E-06

DEAF1 Protein Coding Zinc Finger Domain Transcription Regulator; Inhibits Cell Proliferation 0.3406 0.2972

NUDT19 Protein Coding Enzyme involved in Peroxisomal Lipid Metabolism 0.9608 1.28E-04

CCDC85A Protein Coding Unknown 2.0774 0.0009

SLC25A30 Protein Coding Renal Mitochondrial Carrier 0.1223 0.9574

ENSGALG00000015075 Protein Coding Beta-1,3-glucuronyltransferase 1 −0.3370 0.5767

PACSIN3 Protein Coding Links Actin Cytoskeleton with Vesicle Formation −0.9920 1.58E-04

RPL19 Protein Coding Ribosomal Protein Component of the 60S Subunit −0.8323 0.0066

FIGURE 2 | WB Liver transcriptome dataset by 5x cross-validation and 66%
percent split using Multilayer Perceptron (MLP).

liver transcriptome dataset and CCDC85A and KPNA7 from the
PM dataset (Tables 2, 3).

The top associated network function in IPA for the PM
transcriptome dataset was for RNA Damage and Repair, Protein
Synthesis. This pathway involves RPL19 which is a component
of the 60S ribosomal subunit detected through MLP of WEKA
(Figure 5). When evaluating the liver transcriptome dataset three
top network associations identified were Skeletal and Muscular

System Development and Function, Developmental Disorder,
Hereditary Disorder (Figure 6), Connective Tissue Disorders,
Hematological Disease, Hereditary Disorder (Figure 7), and Cell
Cycle, Embryonic Development, Cellular Movement (Figure 8).
Figure 6 depicts CARD19 which was also detected using MLP
of WEKA. This network is an association of the relationship
this group of molecules has in association with the skeletal and
muscular system development and function. Figure 8 represents
molecules in the cell cycle such as TGF-β, MAP2K1/2, and
calcineurin proteins which are important in skeletal muscle
myoblast regulation and differentiation.

When comparing the performance of the top ranked genes
between MLP and SVM, many genes were identified as top
performing in both ML models. In the PM data set, evaluation
of the top nine molecules with increased expression, KPNA7 was
observed in both MLP (100% classification) and the top analysis
ready molecules in IPA from the best performing data set using
SVM (Table 2). RPL19 was observed as a top regulator in MLP
with the ability to correctly classify WB or normal 100% of the
time and was an affected molecule in the IPA analysis of the top
associated network (Figure 5). In the same data set CCDC85A
was observed as a molecule with decreased expression in both ML
models and able to correctly classify WB 100% of the time using
MLP (Table 2).

Assessing the liver dataset there were many overlaps
using the two ML models. BUD13 was a top regulator in

TABLE 3 | Top regulators of differential expressed genes in the liver of birds with normal PM compared to severe/moderate WB tissues using MLP.

Gene and Validation Method Gene Type Short Description Log-fold change P-value

CARD19
Stratified hold-out (93.333%)

Protein Coding Caspase Recruitment Domain Family
Member 19; Negative Regulation of
IKKß/NFKB Cascade; Regulation of
Apoptosis

−2.5547 0.2831

ITCH
Stratified hold-out (93.333%)

Protein Coding Related pathways are signaling by
Sonic Hedgehog and TNF signaling
pathway. Plays a role in erythroid and
lymphoid cell differentiation and
regulation of immune responses.

−1.2210 0.7238

BUD13
Percent split (100%)

Protein Coding Component of the active spliceosome
involved in pre-mRNA splicing

1.2022 0.6601

ENSGALG00000039590
Stratified Hold-Out (93.333%) and Percent Split (100%)

Protein Coding Unknown −2.0511 0.1209
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FIGURE 3 | WB PM transcriptome dataset by 5x cross-validation and 66%
percent split using Sequential Minimal Optimization (SMO).

FIGURE 4 | WB Liver transcriptome dataset by 5x cross-validation and 66%
percent split using Sequential Minimal Optimization (SMO).

