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APPIAN is an automated pipeline for user-friendly and reproducible analysis of positron
emission tomography (PET) images with the aim of automating all processing steps up
to the statistical analysis of measures derived from the final output images. The three
primary processing steps are coregistration of PET images to T1-weighted magnetic
resonance (MR) images, partial-volume correction (PVC), and quantification with tracer
kinetic modeling. While there are alternate open-source PET pipelines, none offers all
of the features necessary for making automated PET analysis as reliably, flexibly and
easily extendible as possible. To this end, a novel method for automated quality control
(QC) has been designed to facilitate reliable, reproducible research by helping users
verify that each processing stage has been performed as expected. Additionally, a
web browser-based GUI has been implemented to allow both the 3D visualization of
the output images, as well as plots describing the quantitative results of the analyses
performed by the pipeline. APPIAN also uses flexible region of interest (ROI) definition—
with both volumetric and, optionally, surface-based ROI—to allow users to analyze data
from a wide variety of experimental paradigms, e.g., longitudinal lesion studies, large
cross-sectional population studies, multi-factorial experimental designs, etc. Finally,
APPIAN is designed to be modular so that users can easily test new algorithms for
PVC or quantification or add entirely new analyses to the basic pipeline. We validate the
accuracy of APPIAN against the Monte-Carlo simulated SORTEO database and show
that, after PVC, APPIAN recovers radiotracer concentrations within 93–100% accuracy.

Keywords: open science, automation, pipeline, software, quality control, PET

INTRODUCTION

The increasing availability of large brain imaging data sets makes automated analysis essential. Not
only is automated analysis important for saving time, but it also increases the reproducibility of
research. No existing post-reconstruction positron emission tomography (PET) software package
satisfies all the needs of researchers, specifically code that is free, open-source, language agnostic,
easily extendible, deployable on web platforms as well as locally, and including all necessary
processing steps prior to statistical analysis. We therefore present APPIAN (Automated Pipeline
for PET Image Analysis) a new open-source pipeline based on NiPype (Gorgolewski et al., 2011) for
performing automated PET data analysis. The starting point for APPIAN are reconstructed PET
images on which all necessary processing steps are performed to obtain quantitative measures from
the original PET images (Figure 1). In conjunction with the reconstructed PET image, APPIAN
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FIGURE 1 | APPIAN performs all processing steps necessary to obtain
quantitative parameters from reconstructed PET images. Flexible definition of
ROI allows use of APPIAN for a wide variety of experimental designs.
Integrated QC helps ensure that the pipeline performs as expected.

uses T1-weighted MR images to define regions of interest (ROI)
that are used at multiple processing stages. Briefly, APPIAN (1)
coregisters the T1 MR image with the PET image, (2) defines
ROI necessary for later processing steps, (3) performs partial-
volume correction (PVC), (4) calculates quantitative parameters,
(5) produces a report of the results, and finally, (6) performs
QC on the results (see Figure 1 for a schema of APPIAN, and
Discussion section for a detailed description of the pipeline,
complete with flowchart).

MATERIALS AND METHODS

Pipeline Overview
Coregistration
Positron emission tomography images are coregistered to the
corresponding non-uniformity corrected (Sled et al., 1998) T1
MR-images using a six parameter linear fitting algorithm that
minimizes normalized mutual information. The algorithm is
based on minctracc1 and proceeds hierarchically by performing
iterative coregistration at progressively finer spatial scales
(Collins et al., 1994). Coregistration is performed in two stages,
the first using a binary mask for the PET and the T1 MR images,
respectively, to obtain a coarse coregistration. This is followed by
a second registration step to refine the initial fit between the PET
and T1 MR images without the use of the binary images.

MR Image Processing
T1 structural preprocessing is performed if the user does not
provide a binary brain mask volume and a transformation file
that maps the T1 MR image into stereotaxic space. If these inputs
are not provided, APPIAN will automatically coregister the T1
MR image to stereotaxic space. By default, the stereotaxic space
is defined on the ICBM 152 6th generation non-linear brain

1https://github.com/BIC-MNI/minc-toolkit-v2

atlas (Mazziotta et al., 2001), but users can provide their own
stereotaxic template if desired. Coregistration is performed using
an iterative implementation of minctracc (Collins et al., 1994).
Brain tissue extraction is performed in stereotaxic space using
BEaST (Eskildsen et al., 2012). In addition, tissue segmentation
can also be performed on the normalized T1 MR image.
Currently, only ANTs Atropos package (Avants et al., 2011) has
been implemented for T1 tissue segmentation but this can be
extended based on user needs.

