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It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and
arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-
intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular
function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus,
resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing
that exercise and training with blood flow restriction (BFR) leads to muscle hypertrophy and strength increase. As such, BFR
training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although
it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that
BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function.
This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function,
arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

1. Introduction

“A man is as old as his arteries” was a favorite axiom of
William Osler (1849–1919), sometimes called the “Father of
Modern Medicine,” and to some extent accurately represents
the effect of vascular dysfunction on various aging processes
[1]. To date, it has been recognized that arterial dysfunction,
such as increased arterial stiffness, is closely associated with
the pathogenesis of cardiovascular disease, which in turn
increases mortality by increasing the risk of events such as
myocardial infarction and stroke [2–4]. A higher physical
activity level as well as regular exercise may be effective at
diminishing the risk of coronary heart disease [5, 6] and
stroke [7, 8].

From the standpoint of exercise physiology, exercise is
categorized as aerobic and resistance exercise. Briefly, aerobic
exercise is a physical exercise of relatively low intensity

that depends primarily on the aerobic energy-generating
process, for example, running and leg cycling [9]. In contrast,
resistance exercise is also physical exercise of relatively
moderate and higher intensity that uses a resistance to the
force of muscular contraction, in other words, strength
training [10].

Although aerobic exercise may improve arterial function
[11], it has also been reported that aerobic exercise is
insufficient to inhibit the loss in muscular strength that
comes with advancing age [12, 13]. Resistance exercise is
recommended to prevent sarcopenia, age-induced muscular
degeneration which often entails reduced activities of daily
living (ADLs) [14]. According to the guideline of American
College of Sports Medicine (ACSM), a mechanical load
greater than 70% of the one-repetition maximum load
(1 RM) can produce morphological and functional muscular
adaptations [14]. However, these higher-load exercises are
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frequently associated with orthopedic complications [15,
16]. In addition, it has been reported that high-intensity
resistance training (>80% of 1 RM) reduces central artery
compliance [15]. These findings suggest that such a high-
intensity resistance exercise should be prescribed carefully,
particularly for aged people and patients with cardiovascular
disease. Recently, several studies have demonstrated that
low-intensity resistance exercise with blood flow restriction
(BFR) [17–23] and BFR walking [24] dramatically leads to
muscle hypertrophy and strength gain and that it results
in adaptations equal to those of high-intensity resistance
training [22]. Although the effect of resistance exercise
with BFR and BFR walking on vascular function is still
unclear, there is a possibility that this exercise modality
can be an important therapeutic prescription not only
for sarcopenia but also for vascular dysfunction because
of the lower exercise intensity compared to high-intensity
resistance training. In this review, we would like to focus
on the impact of such exercise on vascular function in
comparison with the effects of aerobic and resistance training
alone and in combination.

2. Evaluation for Vascular Function

In human studies, as it is almost impossible to evaluate large
arterial function directly, various noninvasive methodologies
have been used to evaluate arterial function in humans. In
this section, we introduced several methodologies, which
have investigated the impact of BFR exercise and training.

2.1. Arterial Compliance and Stiffness. Generally, arterial
compliance can be measured by a combination of ultra-
sound imaging of any artery, for example, carotid artery,
with simultaneous applanation of tonometrically obtained
arterial pressure from the contralateral artery, permits
noninvasive determination of arterial compliance [11]. This
methodology can be applied to any artery, which can
measure pulse wave, for example, radial and femoral arteries.
In addition to arterial compliance [25], β-stiffness index
provides an indicator of arterial compliance adjusted for
distending pressure [26].

Arterial compliance decreases with advancing age [27–
29], and these reductions are associated with isolated systolic
hypertension, accompanied with left ventricular hypertrophy
[30]. Indeed, several studies demonstrated that decreased
arterial compliance and/or increased arterial stiffness have
been identified as independent risk factors of cardiovascular
disease [27, 31–36].

2.2. Ankle Brachial Index. Although ankle and brachial
blood pressure indicates similar value in healthy humans,
under continued occlusion and/or stenosis in lower limbs
induced by arteriosclerosis, ankle blood pressure would
decrease compared with brachial blood pressure. Therefore,
ankle-brachial blood pressure index (ABI) is a typical
indicator for screening peripheral arterial disease (PAD).
Indeed, diagnostic accuracy for stenosis above 50% in leg
arteries in PAD patients showed excellent values, that is,

sensitivity is 90% and specificity is 98%, respectively [37–
39]. Generally, ABI is thought to be a predictor for screening
in PAD patients. However, ABI is simple, inexpensive, and
noninvasive methodology, and it is also reported that ABI
is a good predictive factor for coronary arterial disease [40],
suggesting that this indicator can be useful test for arterial
dysfunction.