MLP and a top analysis ready molecule with increased
expression in IPA (Table 3). The associated network related
to skeletal and muscular system development and function
from IPA had CARD19 as a downregulated molecule in
IPA and a top regulator in MLP that was able to predict
WB or normal 93.33% of the time (Figure 6). Lastly,
the IPA network associated with cell cycle, embryonic
development, and cellular movement included the down
regulation of the ITCH molecule which was also detected
in MLP as being able to correctly classify 93.33% of the
time (Figure 8).

DISCUSSION

Prior systematic studies of the abnormal muscle phenotype
referred to as wooden breast using gene expression
measurements has identified multiple processes that may
contribute to the development of the myopathy. Processes
including muscle fiber regeneration, inflammatory response,
myodegeneration, hypoxia, fibrosis, lipidosis, and altered
energy metabolism are likely involved in the manifestation of
wooden breast (Mutryn et al., 2015; Zambonelli et al., 2016;

Papah et al., 2018; Malila et al., 2019; Petracci et al., 2019).
This study attempts to connect organismal level physiology
and metabolism with the activity in the breast muscle by
including the evaluation of liver gene expression by a novel
analysis method.

Machine Learning Approach
Traditional statistics is not well designed to handle datasets
which have more variables than observations therefore this is
an alternative method to analyze and make interpretations of
datasets. Using the traditional statistical approach on this dataset
resulted in almost 1000 genes being identified as differentially
expressed (FDR corrected p < 0.05) across the etiology of WB
in the PM and only one gene in the liver. This large number
of targets (or too few) when subjected to pathway analysis in
IPA results in more pathways (or none) than can be interpreted,
therefore an alternative approach was warranted. The use of
machine learning on the transcriptome datasets allows for the
recognition of consistent patterns or systematic relationships
within the datasets and therefore can be used to make predictions.
Through this process, the machine learns by building a model
from example inputs and then makes predictions on new data
by the learned pattern recognition. This is the first report using
machine learning to identify gene expression patterns associated
with WB in muscle as well as peripheral tissues that may be
influencing the myopathy development.

PM Fibrosis
Evaluating the top nine genes ranked based on Shannon Entropy
(Information Gain), all the genes are protein coding genes
(Table 2). The top two genes NUP43 and KPNA7 are two essential
Nuclear Pore Complexes (NPC). KPNA7 was also observed as
one of the top nine upregulated genes with a fold-change for
birds with WB (Mutryn et al., 2015). NPC’s are macromolecular
proteins found within the nuclear envelope in eukaryotic cells.
These complexes are surrounded by decondensed chromatin
and are responsible for the exchange of large molecules such as
proteins and RNA between the nucleus and cytoplasm (Kelley
et al., 2010). Prior to cell division there is an increase in expression
of NPC found in the nuclear envelope (NE). Once mitosis begins
the NE is broken down and NPCs form subcomplexes, which
are essential for later reassembly of the NPC. This process of
reconstruction is unknown, however, it has been shown when
the KPNA7 NPC is depleted, mitotic defects and deformation of
the nucleus occur (Vuorinen et al., 2018). In the mouse, KPNA7
is mostly expressed in oocytes and zygotes and is responsible
for epigenetic reprogramming which occurs during fertilization
and zygotic gene activation (Hu et al., 2010). Recently, NPCs
have been observed in regulation of gene expression and have
been associated with both gene silencing and activation (Galy
et al., 2000; Casolari et al., 2004). The expression of nucleoporins,
which make up the NPCs, vary depending on cell types and
changes in the structure of NPCs are used in the regulation of
cellular differentiation (D’Angelo, 2018). In mammals, the tissue
specific NPC, Nup210 has an effect on the regulation muscle
development and maintenance. Nup210 regulates myofiber
maturation, growth and even survival through the use of a
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FIGURE 5 | Top associated network function in IPA for the PM transcriptome dataset of birds with normal PM compared to severe/moderate WB: RNA Damage and
Repair and Protein Synthesis.

FIGURE 6 | Associated network function in IPA for the liver transcriptome dataset of birds with normal PM compared to severe/moderate WB: Skeletal and Muscular
System Development and Function, Developmental Disorder, Hereditary Disorder.

dependent transcription factor Mef2C in the regulation of
structural and maturation related muscle genes (D’Angelo et al.,
2012; Raices et al., 2017). In the absences of Nup210 the initial
formation of muscle fibers occurs during development, however
in older animals abnormal muscle structure develops and muscle
degeneration can even occur (Raices et al., 2017).