Regions of Interest
Regions of interest have an important role in three of the
processing steps in APPIAN: PVC, quantification, and reporting
of results. ROIs are used in PVC algorithms to define anatomical
constraints. When no arterial input is available for quantification,
a reference ROI is placed in a brain region devoid of specific
tracer binding. Finally, when reporting results from APPIAN,
ROIs are needed to define the brain areas from which average
parameters are calculated for final statistical analysis. ROIs for
each of these processing steps can be defined from one of three
sources. The simplest ROI are those derived from a classification
of the T1 MR image, e.g., using ANIMAL (Mazziotta et al., 2001),
prior to using APPIAN. Users can also use tissue classification
software implemented in APPIAN to classify their T1 MR images,
thereby eliminating the need to run a strictly MR image-based
pipeline prior to using APPIAN.

Regions of interest can also be defined on a stereotaxic atlas,
e.g., AAL (Tzourio-Mazoyer et al., 2002), with a corresponding
template image. In this case, the template image is non-
linearly coregistered to the T1 MR image in native space, and
subsequently aligned to the native PET space of the subject.
Finally, it is frequently necessary to manually define ROI on each
individual MR image, for instance when segmenting focal brain
pathologies such as a tumor or ischemic infarct. This option is
also implemented in APPIAN.

Partial-Volume Correction
In PET, partial-volume effects result from the presence of
multiple tissue types within a single voxel and the blurring
of the true radiotracer concentrations. PVC of PET images
is thus necessary to accurately recover the true radiotracer
distribution and, for example, differentiate between true neuronal
loss from cortical thinning. Several methods have been proposed
to perform PVC, many of which are implemented in PETPVC
(Thomas et al., 2016). In addition, we have also implemented
idSURF (Funck et al., 2014), a voxel-wise iterative deconvolution
that uses anatomically constrained smoothing to control for noise
amplification while limiting the amount of spill-over between
distinct anatomical regions. APPIAN thus allows the user to
select the appropriate PVC method based on their needs and
their data. If the desired PVC method is not implemented in
APPIAN, it can be easily included in the pipeline by creating a
file describing the inputs and outputs of the method.

Quantification
In PET images, quantitative biological or physiological
parameters—such as non-displaceable binding potential or
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cerebral blood flow—are often calculated from the measured
temporal change of tissue radiotracer concentration, so-called
time activity curves (TACs), within voxels or ROIs. Many models
exist for performing quantification depending on the type of
radiotracer, parameter of interest, and time frames acquired.
The quantification methods available in APPIAN are from
the Turku PET Centre tools (Oikonen, 2017). Currently, the
implemented models are: the Logan Plot (Logan et al., 1990),
Patlak–Gjedde Plot (Gjedde, 1982; Patlak et al., 1983), Simplified
Reference Tissue Model (Gunn et al., 1997), and standardized
uptake value (Sokoloff et al., 1977). APPIAN implements both
voxel-based and ROI-based quantification methods. It can
also process arterial input functions as well as input functions
from reference regions devoid of specific binding. Arterial
inputs are in the “.dft” format described by the Turku PET
Centre2.

Results Report
The ROI defined in “MR Image Processing” section are used to
calculate regional mean values for the parameter of interest from
the output images after coregistration, PVC and quantification
processing steps. Additionally, if cortical surface meshes are
provided by the user, the output images can be interpolated
on these meshes and be used to derive surface-based parameter
estimates. Regional mean parameter values are saved in wide
format ‘.csv’ files in the so-called ‘vertical format’ (i.e., the output
measure from each subject and each region is saved in a single
column). This standardized data format simplifies subsequent
analysis with statistical software, such as R (R Core Team, 2016)
or scikit-learn (Pedregosa et al., 2001).

APPIAN also calculates group-level descriptive statistics
obtained from the output images. The group-level statistics that
are provided exploit the BIDS naming convention which requires
that file names include the subject ID, the task or condition, and
the scanning session. APPIAN thus provides users with summary
statistics for the subjects, tasks, and sessions. Descriptive statistics
are plotted and displayed in a web browser-based GUI to allow
simple and easy visualization of the results.

Quality Control and Visualization
APPIAN includes both visual and automated quality control.
Visual quality control is facilitated by the incorporation of
BrainBrowser–a 3D/4D brain volume viewer (Sherif et al., 2015)–
in the web browser-based GUI (Figure 2). This makes it possible
to visualize the output images of the coregistration, PVC and
quantification processing stages without the need for additional
software.