2.3. Pulse Wave Velocity. Arterial stiffness is defined by a
decrease in aortic distensibility. In human clinical studies,
the measurement of the pulse wave velocity (PWV) has been
broadly used and generally accepted as the gold standard
to evaluate aortic distensibility [41]. PWV is calculated by
dividing the distance between any two different arteries, for
example, carotid and femoral arteries, by the traveled time
in the pulse wave from one site to the other site in arteries
[42, 43]. PWV is inversely related to caliber of a blood
vessel and blood viscosity and is proportional to vessel wall
thickness and distensibility, indicating that higher speed of
PWV reflects lower aortic distensibility. Clinically, the PWV
is closely associated with pathogenesis in cardiovascular
disease [32–36, 44–46].

2.4. Flow Mediated Dilation. As endothelial dysfunction pre-
cedes arteriosclerosis, assessment of endothelium-mediated
vasodilator function has also been widely used to evaluate
endothelial function [47, 48]. In general, flow-mediated
dilation (FMD) can be described by any vasodilatation of
an artery following an increase in luminal blood flow and
internal-wall shear stress induced by reactive hyperemia. The
principles, assessment, and evaluation are stated in some
excellent reviews [49, 50], briefly, after several minutes of
arterial cuff occlusion at proximal or distal portion in any
artery, for example, brachial and popliteal artery, immediate
cuff deflation can lead to increase shear stress induced
by reactive hyperemia and activate endothelial nitric oxide
(NO) synthase (eNOS). This activation leads to a shear-
stress-mediated augmented NO production in endothelial
cells. FMD is calculated as the difference between the
maximum diameter and during reactive hyperemia and
baseline diameter, and it is expressed as the relative change
(%). Since previous studies have shown that brachial artery
FMD is emerging as an independent predictor of future
cardiac events [51–53], FMD can be a good predictor
indicating that this assessment can be a good noninvasive
marker of local NO bioavailability in the endothelial cell,
which is an important factor and predictor in protecting
against cardiovascular disease.

3. Impact of Aerobic Exercise and Training on
Vascular Function

Aerobic capacity determined by maximal oxygen uptake
(V̇O2 max) is strongly associated with the risk of cardiovas-
cular disease [54, 55], and an inverse relationship has been
observed between V̇O2 max and PWV [56]. Since aerobic
capacity is improved by regular aerobic training, to date,
numerous studies have demonstrated the influence of regular
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aerobic training on vascular function in athletes, seden-
tary subjects, and aged people. Decreased arterial stiffness
has been observed in cyclists, middle- or long-distance
runners, and triathletes compared with sedentary subjects
[57]. It was also reported that collegiate middle- or long-
distance runners had lower arterial stiffness [58, 59] and
middle-aged and older athletes had more distensibility in
their central arteries compared with age-matched sedentary
people [11, 60]. Moreover, in healthy young men [61]
and postmenopausal women [62], regular aerobic exercise
reduced arterial stiffness.

In addition to these cross-sectional studies, intervention
studies of regular aerobic training also revealed an improve-
ment in arterial stiffness and endothelial function. Despite
differences in the training period from 4 to 16 weeks, regular
aerobic training improved arterial stiffness in young healthy
subjects [61, 63] and in middle- and older-aged people [11].
It was also reported that 16 weeks of regular aerobic training
improved PWV in middle- and older-aged people [64] and
pre- and stage 1 hypertensive patients [65]. Moreover, several
studies have demonstrated that regular aerobic exercise
improved endothelium-dependent vasodilation. Higashi et
al. [66] revealed that regular aerobic exercise reduced rest-
ing blood pressure and improved endothelium-dependent
vasodilatation in essential hypertensive patients. Similar
results were observed in healthy subjects [67], diabetic
patients [68], and those with coronary arterial disease [69],
respectively. Interestingly, daily physical activity level was
also associated with ABI [70], intima-media thickness [71],
and PWV [72, 73]. To the best of our knowledge, one
study demonstrated that endurance athletes showed a higher
PWW compared to recreational active control subjects [74].
Although this mechanism is unclear, it is assumed that
repeated and excessive training stress due to lower resting
heart rate, resulting in increased stroke volume, imposed on
the elastic component, may cause mechanical fatigue of the
arterial wall. However, this is clearly insufficient evidence
to support that aerobic exercise impairs vascular function
because the results emerged from extremely trained athletes
and cross-sectional study. Taken together, continued aerobic
exercise training may improve vascular function assessed by
various methodologies even though with one exception [74].