PM Regeneration
Another top gene, DEAF1, is a part of the SAND domain in
the molecule Ski. The activity of Ski was originally identified
in the chicken as a transduced retroviral oncogene, however,
research has indicated homologs which are not associated with
endogenous viral loci (Li et al., 1986). The c-Ski residue is
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FIGURE 7 | Associated network function in IPA for the liver transcriptome dataset of birds with normal PM compared to severe/moderate WB: Connective Tissue
Disorders, Hematological Disease, Hereditary Disorder.

FIGURE 8 | Associated network function in IPA for the liver transcriptome dataset of birds with normal PM compared to severe/moderate WB: Cell Cycle, Embryonic
Development, Cellular Movement.

primarily found in the nucleus and is highly conserved in
many species. The SAND domain is involved in protein-protein
interactions and is responsible for the interactions of SKI with

Smad4, FHL2, and MeCP2 (Engle et al., 2008). Ski can act
as an activator or repressor to gene transcription depending
on the transcription factor it interacts with. C-Ski has been
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shown to bind with Smad4 and block activation of transforming
growth factor (TGF-β). TGF-β leads to an increase in β-catenin
within the cytoplasm and β-catenin is an activator of canonical
Wnt signaling (Staal, 2016). TGF-β, TNF-α, and IGF-2 are
growth factors that regulate myoblast differentiation rather than
activation (Rosenthal et al., 1991; Li et al., 2005; Carter et al.,
2009). The key role of TGF-β in muscle repair is to regulate
the balance between fibrosis and regeneration. In Japanese quail,
myogenic differentiation is induced through the activation of
myogenic regulatory factors (MRFs), MyoD, and myogenin as
well as inhibiting HDAC activity (Colmenares and Stavnezer,
1989; Kobayashi et al., 2007). Satellite cells are activated by
expression of early myogenic regulatory factors, MyoD and Myf5.
Later, myogenin and MRF4 are expressed. The Ski response
element to myogenin is located upstream of the promoter region.

The gene RPL19 was discovered as one of the top nine
regulators in the MLP model able to 100% correctly classify
PM samples as WB or normal sample. This protein coding
gene encodes a ribosomal protein that makes up the 60S
ribosomal subunit (Davies and Fried, 1995). Like many of the
genes observed, RPL19 also plays a role in genetic regulation.
In mammals, this protein contains a CpG island at the 5′
transcriptional start site, which would indicate an area for
modifications to the expression of this gene (Davies and Fried,
1995). RPL19 was also involved in the top molecular network
associated with RNA damage and repair protein synthesis when
evaluating the 450 attributes that were 95% correctly classified
using SMO through Ingenuity Pathway Analysis (IPA) (Figure 5).
Transcripts related to spliceosomes were also detected in IPA
analysis in Figure 6, involving the previously mentioned gene
BUD13 as a component of the spliceosome. Similar to this finding
previous research evaluating gene expression data in the PM
has indicated differential expression of small nucleolar RNAs
including snoRNAs and miRNAs, which are often involved in
ribosomal and protein synthesis (Zambonelli et al., 2014).

CCDC85A, another top regulator identified with MLP, was
able to correctly classify as a single attribute WB and normal
PM birds 95% of the time using stratified cross-validation.
CCDC85A was also a top analysis molecule when evaluating
the 450 attributes that were 95% correctly classified using
SMO through Ingenuity Pathway Analysis (IPA). CCDC85A
is a protein coding gene for coiled coil domain containing
85a (Iwai et al., 2008). In humans, CCDC85A is regulated by
p53 and results in the degradation of β-catenin. This protein
suppresses β-catenin activity through interaction with T-cell
factors to result in Wnt signaling (Iwai et al., 2008). β-catenin
is an activator of canonical Wnt signaling (Staal, 2016). Wnt
signaling is responsible for the activation of satellite cells in adult
skeletal muscle and perturbations of this pathway can result in
muscle fibrosis (Cisternas et al., 2014). If Wnt signaling occurs
too often, the satellite cells become exhausted and eventually
lose the ability to renew (Ryall et al., 2008). This has been
characterized by increased extracellular matrix molecules such as
fibronectin, collagen, and macrophages leading to the inability of
muscles to regenerate and ultimately the loss of activity, leading
to similar traits associated with WB (Cisternas et al., 2014).
The addition of Wnt3A protein in mice has been shown to