While visual inspection remains the gold-standard method
for verifying the accuracy of PET coregistration (Ge et al., 1994;
Andersson et al., 1995; Alpert et al., 1996; Mutic et al., 2001;
DeLorenzo et al., 2009), automated QC can be useful in guiding
the user to potentially failed processing steps. The first stage
of the automated QC is to define a QC metric that quantifies
the performance of a given processing step. For example, in the
case of PET-MRI coregistration the relevant QC metric is the

2http://www.turkupetcentre.net/petanalysis/format_tpc_dft.html

similarity metric that quantifies the joint-dependence of spatial
signal intensity distribution of the PET and MR images. By itself
a single metric is insufficient to determine whether the processing
step has been performed correctly. However, by calculating the
distribution of several QC metrics for all subjects, it is possible to
identify potential anomalies. Kernel density estimation is used to
calculate the probability of observing a given QC metric under the
empirical distribution of the entire set of QC metrics. The results
are displayed in an interactive plot in the web browser-based
dashboard (Figure 3).

File Formats
Input files for APPIAN are organized following the Brain Imaging
Data Structure (BIDS) specifications (Gorgolewski et al., 2016),
which uses the Nifti format. In addition, APPIAN also supports
input files in the MINC file format (Vincent et al., 2016), which
are also organized according to the BIDS specifications but with
the MINC file extension.

High Performance Computing
APPIAN is optimized for high performance computing in two
ways. APPIAN is distributed in a Docker container3 that contains
all the software necessary to run APPIAN on any computing
platform supporting such containers (i.e., where Docker or
Singularity has been installed). APPIAN can therefore be run
identically across a wide variety of computing environments.
This not only facilitates the reproducibility of results, but also
allows APPIAN to be deployed simultaneously across multiple
computing nodes to analyze subjects in parallel. Additionally,
APPIAN supports multithread processing via NiPype and can
therefore be run in parallel on multiple CPUs on a given
computing platform, e.g., a personal workstation or a processing
node on a server.

APPIAN also follows the specification of the BIDS apps in
being capable of running subject-level and group-level analyses
independently. This means that an instance of APPIAN can be
run for each subject in parallel across the available computing
resources. Once the individual processing steps have been
completed and stored in the same location, the group-level
analyses can then be run, e.g., automated QC and reporting
of group-level descriptive statistics. Thus, a given data set can
be processed with APPIAN at different times and on different
computing platforms.

The ability to process large data sets in an easy, fast, and
reproducible manner is essential, particularly in cases where
parameters for a given algorithm need to be optimized or where
the performance of different algorithms at a given processing
stage is being compared.

Accuracy of APPIAN
The accuracy of the APPIAN pipeline was evaluated using the
SORTEO Monte-Carlo simulated PET data set (Reilhac et al.,
2005). These data consist of 15 subjects with a real T1 MR
image segmented into anatomical defined ROIs derived from
these images. From each of these anatomically segmented images,

3https://www.docker.com/
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FIGURE 2 | Output images produced by APPIAN can be viewed via a web browser-based dashboard. Visual QC for the coregistration stage can be performed by
viewing the MRI, PET, and the fusion images of the two.

three sets of simulated PET images were produced by assigning
empirically derived TACs of radiotracer concentrations of [11-
C]-raclopride (RCL), [18-F]-fluorodeoxyglucose (FDG), and [18-
F]-fluorodopa (FDOPA) into each segmented ROI. The PET
images were simulated using the SORTEO Monte-Carlo PET
simulator for the Siemens ECAT HR+ scanner (Adam et al.,
1997).

Magnetic resonance images were processed using CIVET.
CIVET uses the non-parametric N3 method to correct MR
field non-uniformity (Sled et al., 1998). The MR image is then
transformed to MNI stereotaxic space of the ICBM 152 6th
generation non-linear brain atlas (Mazziotta et al., 2001), using a
12 parameter affine transformation (Collins et al., 1994). Spatially
normalized images are then segmented into gross anatomical
regions with ANIMAL (Collins and Evans, 1997). Thus all ROI
images used in the subsequent analysis were derived using CIVET
prior to running APPIAN.