4. Impact of Resistance Exercise and Training on
Vascular Function

During resistance exercise, for example, weight lifting, both
systolic and diastolic blood pressures increase dramatically
[75, 76], whereas only systolic blood pressure increases
during aerobic exercise, without an accompanying increase
in diastolic blood pressure [77, 78]. Thus, in the classical
paradigm, resistance training would not be recommended
for aged people, and in particular, for patients with cardio-
vascular disease. However, recent studies have revealed that
aerobic training alone cannot maintain muscle volume and
strength, which are needed to prevent sarcopenia [12, 13],
the degenerative loss of skeletal muscle with advanced age,
often leading to a bed-ridden lifestyle with reduced activities

of daily living (ADLs). Resistance exercise is widely recom-
mended to protect against metabolic syndrome, because such
exercise can increase muscle strength and volume and may
have a positive effect on glucose metabolism, blood lipids,
and basal metabolic rate [13, 14]. Its value for older-aged
subjects at risk of sarcopenia or vascular disease thus seems
potentially significant.

However, because of conventional wisdom regarding the
dangers of resistance training, studies about the impact
of resistance training on vascular function are ten years
behind where they might be today. Bertovic et al. [79]
revealed that aortic distensibility in resistance-trained men
was lower than that in age-matched control subjects. It
was also reported that age-related arterial stiffness is more
pronounced in strength-trained men than in age-matched
sedentary subjects [15]. However, results of more recent
studies, which investigated effects of resistance exercise and
training on vascular function, seem to be controversial.
Greater arterial stiffness was also observed in strength-
exercised athletes than in sedentary people [58, 59, 80]. It was
also reported that greater age-related reduction in arterial
compliance in resistance-trained men was observed com-
pared to sedentary men [81]. In contrast, arterial stiffness
assessed by central/peripheral PWV did not differ between
highly resistance trained and sedentary men [82]. It was also
reported that ischemic reperfusion injury induced by 20-min
cuff occlusion significantly reduced brachial artery FMD in
sedentary young men but unchanged in resistance-trained
adults [83]. Phillips et al. [84] demonstrated that resistance
and endurance trained subjects showed a similar responses
in FMD to acute impairment of endothelial dysfunction
induced by single weight lifting. Moreover, Fahs et al. [85]
demonstrated that a significant inverse association between
muscular strength and central PWW, independent of aerobic
fitness, suggested that resistance training, which can improve
muscular strength, might improve aortic stiffness [85].

In addition to these cross-sectional studies, an inter-
vention study found that four months’ resistance training
reduced arterial compliance in young men [15]. In contrast,
it was reported that resistance training did not decrease
arterial compliance in young men [86], in premenopausal
women [87], and in elderly men [88]. In addition, resistance
training did not alter resting and postexercise aortic blood
pressure and wave reflection in middle-aged women [89].
It has been suggested that continued resistance exercise
did not affect endothelial function assessed by FMD in
young men [90] and postmenopausal women [91]. However,
shorter period of resistance training, that is, four weeks,
improved peak forearm blood flow induced by reactive
hyperemia but increased arterial stiffness in pre- and stage-
1 hypertensives [65]. Rakobowchuk et al. [92] demon-
strated that FMD responses were not altered with resistance
training, however, brachial artery vessel diameter increases
and postocclusion blood flow increases with this training
modality. These results may have an important role in clinical
application because resistance training can be a stimulator
that may enhance resistance vessel function. Indeed, basal
limb blood flow and vascular conductance were improved
with resistance training [93]. Similarly, slow movement
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resistance training increased basal limb blood flow as well as
resistance training at normal speed [94], and weight training
increased forearm blood flow as well as aerobic exercise
in healthy males [95]. A recent finding also indicated that
resting forearm blood flow and peak blood flow in response
to reactive hyperemia significantly increased by resistance
training in overweight and obese women [96].

From the point view of comparison in different popu-
lations, it was reported that decreased augmentation index
was observed in old women, but not in old men [97].
Heffernan et al. [98] indicated that resistance training leads
to increase in microvascular endothelial function in African-
American and white men, while it increased brachial stiffness
in only African-American. Additionally, resistance training
improved endothelium-dependent vasodilatation as well as
aerobic training and aerobic plus resistance training in
patients with recent myocardial infarction, indicating that
these improvements were independent of exercise type [99].

Recently, the effects of combined exercise, that is,
aerobic and resistance training on vascular function have
been elucidated [100, 101]. Combined training consisting
of high-intensity resistance training, followed by 30-min
aerobic leg cycling, demonstrated a slight increase in carotid
arterial compliance (P = 0.06) in young men [100];
furthermore, moderate-intensity combined circuit resistance
exercise and endurance exercise improved arterial stiffness in
postmenopausal women [101].