increase the rate at which progenitor cells are converted from a
myogenic to a fibrogenic state resulting in increased deposition of
connective tissue (Brack et al., 2007). The expression of myogenic
regulatory factors (MRF) responsible for normal formation of
new myotubes, such as MyoD, Myf5, myogenin, and Pax3/7, are
activated by Wnt (Yokoyama and Asahara, 2011). However, in
the event that these progenitor cells lose the ability to mediate
repair, the muscle tissue is replaced by adipose and fibrotic
tissue, which also appears to be a phenotype associated with WB
(Laumonier and Menetrey, 2016). Our findings were not the first
to detect changes in Wnt signaling due to WB. Others have shown
that WB results in statistically significant differential expression
of WNT7A (Zambonelli et al., 2014). Wnt7a is responsible
for stimulating skeletal muscle growth and repair through the
induction of satellite cells via the mTOR pathway (Bentzinger
et al., 2014). In contrast, others have found that there is an
increase in gene expression of the MRF’s however, they tend
to vary depending on the lineage of the bird used (Velleman
and Clark, 2015). This has led to a different understanding
of the disease state which may not be entirely genetic or
environmental but rather both, which is commonly referred to as
epigenetic. It could be that environmental conditions stimulate
pathways leading to genomic modifications, potentially resulting
in phenotypic alterations.

Our working hypothesis, based on the ML analysis, is that the
underlying mechanism resulting in fibrosis and hence, WB, is
related to genetic regulation, possibly through NPCs, CCDC85A,
and β-catenin. These activate the Wnt signaling pathway via
TGF-β, mTOR and IGF-II pathways, potentially resulting in
WB pathology. It is possible that a pattern of Mendelian
inheritance does not result in direct causation of WB, but rather
modifications that result in changes in the expression of genes
such as histone modifications and DNA methylation.

Following damage or rapid growth, skeletal muscle satellite
cells are failing to regenerate myoblasts and results in fibrotic
scar tissue; overall, because stem cells are restricted to a
limited number of divisions, we hypothesize satellite cells are
being exhausted and eventually resulting in WB (Sacco et al.,
2010). This is similar to the hypothesis presented by Daughtry
et al. (2017), who thought that a disruption in satellite cell
homeostasis was involved in muscle myopathies. Throughout the
life of an organism, the number of satellite cells available for
regeneration of cells decreases. For satellite cells, aging has been
characterized by delayed activation and the inability to proliferate
and differentiate. A decrease in the efficiency of Wnt, TGF and
IGF signaling pathways has been shown to limit satellite cell
proliferation and myoblast differentiation (Barton-Davis et al.,
1998; Carlson et al., 2009). It is known that fast twitch muscle
is the leading muscle type found in the PM of broilers. Fast twitch
muscle has fewer satellite cells than those of slow twitch resulting
in differences in the course of muscle regeneration (Collins and
Partridge, 2005). Differences depicted in fast twitch fibers include
the TGF-β expression pattern, early activation of the myogenic
regulatory factors, and better regeneration efficiency (Zimowska
et al., 2009, 2017). After injury, satellite cells are activated by
expression of early myogenic regulatory factors, MyoD and
Myf5. Next, late myogenic regulatory factors are expressed,
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which consist of myogenin and MRF4. Pax 3/7 are paired
box transcription factors that directly and indirectly regulate
myogeneic regulatory factors as skeletal muscle progenitor cells.
Together these altered pathways are likely contributing to the
development of the PM myopathy.

