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ABSTRACT
◥

Breast-conserving surgery (BCS) is commonly used for the
treatment of early-stage breast cancer. Following BCS, approxi-
mately 20% to 30% of patients require reexcision because postop-
erative histopathology identifies cancer in the surgical margins of
the excised specimen. Quantitativemicro-elastography (QME) is an
imaging technique that maps microscale tissue stiffness and has
demonstrated a high diagnostic accuracy (96%) in detecting cancer
in specimens excised during surgery. However, current QME
methods, in common with most proposed intraoperative solutions,
cannot image cancer directly in the patient, making their translation
to clinical use challenging. In this proof-of-concept study, we aimed
to determine whether a handheld QME probe, designed to inter-
rogate the surgical cavity, can detect residual cancer directly in the
breast cavity in vivo during BCS. In a first-in-human study, 21 BCS
patients were scanned in vivowith the QME probe by five surgeons.

For validation, protocols were developed to coregister in vivoQME
with postoperative histopathology of the resected tissue to assess the
capability of QME to identify residual cancer. In four cavity aspects
presenting cancer and 21 cavity aspects presenting benign tissue,
QME detected elevated stiffness in all four cancer cases, in contrast
to low stiffness observed in 19 of the 21 benign cases. The results
indicate that in vivo QME can identify residual cancer by directly
imaging the surgical cavity, potentially providing a reliable intrao-
perative solution that can enable more complete cancer excision
during BCS.

Significance: Optical imaging of microscale tissue stiffness
enables the detection of residual breast cancer directly in the surgical
cavity during breast-conserving surgery, which could potentially
contribute to more complete cancer excision.

Introduction
Breast-conserving surgery (BCS) is themost commonprocedure for

the treatment of early-stage breast cancer in many jurisdictions,
including the United States and Europe (1–3). Currently, �20% to
30% of BCS patients undergo reexcision because postoperative histo-
pathology of the resected specimen identifies cancer in the mar-

gins (4, 5). Additionally, substantial variation in reexcision rates
between physicians and institutions has been reported, with a recent
study reporting that the physician level reexcision rate ranges from 0%
to 91.7%, with more than 17.5% of the physicians having a reexcision
rate greater than the expert consensus cutoff of 30% (6). These
additional operations can produce substantial physical, psychological,
and financial burdens for patients and can delay recommended
adjuvant therapies (4, 7–9).

A number of intraoperative margin assessment methods have been
developed to address the high reexcision rate, including variants of
traditional pathology methods, in particular, frozen section analysis
and imprint cytology, and emerging imaging methods based on
spectroscopy, microscopy, tomography, and fluorescence (10–12).
None of thesemethods have achieved broad clinical acceptance, largely
because they have not been able to meet the requirements of both high
diagnostic accuracy and practical implementation (10, 11, 13–17).
More importantly, most techniques assess the margins of excised
specimens, providing only an indirect indication of residual cancer
in the cavity, making it challenging to relate cancer identified in a
specimen to its corresponding location in the cavity. This often results
in the surgeon resecting large regions of noncancerous tissue to avoid
leaving residual cancer in the cavity (18, 19). Direct, in vivo assessment
of residual cancer in the surgical cavity may provide a more accurate
and practical solution that fits efficiently within the existing surgical
workflow (14).

Quantitative micro-elastography (QME) is an optical imaging
technique that visualizes microscale stiffness in three dimensions
(3D) to depths of �1 mm in breast tissue (20). QME is based on
optical coherence tomography (OCT; spatial resolution: �2–10 mm),
which forms images based on optical backscattering from boundaries
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within tissue and can be considered as an optical equivalent of
ultrasound (21, 22). OCT is effective for the identification of adipose
tissue, because of the distinctively low optical backscattering from
within adipose cells, in contrast to other dense tissues including cancer
and benign stroma, which both exhibit relatively high optical back-
scattering. As a solution to address OCT’s limited ability to distinguish
between cancer and the surrounding benign stroma (23–25), QME
uses OCT to further image the microscale deformation introduced to
tissue by a mechanical load (26). Image processing is used to convert
measured deformation into microscale maps of tissue stiffness, deter-
mined from the ratio of microscale stress (force per unit area) at the
tissue surface to corresponding microscale strain (local deformation)
in the tissue (20). QME can identify breast cancer based on its elevated
microscale stiffness (27, 28). A recent ex vivo QME study of BCS
clinical specimens, performed on 90 patients, demonstrated a sensi-
tivity and specificity of 92.9% and 96.4% (25), respectively, in the
detection of cancer within 1 mm of the surface of wide local excision
(WLE) specimens. However, existing QME techniques have been
implemented using benchtop imaging systems and therefore cannot
be performed in vivo, precluding imaging of the surgical cavity.

We hypothesized that the extension of QME to a handheld probe,
specifically designed to interrogate the surgical cavity, can enable
surgeons to identify residual cancer in the surgical cavity. The primary
outcome, consistent with previous QME studies on excised speci-
mens (25), is the correspondence of high microscale stiffness with
regions of cancer. Secondary outcomes are the development of a
protocol to coregister in vivo cavity scans with histopathology per-
formed on resected tissue, and preliminary validation of the practi-
cality of in vivoQME.Here, we demonstrate the initial proof of concept
of in vivo QME for in-cavity identification of residual cancer during
BCS based on its elevated microscale stiffness.