However, from the viewpoint of elderly health, it may
not be necessary to use higher loads, for example, >80%
1 RM. Thus, recent studies have investigated the influence
of moderate-intensity resistance exercise on vascular func-
tion. It was reported that three months’ moderate-intensity
resistance exercise training did not alter brachial-ankle (ba)
PWV [102], arterial compliance [103], or arterial stiffness
[104]. Moreover, 1-year resistance training intervention
in overweight women significantly improved FMD [105],
and low-intensity resistance training with short interset
rest period improved baPWV and FMD in young subjects
[106]. Similarly, moderate-intensity resistance training for
short period, that is, four weeks training, improved FMD
responses in end-stage heart failure patients [107].

Although the physiological mechanisms underlying the
vascular function, such as arterial stiffness, compliance,
and endothelial function assessed by FMD, associated with
resistance training are unclear, it is well known that higher-
intensity resistance training may be a potent stimulator to
increase sympathetic nervous system activity [108, 109].
Augmented sympathetic nerve activity may act to increase
arterial stiffness by providing chronic restraint on the arterial
wall via greater sympathetic adrenergic vasoconstrictor tone
[110]. During resistance exercise, for example, weight lifting,
both systolic and diastolic blood pressures increase dramat-
ically [75, 76]. These acute elevated blood pressures during
resistance exercise may alter the arterial structure, and/or
arterial load-bearing properties, resulting in arterial stiffness
increase and/or impaired reactive hyperemic blood flow with
repeated exposure. One interesting and supporting finding
was that upper body resistance training group increased
arterial stiffness but unchanged with lower limb resistance

training group and sedentary control subjects [111]. In
their study, norepinephrine concentration (NE) significantly
increased in only upper body training group after 10-week
training. As it is established that NE release is strongly related
to the changes in absolute levels of sympathetic nerve activity
[112], elevated NE concentration suggested that resting
sympathetic nerve activity increased by 10-week upper body
resistance training, resulted in that increased arterial stiffness
caused by alteration arterial structure, and/or arterial load-
bearing properties.

Given these numerous previous studies, it is still unclear
and in controversy whether resistance training increases
arterial stiffness and/or diminish endothelial function. It
might be possible that effect of resistance exercise on vascular
function may be affected by various factors, such as exercise
intensity, different populations, and exercise modality.

5. Impact of Blood Flow Restricted Exercise and
Training on Vascular Function

According to the guidelines of the ACSM, resistance training
at 70% or greater of 1-RM is recommended in order to
achieve muscle hypertrophy and increased strength [14].
However, it is difficult for certain individuals, such as the
elderly and rehabilitating athletes, to use such a high-
intensity load. In recent years, studies on one alternative,
namely, low-intensity resistance training with BFR and BFR
walking, have provided compelling data that such training
leads to muscle hypertrophy and strength increases [17, 19–
22, 24, 113–117] and results in adaptations equal to those of
high-intensity resistance training [21, 22]. As the universal
way of this exercise modality seems not to be established,
applied cuff pressure and exercise intensity are varied.
The underlying principle of this unorthodox technique is
that occlusive cuff pressure is greater above individual’s
systolic blood pressure and exercise intensity is 20–30% of
maximal voluntary contraction [114]. During BFR exercise,
cuff pressure occludes venous return and causes arterial
blood flow to become turbulent, resulting in the enhanced
metabolic stress and fast-twitch fiber recruitment in skeletal
muscle [118]. At the end of exercise, ischemic reperfusion
induced by cuff deflation stimulates shear stress, followed by
greater vasodilatation and/or enhanced blood flow [119].

Although the precise mechanism by which BFR exercise
produces muscle hypertrophy is still unclear, it was reported
that low-intensity exercise with BFR can increase that
rate of muscle protein synthesis and stimulate mammalian
target of rapamycin complex 1 (mTORC1) and MAPK-
mediated anabolic signaling [120]. However, a recent study
revealed that reactive hyperemic blood flow is not a primary
mechanism for BFR exercise-induced mTORC1 signaling
and muscle protein synthesis [121]. Another potential factor
to induce muscle hypertrophy may be an intramuscular
metabolic stress such as depletion of phosphocreatine, an
increase in inorganic phosphate, and a decrease in muscle
pH [118]. We recently investigated the effects of short-
term resistance training with BFR on muscle mass and
strength, and found that elevated metabolic stress may be a
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crucial factor in obtaining successful results from resistance
training with BFR [122]. Taken together, it is likely that BFR
training can produce muscle hypertrophy without the effect
of reactive hyperemic blood flow. However, since hyperemic
blood flow per se may be induced by greater shear stress
and this greater shear stress induces vasodilatation, which
results in increased nitric oxide [49, 50], moreover, maximal
dilation was observed after ischemic exercise [123], there
might be a possibility that BFR exercise and training would
have a beneficial effect on vascular function such as arterial
compliance and endothelial function, indeed, observed.