Organismal Metabolic Influence – Liver
Transcriptome
The liver was considered as a tissue of importance related to
WB due to the vast array of metabolic functions including
the responsibility to synthesize, metabolize and excrete many
molecules (Zaefarian et al., 2019). In the bird, 11% of
all protein synthesis occurs in the liver which are then
transported via systemic circulation to other tissues (Denbow,
2000). Evaluation of the liver transcriptome dataset using
IPA resulted in the identification of Skeletal and Muscular
System Development and Function, Developmental Disorder,
Hereditary Disorder (Figure 6), Connective Tissue Disorders,
Hematological Disease, Hereditary Disorder (Figure 7) and Cell
Cycle, Embryonic Development, Cellular Movement (Figure 8)
network associations. Similarly when evaluating the PM through
IPA analysis of differential gene expression data, connective tissue
disorders, embryonic development and cell cycle pathways have
previously been detected (Mutryn et al., 2015).

The association network Skeletal and Muscular System
Development and Function, Developmental Disorder, Hereditary
Disorder (Figure 6) depicts molecules involved in muscle
function and development such as SGCG which protects and
maintains the structure of muscle cells through the sarcoglycan
protein. In mammals, mutations of this gene result in the
loss of y-sarcoglycan protein and ultimatley muscle dystrophy
and fibrosis (Heydemann et al., 2009). Disfunction in SGCG
has been shown to result in enhanced TGF-β availability
and therefore increased SMAD signaling leading to fibrosis
(Heydemann et al., 2009). It is thought that proteins from this
gene could be mediating their effect by regulating myostatin
activity. Myostatin (MSTN), a family member of TGF-β, inhibits
myoblast differentiation by repressing myogenic regulatory
factors (Langley et al., 2002). MSTN prevents differentiation
via the transcription factor SMAD3, which can be activated
by both TGF-β and MSTN. Other molecules identified in IPA
with changes in expression due to WB were JAKMIP2, which is
invovlved in microtubule binding and CAPSL which is involved
in calcium ion binding. This IPA pathway has also been detected
when evaluating the PM of differential gene experssion between
male and females birds with WB (Brothers et al., 2019).

CARD19 in this molecular network was also detected in MLP
of WEKA as being able to predict normal or WB 93.333% using
the cross-validation method (Figure 8 and Table 3). CARD
proteins (caspase recruitment domain) are a domain of proteins
which regulate apoptosis and inflammation (Jang et al., 2015).
Studies evaluating CARD19 and its role in the IKKß and NF-kB
pathway have been contradictory. Early data suggests CARD19
is a negative regulator of NF-kB, which is a transcription factors
that signals IKK, however, a more recent study in mice suggests
in the absence of CARD19 there was an increase in TNF-α which
would subsequently increase IKKß and NF-kB (Rios et al., 2018).

IKKß has been shown to decrease β-catenin activation which as
previously mentioned is an activator canonical Wnt signaling
(Lamberti et al., 2001; Staal, 2016).

Downstream TNF-α kinases IKKß and NF-kB play many
roles in regulating physiological reactions including regulators of
tuberous sclerosis complex (TSC), which repress the mechanistic
Target of Rapamycin (mTOR) pathway (Lee et al., 2007). IKKß in
association with TSC allows for the activation of mTOR. MTOR
coordinates cell growth and is the major regulator of metabolic
processes (Figure 7). Many factors are responsible for the
activation of mTORC1 including Wnt signaling, growth factors,
and TNF-α through interaction with TSC (Laplante and Sabatini,
2009). Activation of mTORC1 positively results in cell growth and
proliferation through the activation of protein and lipid synthesis
pathways. Disruptions in these pathways is associated with tumor
development and fibrogenesis, and macrophage regulation.
Ribosome biogenesis has been observed to be promoted through
activation of mTORC1 by transcription of ribosomal RNA which
can be observed as being downregulated in Figure 5 and Table 3
of the PM dataset (Mayer et al., 2004). Much of the IPA network
association Connective Tissue Disorders, Hematological Disease,
Hereditary Disorder invovles moleculues related to cell adhesion
and cytoskeleton (Figure 7). Intersestingly, mTORC2 regulates
cytoskeleton organization (Jacinto et al., 2004).