The accuracy of the APPIAN was verified by comparing the
results of the three central processing stages (coregistration, PVC,
quantification) to the true radiotracer concentration TACs or
the parametric values derived from them. For the coregistration
and PVC stages, the integral of the TAC recovered from the
processed images was compared to the integral of the true
radiotracer concentration TACs. Parameter values were obtained
by calculating the Ki, BPnd, and SUVR for the FDOPA, RCL,
and FDG images, respectively, and compared to the same values
calculated from the true radiotracer concentration TACs.

The accuracy for each processing stage was calculated by
dividing the results from APPIAN by the true radiotracer
concentration or parametric values. This calculation was
performed for a specific ROI for each radiotracer: cortical
GM for FDG, the putamen for FDOPA, and the caudate
nucleus for RCL. PVC was performed using the GTM
method with a point spread function of 6.5 mm full-width
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FIGURE 3 | Output from automated quality control (QC) allows users to assess the performance of major processing steps at a glance. Here the automated QC
metrics for the coregistration processing stage are shown: CC, cross-correlation; MI, mutual information; FSE, feature-space entropy.

TABLE 1 | Accuracy is measured as the ratio of recovered to true radiotracer concentration or parameter value. APPIAN accurately recovers radiotracer concentrations
and tracer kinetic parameters from the SORTEO simulated PET images.

Radiotracer ROI PVE Analysis Metric Accuracy

FDG GM Uncorrected Coregistration integral 0.66 ± 0.006

FDG GM Corrected PVC integral 0.93 ± 0.025

FDG GM Corrected Quantification SUVR 0.94 ± 0.048

FDOPA Putamen Uncorrected Coregistration integral 0.69 ± 0.03

FDOPA Putamen Corrected PVC integral 1 ± 0.055

FDOPA Putamen Corrected Quantification Ki 0.83 ± 0.238

RCL Caudate Nucleus Uncorrected Coregistration integral 0.77 ± 0.016

RCL Caudate Nucleus Corrected PVC integral 1.05 ± 0.035

RCL Caudate Nucleus Corrected Quantification BPnd 1.03 ± 0.042

half-maximum (Rousset et al., 1998). The cerebellum was used as
a reference region for the calculation of parametric values in the
quantification stage.

RESULTS

APPIAN was able to recover accurate values at each major
processing stage (Table 1), see Figure 4 for illustrative example
from one subject. The recovered values for the coregistration
and PVC were the integral of the regional TACs. For the
quantification stage the recovered values were the parametric

values as described in section “Accuracy of APPIAN”. The
accuracy of the coregistration stage was between 0.66 and
0.77, which represented an underestimation of the radiotracer
distribution due to partial-volume effects. The accuracy was
significantly improved by PVC, ranging between 0.93 and
1.05. The effect of PVC on the uncorrected radioactivity
concentration for each radiotracer is shown in Figure 5. The
PVC led to a slight overestimation in the caudate nucleus
with RCL, but near perfect accuracy in the putamen with
FDOPA. The final output parametric values were very accurate
for RCL (1.02) and FDG (0.94), and lower in the case of
FDOPA (0.83).
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FIGURE 4 | Illustrative example of the image volumes produced by APPIAN
for the three major processing stages for FDG, FDOPA, and RCL.

DISCUSSION

Accuracy of APPIAN
APPIAN recovered accurate values for each of the three major
processing steps on the SORTEO simulated PET data set. Not
surprisingly, the accuracy of the recovered parameters was
initially low (0.65–0.77), because of partial-volume effects. This
improved significantly after PVC with the GTM method (0.93–
1.05). For RCL and FDG, the parametric values resulting from
the quantification processing stage maintained a similar level
of accuracy to that of the PVC radiotracer concentrations.
This was not the case with FDOPA where the accuracy
decreased from 1 to 0.83. The decrease in accuracy was

due to noise in the radiotracer concentrations that were
measured in the caudate nucleus, which led to errors in the
calculation of the integrals used by the Patlak plot to determine
Ki.

For each radiotracer, the validation of APPIAN’s accuracy was
performed with differing ROI and using different methods for
calculating parametric values. These differences mean that it is
not possible to quantitatively compare APPIAN’s accuracy for
each radiotracer. The choice of ROI and algorithms for deriving
parametric values were chosen to reflect analysis procedures
that are widely used by researchers for each of the three
radiotracers. It should be noted that the cerebellum is not
typically used as a reference region for calculating SUVR or Ki
for FDG and FDOPA, respectively. However, while the specific
location of the reference region is of utmost importance when
performing true PET quantification, it is not relevant for verifying
the computational accuracy of the algorithms in the APPIAN
pipeline.