Tables 1 and 2 summarize studies undertaken to investi-
gate the effects of acute or chronic BFR exercise on vascular
function such as arterial compliance, endothelial function,
and related biomarkers. It has been difficult to obtain
consensus due to the large number of variables such as
age, gender, intensity and exercise modality, intervention
period, applied cuff pressure and cuff width, and evaluation
of vascular function, all of which may influence the training
effect. We discuss the influence of BFR exercise and training
on vascular function based on current findings in the
following session.

5.1. Impact of Blood Flow Restricted Exercise on Arterial
Compliance or Stiffness. Fahs et al. [124] reported that acute
knee extension and flexion with BFR increased arterial
compliance without changes in vascular conductance and
that this increase was similar to low-intensity knee extension
without BFR. They suggested that this acute increase in
arterial compliance may be attributed to augmented regional
vasoactive substances [125], and decreased systemic sympa-
thetic vasoconstrictor tone [126].

Additionally, several interventional studies have indi-
cated the influences of BFR training on arterial compliance.
Kim et al. [127] reported that arterial compliance assessed
in the radial artery of young men did not change by low-
intensity resistance training with BFR for 3 weeks. Similarly,
four-weeks BFR training did not alter arterial stiffness
evaluated by the PWV between the femoral and tibial arteries
in young male subjects [128]. Fahs et al. [129] extended
the training period from 3 to 6 weeks and observed no
change in arterial compliance assessed by the same device
that had been used in the previous study [127]. Interestingly,
one recent study [130] revealed that low-intensity (30%
1 RM) upper-body BFR exercise training, that is, bench press
did not diminish carotid artery compliance, while high-
intensity bench press training without BFR decreased arterial
compliance.

The underlying physiological mechanism(s) associated
with unaltered arterial compliance, that is, four intervention
studies, and with increased arterial compliance, that is, one
cross-sectional study, is unclear. Impaired arterial compli-
ance induced by high-intensity resistance training without
BFR may be attributed to acute elevated blood pressure
via increasing sympathetic nerve activity system [108–
110], resulting in alteration arterial structure and/or arterial
load-bearing properties. These changes may be related to
impaired arterial compliance. In the previous studies of BFR

training, resting blood pressure did not change after several
weeks intervention with BFR resistance training [127, 129].
Moreover, the resistance training with and without BFR-
induced carotid arterial compliance changes was associated
with changes in systolic blood pressure during training
intervention [130], indicating that elevation blood pressure
may play a role to induce arterial compliance changes
during BFR training. Conversely, postexercise hypotension
did not occur after low-intensity resistance training with
BFR, while high-intensity resistance training elicited greater
postexercise hypotension [131]. Postexercise hypotension
can be considered an important strategy to control resting
blood pressure, especially in hypertensive patients [132, 133].
Therefore, it may be reasonable that BFR training did not
change arterial compliance based on unobserved postexercise
hypotension with acute BFR exercise [131].

In addition to these resistance exercise and training with
BFR, effect of chronic BFR walking on arterial compliance
has been reported. Ozaki et al. [134] revealed that carotid
arterial compliance significantly improved by 10 weeks of
BFR walking in elderly people. The interesting considerations
regarding their study are that the training period was longer
than in previous studies (10 weeks versus 3 to 6 weeks),
and the participants were elderly, with the majority being
women (3 men and 10 women). This result might have great
clinical relevance in understanding the potential application
of BFR training. Recently, age- and sex-related differences
in cardiovascular responses both at rest and during exercise
have been elegantly reviewed [135]. For example, (1) reduc-
ing oxidative stress improves carotid arterial compliance in
postmenopausal women but not older men, (2) habitual
exercise abolished age-related differences in central arterial
stiffness in older women, (3) vasoconstrictor responses to
sympathetic stimulation is blunted in women compared
to men (see [135] in detail). These gender differences in
cardiovascular responses and adaptation to exercise training
might affect vascular function in response to BFR exercise
and training though only one study showed that carotid
arterial compliance was improved by BFR training in elderly
women.

It is well known that regular aerobic training improves
carotid arterial compliance [11], whereas high-intensity
resistance training reduces arterial compliance [15]. Al-
though the mechanism of improved arterial compliance in
elderly women is still unclear, there are several possible
physiological mechanisms to explain these changes. A previ-
ous study demonstrated that BFR training-induced impro-
vement in carotid arterial compliance was approximately
30% [134]. In the previous cross-sectional study, carotid
arterial compliance in middle-aged and older men is 20–
35% higher than that in age-matched recreational and
sedentary subjects [11]. They also conducted interventional
study and demonstrated that 13.5 weeks of aerobic training
produced a 25% increase in carotid arterial compliance.
Similarly, carotid artery compliance in postmenopausal
women increased about 40% following 3 months of home-
based regular aerobic exercise [136]. Abe et al. [137] reported
that 6 weeks of BFR walking training did not improve peak
aerobic capacity, but it significantly increased muscular size
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and strength in elderly subjects (2 men and 9 women).
Thus, it might be significant that arterial compliance was
improved in elderly women, probably without systemic
aerobic capacity improvement. However, only study revealed
these results, hence, future studies are needed whether these
improvements are specific for elderly women.