Materials and Methods
Study design

A first-in-human clinical study was performed in Fiona Stanley
Hospital, Western Australia, with ethics approval from the South
Metropolitan Health Service Human Research Ethics Committee
(PRN: RGS0000000499) and registration with the Australian New
Zealand Clinical Trials Registry (ANZCTR; ACTRN12619001157167)
and Australian Therapeutic Goods Administration (TGA; Clinical
Trial CT-2018-CTN-04145-1 v1 TGA CTN). This study was con-
ducted in compliance with the tenets of the Declaration of Helsinki
and National Statement on Ethical Conduct in Human Research
(2007) in Australia. Only female candidates (age: ≥18 years) with
histologically confirmed invasive or in situ carcinoma and who were
candidates for BCS based on clinical and radiological evaluation were
recruited. Patients who were pregnant, lactating, or unable to give
consent were excluded. A total of 26 BCS patients were enrolled with
written informed consent received from all patients prior to the
surgery. Twenty-one patients (19 patients undergoing initial WLE
surgery and 2 patients undergoing reexcision surgery) were scanned
with in vivo QME. The two reexcision patients were included to
provide a more comprehensive assessment of in vivo QME. Five
patients were consented but not scanned due to changes in the surgery
schedule.

Clinical workflow
Prior to clinical scanning, the electrical and biological safety of the

QMEprobe was confirmed at the hospital. Each surgeonwas trained to
use the QME probe on breast-mimicking phantoms (29), minimizing

the risk of misusing the QME probe. Each surgeon reported that the
probewas straightforward and comfortable to use after a single, 1-hour
training session. Importantly, no significant variations in the QME
image quality were observed between surgeons. The QME probe was
then sterilized using hydrogen peroxide (STERRAD 100NX,
Advanced Sterilization Products). At the beginning of the surgery,
the surgeon prepared the probe for imaging in the sterile field. The
surgeon placed a sterilized compliant silicone layer on the probe tip to
enable measurement of the force exerted on the cavity tissue and
applied sterile ultrasound gel and saline for lubrication (20). As an
extra barrier to minimize the potential risk of infection, the probe was
then placed in a sterile sheath (5-70340 KIT, Sheathing Technologies
Inc.).

In vivo QME was integrated with the standard surgical workflow
using the clinical protocol illustrated in Fig. 1. For the 19 WLE
patients, the surgeon first resected the WLE specimen (Step 1) and
placed it in the intraoperative specimen radiography (IOSR) device
(Trident, Hologic Inc.) for assessment (Step 2). From analysis of the
margins in the IOSR image and, also, from palpation, the surgeon
decided if, and from which cavity aspects, a cavity shaving would be
taken at Step 4. A cavity aspect is the location in the surgical cavity
corresponding to the anatomic orientation of the breast, as defined in
Supplementary Table S1 and illustrated in Supplementary Fig. S1 (30).
A cavity shaving, as defined in Supplementary Table S1, is the
additional tissue removed after resection of the main WLE specimen
if the surgeon suspects that residual cancer remains in the cavi-
ty (31, 32). Prior to taking cavity shavings, the surgeon placed the
QME probe in the cavity to scan the aspects where cavity shavings
would subsequently be taken (Step 3). If the surgeon decided not to
take a cavity shaving, he/she scanned selected cavity aspects of interest.
Importantly, the decision to take a cavity shaving followed current
standard-of-care protocols andwas not influenced byQME images. To
ensure this, the surgeon made the decision on taking a cavity shaving
prior to scanning and was also blinded to the QME cancer evaluation
(i.e., QME-determined cancer presence/absence) during the surgery.

For the two reexcision patients, the surgeon reopened the surgical
site and scanned the cavity aspects for reexcision, as determined by
histopathology of the resected specimen from the previous BCS
surgery. For simplicity, the subsequently excised tissue is also referred
to as a cavity shaving.

During in vivoQME scanning, the surgeon first briefly surveyed the
selected cavity aspect using the real-time imaging capability of the
probe and identified regions of mainly dense tissue (i.e., regions not
dominated by adipose tissue). Subsequently, 3D scans of a tissue
volume of 6� 6� 3.6 mm (364� 364� 1,024 pixels) were acquired.
The acquisition time for each 3D scan was 3.3 seconds. To provide
support and to ensure that adequate force was applied to the region
scanned by the probe, the surgeon typically used the non-probe hand
to provide back support to the breast.