Comparison to Existing Pipelines
Several PET processing pipelines have been presented in recent
years. We here briefly describe them to highlight their relative
strengths (Table 2) and discuss how APPIAN compares to these.
There are other PET pipelines that carry out at least three of the
six steps performed by APPIAN, they are: PMOD (Mikolajczyk
et al., 1998), CapAIBL (Bourgeat et al., 2015), MIAKAT (Gunn
et al., 2016), Pypes (Savio et al., 2017), and NiftyPET (Markiewicz
et al., 2017).

PMOD
PMOD (Mikolajczyk et al., 1998) is the gold-standard software
for quantification of PET images and is distributed in modules
that perform specific aspects of PET analysis. PKIN includes
an exhaustive list of quantification models and preprocessing
methods for blood and plasma activity curves for analyzing
regional PET data, while PXMOD performs the same analyses
at the pixel level. PMOD also has modules that perform
analysis and PVC (PBAS), and image registration (PFUS). All
these modules can be used interactively using a graphical user

FIGURE 5 | Time-activity curves for each subject and each radiotracer. Blue points indicate the uncorrected PET radioactivity concentration after PET-MRI
coregistration and green points show radioactivity concentration after PVC with the GTM method. PVC corrects for spill-over of radiotracer distribution and increases
the measured radioactivity concentration.
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TABLE 2 | Many different PET processing software exist with various features.

Feature MIAKAT PMOD Pypes CapAIBL NiftyPET APPIAN

Cost Free 2,970–14,850$ Free Free Free Free

Open-source Yes No Yes No Yes Yes

Language MATLAB Java Agnostic∗ C++ Python Agnostic∗

Quantification Yes Yes No SUVR No Yes

PVC No No Yes No Yes Yes

Structural imaging Yes Optional Yes No Yes Required

Cloud-based processing No DICOM server No Yes Maybe Yes

Local processing Yes Yes Yes No Yes Yes

Visualization GUI GUI Result plots 3D surfaces No Dashboard

Surface-based No No No Yes No Yes

Reconstruction No No No No Yes No

APPIAN attempts to provide all post-reconstruction tools needed for PET research. ∗Agnostic: these packages are written in Python but support software written in any
language as long as it can run on the command line. Here, some of the most established and more recent pipelines are compared to APPIAN.

interface (GUI) but can also be linked together in a pipeline
to automate the analysis of large data sets. A particularly
useful feature is the option to add a QC step after each
processing stage. PMOD thus includes all the preprocessing
and analysis methods needed for automated PET analysis.
As a commercial software solution however, the PMOD
code is not open-source and thus imposes limitations on
the user community with respect to flexible development
and implementation of new image processing and analytical
methods.

CapAIBL
CapAIBL (Bourgeat et al., 2015) is a surface-based PET
processing pipeline that is available through an online platform.
It spatially normalizes PET images to cortical surface templates
for the surface-based analysis and visualization of PET data
without the need for structural imaging. Cortical surfaces are
derived from a standardized template, thus subcortical structures
such as the basal ganglia are not included in the analysis.
A purely surface-based approach is also limited to images from
structurally intact brains and may thus be difficult to apply to
datasets with focal brain lesions. Nonetheless, CapAIBL provides
a highly original method for performing automated PET analysis
that is useful for the study of the cerebral cortex in cases
where no structural image has been acquired alongside the PET
image. Dore et al. (2016) have shown a close correspondence
in PET quantification across a wide range of radiotracers with
coregistered PET and MR images and using CapAIBL, i.e.,
without coregistration.

Pypes
A recent multi-modal pipeline, Pypes (Savio et al., 2017),
combines PET analysis with structural, diffusion, and functional
MR images. This pipeline is free, open-source, and it is
also written using NiPype (Gorgolewski et al., 2011). Pypes
leverages several brain imaging software packages–including
SPM12 (Ashburner, 2012), FSL (Jenkinson et al., 2012), and AFNI
(Cox, 2012)–to provide multi-modal workflows. While Pypes
does incorporate PVC, it does not incorporate tracer kinetic
analysis, flexible ROI definition, or automated QC.