Cell Cycle, Embryonic Development, Cellular Movement
(Figure 8) network association represents molecules in the cell
cycle such as: ITCH, NEDD9, DOK5, and IGFBP2. ITCH in this
molecular network was also detected in MLP of WEKA as being
able to predict normal or WB 93.333% using the cross-validation
method. The Itch protein encodes a member of the Nedd4
family ubiquitin ligases that targets specific proteins for lysosomal
degradation. Itch plays a role in lymphoid cell differentiation
and the regulation of immune response and pathways related
to this protein include the TNF-α signaling pathway. NEDD9
plays a role in the TGF-β pathway and growth signals initiating
cellular proliferation and has been identified as upregulated
in hepatic fibrosis (Dooley et al., 2008). DOK5 in humans is
strongly expressed in muscle and is involved in the positive
activation of MAPK and possibly insulin activation (Grimm
et al., 2001; Cai et al., 2003). DOK5 has been identified as a
membrane associated protein triggered by insulin-like growth
factor binding protein-5 (IGFBP-5) for intracellular signaling
resulting in pro-fibrotic effects and is thought to promote fibrosis
(Yasuoka et al., 2014). IGFBP2 is an insulin-like growth factor
binding protein involved in cellular signaling. While muscle
is the primarily a site for glucose disposal, the avian liver
does function to control muscle growth through the allocation
of resources by regulating the birds nutritional balance. The
muscle has a paracrine effect, whereas the liver has an endocrine
role in circulating IGFs and IGFBPs. Signaling pathways in
the liver play an important role in regulating many aspects
of energy metabolism and cell cycle processes (Nguyen et al.,
2014). Circulating molecules have been identified that play a
role of signaling between the liver and muscle (Liu et al., 2013).
Some signaling pathways are only responsive within the liver
while others are only responsive in the muscle (proliferation and
differentiation). Most of the IPA pathways identified resulted
in an effect which would be detected within skeletal muscle.
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Liver and muscle are important tissues in understanding
regulation of metabolic homeostasis, genes involved in
glycogenesis, glycolysis, and lipogenesis are responsive in both
liver and muscle even though the expression patterns are very
different between the two tissues. It is not unexpected to observe
effects of the liver on muscle development since the liver is the
major location of protein, lipid, and carbohydrate metabolism
supporting the rapid growth of broiler chickens.

Histological evaluation of WB has revealed multifocal
degeneration and necrosis of fibers and accumulation of immune
related cells such as macrophages, heterophils and lymphocytes
(Sihvo et al., 2014; Trocino et al., 2015; Kuttappan et al., 2016).
Affected areas have characteristics of fibrosis separating muscle
fibers and thickening of the interstitium. Fibrosis has been
characterized as hardening or scaring of tissue as a result of
the accumulation of the extra cellular matrix proteins, including
collagen and fibronectin eventually leading to loss of activity to
the tissue (Wynn, 2008). Fibrosis has been detected in various
tissues lung, liver, kidney and skeletal muscle, however, the
mechanism resulting in fibrosis has been similar in tissues
(Cisternas et al., 2014). Pathways detected through IPA of the
liver and PM have indicated many molecules which directly and
indirectly lead to tissue fibrosis. The fibrosis associated with WB
may be driven by signal(s) originating in the liver or other tissues.

CONCLUSION

In conclusion, using a machine learning approach, we were able
to identify predictors that were able to accurately differentiate
normal tissue from WB tissue using liver and PM transcriptomes
from individual birds. Through the use of IPA, predictors from
both PM and liver tissue identified gene networks associated
with skeletal muscle disorders and other networks that could
be associated with the development of WB. Given that gene
expression data from both PM and liver transcriptomes were
able to predict WB or normal tissue using select genes, with
some redundancy between tissues, suggests that WB is the
result of systematic disruptions in one or more regulatory
pathways involving abnormal muscle development, deposition,
or maintenance. The data herein suggests that WB phenotype
could potentially be mediated through genes which ultimately
result in the up- or down- regulation of pathways that are

largely involved with metabolic regulation and basic cellular
maintenance, such as Wnt and mTOR, respectively. In mammals,
dysregulation in either of these canonical pathways has been
shown to result in similar characteristics identified in WB and
further investigation of these pathways in chickens exhibiting
WB is warranted.
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