Taken together, BFR exercise and training did not change
arterial compliance, while only two studies showed that
acute BFR exercise and chronic BFR walking improved
arterial compliance [124, 134]. However, due to insufficient
evidence, at least what we can say is that BFR training
including resistance exercise and walking may not worse
arterial compliance, possibly, associated with unchanged
resting blood pressure with BFR resistance training [127,
129] and BFR walking [134].

5.2. Influence of BFR Training and Walking on Endothelial
Function. Endothelium-dependent vasodilatation in con-
duit artery, for example, brachial and popliteal arteries, can
be evaluated by FMD, which is a good in protecting against
cardiovascular disease [51–53].

BFR exercise can lead to reactive hyperemic blood
flow [119] and increased microvascular filtration capacity
induced by ischemic reperfusion [138]. Thus, it might be
possible that these physiological responses may lead to an
enhanced vascular reactivity such as flow-mediated dilation
(FMD) responses and/or improved basal limb blood flow.
However, the effect of BFR exercise on vascular reactivity is
still controversial.

To date, three studies examined about acute effects of
BFR walking [139] and resistance training with BFR [140,
141] on endothelial function assessed by FMD. Although
exercise modality and target conduit artery vary, two of three
studies showed impaired FMD with BFR exercise/training
and one study indicated unaltered FMD with four-week
training with BFR. Renzi et al. [139] demonstrated that FMD
was impaired after BFR walking compared to walking with-
out BFR. In their study, systemic cardiovascular responses,
such as blood pressure, and total peripheral resistance
significantly increased and stroke volume/pulse pressure (an
index of systemic arterial compliance) significantly decreased
during walking compared to those in the control condition
while ABI showed a similar value.

In addition to this cross-sectional study, two stud-
ies on chronic BFR training showed different results in
FMD responses. Credeur et al. [140] reported that four-
weeks hand-grip training with BFR reduced FMD, whereas
Hunt et al. [141] demonstrated that four-weeks hand-grip
training with BFR did not alter FMD responses but induced
transient adaptations to brachial artery structure, that is,
increased resting and maximal vessel diameter. Although the
mechanism underlying impaired FMD responses after acute
BFR walking and chronic BFR training is still unclear, it
is assumed that reduced FMD is a product of diminished
endothelial function. Moreover, they speculated that oxida-
tive stress induced by ischemic reperfusion injury might be
the cause of the reduced FMD [139, 140]. As increased oxida-
tive stress is associated with endothelial dysfunction [142,

143], followed by arteriosclerosis, augmented oxidative stress
plays an important role in the pathogenesis and development
of cardiovascular disease [144]. It has been reported that
high-intensity resistance exercise, that is, >70% 1 RM, elicits
oxidative stress markers [145–149], whereas these responses
to lower-intensity exercise have been inconsistent [150, 151].

During BFR exercise, the effects of both exercise intensity
and ischemic reperfusion need to be accounted for. As far as
we know, only two studies have examined the effect of BFR
exercise on oxidative stress markers. Takarada et al. [117]
measured serum interleukin-6 (IL-6) and lipid peroxides
(LP) before and after low-intensity resistance exercise (20%
1 RM) with moderate blood flow restriction and found no
significant increases. Although exhaustive exercise in humans
has been shown to cause a sustained elevation of muscular
xanthine oxidase activity as well as increases in serum IL-6
and LP concentrations [152], it did not seem to produce an
excess amount of oxygen-derived free radicals in Takarada et
al.’s study [117]. It was also reported that protein carbonyls
and blood glutathione, which are indicators of oxidative
stress, did not increase during low-intensity (30% 1 RM) BFR
exercise, but did increase in moderate-resistance exercise (up
to 70% 1 RM) [153]. Since both of previous studies did not
measure oxidative stress markers [139, 140], it is unknown
whether impaired FMD responses are associated with ele-
vated oxidative stress. However, the study of Credeur et al.
[140] used higher-intensity resistance load (60% 1 RM) and
applied the cuff for a longer occlusion time (20 min). Thus,
there is a possibility that increased oxidative stress may
have reduced the FMD in the case of Credeur’s study [140]
because it was reported that the region between 60 and 70%
1 RM may be a critical load marker [145–151], in terms of
inducing oxidative stress during resistance training without
BFR. Another explanation associated with impaired FMD
responses after BFR walking is that elevated blood pressure
during 20-min BFR walking. The blood pressure of subjects
during 20-min walking with blood flow restriction in Renzi
et al. [139] was >20% higher than controls, whereas Takano
et al. [116] observed only slightly higher blood pressure
during knee extension with BFR than that without BFR (127
versus 113 mmHg). Since acute elevations in arterial blood
pressure are associated with the arterial structure and/or the
arterial load-bearing properties of collagen and elastin [154],
the rise in blood pressure during BFR walking might have
caused the diminished FMD.