MIAKAT
MIAKAT (Mikolajczyk et al., 1998) is the most complete, open-
source PET processing pipeline. In addition to featuring many
tracer-kinetic models, MIAKAT also includes motion-correction;
a feature that is not currently implemented in APPIAN. One
of MIAKAT’s most important features is its user-friendly GUI.
This makes MIAKAT easy to use for users not familiar with the
command-line interface. In addition to analyzing PET images,
MIAKAT also includes the option to include structural images
which are used to define regions of interest (ROI). MIAKAT has
been recently extended for use on non-brain PET image analysis
and for application to species other than humans (Searle and
Gunn, 2017).

One limitation of MIAKAT is that it does not include PVC,
although this could potentially be added to the pipeline. More
importantly, it is built using MATLAB, which restricts MIAKAT
to a single, proprietary language with licensing restrictions.

NiftyPET
NiftyPET is another open-source, Python-based PET processing
pipeline that implements Graphical Processing Unit-processing
for massively parallel processing (Markiewicz et al., 2017). It
is the only PET processing pipeline to reconstruct PET images
from sinograms and to perform PVC (Yang et al., 1995).
It should be noted that the authors of NiftyPET use the
term “quantification” to refer to quantification of radioactivity
concentrations, whereas this term is here used to refer to
the quantification of underlying biological or physiological
parameters. NiftyPET therefore does not include parametric
quantification.

APPIAN
There are a wide variety of PET pipelines presently available, each
satisfying a different niche. APPIAN provides a highly flexible
framework for processing large PET data sets, see Figure 6
for a detailed flowchart of APPIAN. One important feature is
that APPIAN allows the user to define ROI from a variety
of sources and is therefore compatible with a wide variety of
experimental designs. Whereas lesion studies frequently use a
binary lesion image defined on each subject’s respective structural
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FIGURE 6 | Flowchart of the modules implemented in APPIAN. Green boxes indicate mandatory inputs, blue boxes indicate optional inputs, and tan boxes indicate
the primary quantitative outputs of the pipeline.

image in its native coordinate space, it may be necessary for
some studies (e.g., investigating lesion effects on functional
systems as in aphasia post stroke) to use a common brain
atlas in MNI-space. On the other hand, PET studies of, e.g.,
microglial inflammation may identify ROI based on the subjects’
respective tracer binding pattern in PET images in their native
space. Quantification of PET images also requires users to be
able to use either ROI to define a reference region without
specific binding of the radiotracer or TAC measured from arterial
blood samples. APPIAN is therefore suited for a wide variety
of experimental contexts because of its flexible system for ROI
definition.

APPIAN is also modular and easily extendable so that users
can either test new algorithms, e.g., a new PVC method, or
add entirely new analyses to the pipeline. Moreover APPIAN,
like Pypes, is written with NiPype and can thus use any
program that can be run in a Bash shell environment. Users
therefore do not need to rewrite their software in, e.g., Python
if they wish to implement it in APPIAN. Also, given that

descriptive statistics for ROI are automatically generated in
the reporting stage, it is easy to extend APPIAN to perform
sophisticated group-wise analyses. For example, investigators
interested in implementing graph theoretical analyses can append
their analysis to the group-level processing and input the
descriptive statistics that are collected at the reports stage to their
analysis.

Finally, APPIAN implements automated and visual QC to
facilitate the analysis of large data sets. This is essential because as
multiple processing stages are linked together into increasingly
sophisticated pipelines, it is important that users be able to
easily and reliably confirm that each processing stage has been
performed correctly.

Using APPIAN
APPIAN is available for both local use and cloud-based use. The
source code for APPIAN is freely available4. While the code-base

4www.github.com/APPIAN-PET/APPIAN
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will be maintained by the authors, we hope to create a community
of developers to support the project in the long-term. Changes
to APPIAN will be validated against the open CIMBI PET data5

(Knudsen et al., 2016). APPIAN is provided via a Docker (see
footnote 3) image and can be easily downloaded from Docker hub
under tffunck/appian:latest. Cloud-based APPIAN is available via
the CBRAIN platform6.

CONCLUSION

APPIAN is a novel PET processing pipeline that seeks to
automate the processing of reconstructed PET images for a
wide variety of experimental designs. It is therefore flexible
and easily extendable. In order to ensure that each processing
step is performed as expected, visual and automated QC
are implemented. Our results on Monte-Carlo simulated PET
data have shown that APPIAN accurately recovers radiotracer
concentration and parametric values. Future work will focus on

5 https://openneuro.org/datasets/ds001421
6 portal.cbrain.mcgill.ca

increasing the sensitivity of the automated QC and implementing
more algorithms for coregistration, PVC, and quantification.
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