Collectively, although the influence of BFR walking and
training with small muscle group on endothelial dysfunction
assessed by FMD is still controversial, these contradictory
results may be dependent on the variety of methodologies
used, including exercise intensity and occlusion time during
exercise. Moreover, it is very difficult to obtain consensus due
to lack of evidence. However, it should be still noted that
cuff release-induced hyperemic blood flow may be expected,
suggesting that it stimulates shear stress, followed by nitric
oxide increase, simultaneously, BFR exercise and training
should be carefully prescribed because it is supposed that
systemic arterial compliance increase during BFR walking
[139].
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5.3. Small Muscle Group Exercise and Training. As large
muscle group dynamic exercise may alter not only local vas-
culature but also systemic cardiovascular responses to either
acute or chronic exercise, small muscle group exercise may be
useful as a physiological model to observe impact of exercise
training on localized vasomotor control in skeletal muscles
without marked changes in central hemodynamics during
exercise. Thus, to date, several studies have used handgrip
exercise training to elucidate vascular function. Accordingly,
two studies of handgrip exercise training with BFR have
been investigated, furthermore, studies of calf raise with own
body weight and planter flexion exercise training with BFR
were also carried out. Generally, handgrip exercise training
increases forearm blood flow and/or improves FMD with
one exceptional unchanged study. Enhanced brachial FMD
responses as well as endothelium-dependent vasodilatation
were observed after isometric handgrip training in old men
[155], in elderly hypertensives [156, 157], and chronic heart
failure subjects [158, 159]. Similarly, forearm blood flow
was increased with regular handgrip exercise training in
young men [160, 161] and in middle aged [162]. In contrast,
improved blood flow was not observed in patients with
chronic heart failure [162]. Moreover, McGowan et al. [163]
reported that isometric handgrip training did not alter FMD
with normal blood pressure. One interesting finding was
that four-week handgrip exercise training improved peak
vasodilator capacity induced by 10-minute ischemic stim-
ulus without influencing endothelium vasodilator system
[164]. These results suggested that evaluation for vascular
function should be considered from many aspects, such as
endothelium-dependent dilation, basal blood flow, and peak
vasodilator capacity.

In addition to these previous studies of handgrip exercise
training without BFR, two studies of handgrip exercise
training with BFR have been elucidated, resulted in impaired
[140] and unchanged [141] FMD responses. As above stated,
exercise intensity, which was used in one previous study, was
higher and longer, that is, 60% MVC dynamic handgrip exer-
cise training for 20 min [140], compared to another previous
study [141] with BFR (Tables 1 and 2). It is possible that
these higher exercise intensity and longer duration may cause
oxidative stress, resulted in diminished FMD responses.
Interesting findings were that handgrip exercise training with
BFR did not improve FMD responses but caused brachial
artery structural modifications, that is, increased resting and
maximal diameters [141]. Based on the principle of FMD
calculation, changes in baseline diameter can influence the
magnitude of FMD responses. Moreover, it should be taken
a consideration about time course alterations in vessel struc-
ture and function. Animal studies showed that prolonged
training induces structural changes, namely, “arterial remod-
eling” [165, 166], while short-term training improves vas-
cular function via enhanced NO bioavailability [167–170].
Indeed, in human studies, brachial artery FMD increases
after just one week of handgrip exercise training [171] and
decreased after two weeks, whereas conduit artery vasodila-
tor capacity showed a progressive increase for eight weeks
during training intervention [172]. In one of the BFR study,
FMD did not change after four weeks training, however, peak

blood flow after ischemia and baseline diameter significantly
increased [141]. It may be speculated that four-week BFR
handgrip exercise training might cause improvement in
functional changes within a few weeks, followed by structural
changes after four weeks, resulting in without changes FMD
responses normalized by increased basal vessel diameter.

5.4. Other Relevant Findings. It is well known that coag-
ulation factors and fibrinolysis are closely associated with
the risk of cardiovascular diseases such as ischemic heart
disease, particularly acute coronary syndrome [173]. Several
previous studies have demonstrated the influence of BFR
training on coagulation factors and fibrinolysis. However,
to date, no study has observed a significant increase in
either acute [120, 174, 175] or chronic [128] BFR exercise.
It was reported that thrombin generation is associated
with exercise-induced metabolites [176, 177]. Indeed, BFR
exercise produced greater metabolites [118]; hence, there
is a possibility that increased metabolites might produce
coagulation factors and fibrinolysis. In contrast, Hilberg et al.
[178, 179] reported that thrombin antithrombin III complex
(TAT) and D-dimer increased after 60–90 min prolonged
exercise [179] but did not increase after high-intensity
exercise [178], from which blood lactate concentrations
were significantly increased, suggesting that the TAT and
D-dimer may be dependent on exercise time. Thus, it is
unlikely that accumulated metabolites during BFR would
be related to coagulation factors and fibrinolysis. Another
possible explanation is that expanded blood flow after cuff
release would exclude thrombosis, so that the possibility
of thrombosis during BFR could be ruled out [120]. More
important findings were that the incidence of serious side
effects related to thrombosis was lower in 7 cases (0.055%)
based on the national survey for more than 12,000 people in
Japan [180]. These results indicated relative safety and potent
implications to various populations of BFR training.

It has been pointed out that endothelial dysfunction
may be improved through angiogenesis induced by vascu-
lar endothelial growth factors [181]. One study revealed
that acute BFR exercise significantly increased vascular
endothelial growth factor (VEGF) compared to control
exercise [116]. The underlying mechanism may be related
to local muscle ischemia during BFR exercise. In fact,
VEGF secretion and production are activated under hypoxia
[182, 183] and/or under decreases in local muscle oxygen
tension during exercise [184]. Increased VEGF may produce
angiogenesis, followed by enhanced NO bioavailability [181],
which might be a beneficial effect for endothelial function.
However, since no studies have examined the effects of
chronic BFR training on VEGF, it is uncertain whether
chronic BFR training can increase VEFG, resulting in an
improvement of endothelial function.

6. Summary and Future Perspectives

In this review, we focused on what is currently known (Tables
1 and 2) and hypothesised changes (Figure 1) of the influ-
ences of BFR exercise and training on vascular function. It
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During blood flow
restriction exercise

Angiogenesis

VEGF ↑

NO bioavailability ↑

NO ↑

Shear stress ↑

After cuff release

Arterial inflow↓ 

Venous return ↓

Muscle hypertrophy ↑

GH↑

Metabolites↑

Hypoxia
condition

Arterial inflow ↑↑
Venous return ↑↑

Repeated exposure

Reactive hyperemic 

Blood flow ↑↑

Vascular function?

Figure 1: Hypothesised changes in vascular function in response to BFR exercise and training. BFR, blood flow restriction; GH, growth
hormone; NO, nitric oxide; VEGF, vascular endothelial growth factor; Bold refers to known results from previous studies and Italic means
unknown and inconsistent results form previous studies.

is well established that aerobic exercise can improve vascular
function but with insufficient muscle hypertrophy, while it is
possible that high-intensity resistance training can produce
muscle hypertrophy but with impaired vascular function.
Higher load of resistance training should be considered
carefully to apply aged people, disease patients, and rehabili-
taining athletes. This paradoxical problem remains unsolved.
BFR exercise and training might be a novel therapeutic
modality because it combines lower exercise intensity than
higher-intensity resistance training from the point view of
during exercise with enhanced reactive hyperemic blood
flow after cuff release. Although accumulating evidence has
revealed that BFR training leads to muscle hypertrophy
and strength increase as well as high-intensity resistance
training, little attention has been given to the impact of BFR
training on vascular function. At least the majority of the
previous studies have demonstrated that BFR training did
not impair arterial compliance. Conversely, the effect of BFR
training and BFR walking on endothelial function assessed
by FMD is not consistent. Available evidence suggests that
acute BFR training did not increase oxidative stress markers
or coagulation factors. Also, the effect of BFR training on
vascular function may be influenced by various factors, such
as, age, sex, exercise type, intensity, applied cuff pressure, and
intervention period, not to mention the different evaluative
methods for vascular function. However, the majority of
BFR exercise and training use lower intensity, that is, 20–
40% 1 RM, compared to high-intensity resistance training,
for example, >80% 1 RM. High-intensity resistance training
has a possibility to impair vascular function. Therefore, BFR
exercise and training seems to become novel method because
BFR exercise and training can obtain muscle hypertrophy as

well as high-intensity resistance training even if BFR exercise
and training does not affect vascular function. Future
studies should be conducted with the aim of elucidating the
mechanisms of the influence of BFR training on vascular
function, with careful selection of the influencing parameters
mentioned above and the potential therapeutic benefits
for the elderly and for the rehabilitation of patients with
cardiovascular disease and physical injury.
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