After QME scanning, the surgeon completed the procedure follow-
ing standard protocols used in the hospital. The WLE specimen and
cavity shavings (if taken) were immediately transferred to an adjacent
laboratory for routine postoperative histopathology and coregistration
with in vivoQME (Step 5 in Fig. 1). As shown in Fig. 1, the regions of
the cavity scanned with in vivo QME corresponded directly to the
tissue removed as a cavity shaving and were adjacent to the WLE
specimen. Thus, histopathology of the cavity shaving provided a more
direct validation of in vivoQME. However, a cavity shaving was taken
only if deemed necessary by the surgeon for the treatment of the
patient. Subsequently, in some instances (23 scanned cavity aspects) as
shown in Step 5 in Fig. 1, histopathology performed on the cavity
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shavings was coregistered with in vivo QME acquired prior to the
cavity shaving being taken. In the other 15 scanned cavity aspects,
QME was coregistered with histopathology of the WLE specimen in
the region adjacent to that scanned in the cavity using QME.

QME scanning
The QME system comprises an OCT imaging stack and a handheld

probe unit. It provides an axial and lateralOCT resolution of 5.5mm(in
air) and 14.1 mm, respectively, at a center wavelength of 1,300 nm and
an axial line scan (A-scan) rate of 146 kHz. The handheld probe
incorporates an optical subsystem for OCT imaging and a mechanical
subsystem (an annular piezoelectric actuator) to impart compressive
loading to the tissue (20, 28). The OCT subsystem uses spectral-
domain OCT and operates in a common-path configuration (33). A
video camera is also embedded in the probe to photograph the tissue
being imaged by QME, facilitating coregistration with postoperative
histopathology.

To avoid imaging artifacts caused by the motion of the patient
or surgeon, the microelectromechanical systems (MEMS) scanning
mirror incorporated in the probe enabled cross-sectional OCT images
(B-scans) to be acquired at 220 Hz, providing a 3D scan acquisition
time of 3.3 seconds. The annular piezoelectric actuator was synchro-
nized with the optical scanning, allowing the tissue to be deformed
up to 20mmbetweenOCTB-scan acquisitions. At each lateral location,
a pair of OCT B-scans were acquired, one before and one after
mechanical loading, from which the stiffness at each pixel was
determined in real time using image processing algorithms with
graphics processing unit acceleration (20). Briefly, the signal proces-
sing used OCT B-scan pairs to estimate the axial microstrain resulting
from mechanical loading at each location within the OCT volume. By

relating this microstrain to the corresponding stress at the tissue
surfacemeasured by the compliant silicone layer, the spatially resolved,
microscale stiffness of the tissue is presented in QME images (see
Supplementary Note for more technical details on both OCT and
QME; ref. 20).

Representative OCT/QME B-scans and en face images (i.e., images
parallel to the tissue surface) from 3D scans acquired from four
patients are shown in Results. OCT images are displayed in grayscale
on a logarithmic scale from 0 to 29–35 dB. QME images are displayed
in false color on a logarithmic scale from1 to 500 kilopascals (kPa) and,
for the en face images, are overlaid on the corresponding OCT images
with local regions masked to show QME in dense tissue (25, 33).

QME cancer evaluation
En face images of tissue stiffness from 3D QME scans were

subsequently used to determine the presence or absence of cancer
in the scanned cavity tissue. QME cancer criteria established in a
previous ex vivo diagnostic accuracy study were utilized in in vivo
QME scans to determine the presence of cancer (25). Following
these criteria, high stiffness was defined as >26 kPa (25). Cancer
was considered present when the QME scan contained an area of
high stiffness covering ≥75% of a 1-mm circle in the en face
images (25).

Postoperative histopathology
All WLE specimens (Supplementary Fig. S2A) and cavity shavings

were inked tomark corresponding aspects of the cavity andwere cut in
a bread loafing manner into multiple �4- to 5-mm-thick sections
(Supplementary Fig. S2B). If the dimension of the section was too large
to fit onto a single histopathology slide, the section was further divided

Figure 1.

Illustration of the clinical protocol used in the study.

Detection of Residual Breast Cancer Using QME
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into multiple blocks (Supplementary Fig. S2C). These sections/blocks
were fixed in formalin, processed, embedded in paraffin, cut into
histopathology slices, and stained with hematoxylin and eosin,
with one histopathology slide imaged from each section/block
(Supplementary Fig. S2D) and subsequently annotated by experi-
enced pathologists (Fellows of the Royal College of Pathologists of
Australasia). This created an image series with a spacing of �4 to
5 mm, with a similar slide orientation to that of the OCT B-scans
acquired with the probe in the cavity. WLE margins adjacent to the
cavity tissue scanned with QME and cavity shaving margins from
the cavity side scanned with QME before the cavity shaving was
taken were classified as positive (cancer at the tissue surface),
close (no cancer at the tissue surface but cancer within �1 mm
of the tissue surface) or negative (no cancer within �1 mm of the
tissue surface; refs. 25, 34–36), following the protocol established in
the previous ex vivo diagnostic accuracy study (25).

Image coregistration
B-scans in the 3D OCT scans acquired with the probe were

manually coregistered with a series of histopathology images similar
to those shown in Supplementary Fig. S2D and S2E (33). For scans
where a cavity shaving was taken, this process involved matching
distinctive features in OCT images, such as the morphology of
adipose tissue and dense tissue with corresponding features in
histopathology images. For scans where cavity shavings were not
taken, similar correspondence was identified between OCT B-scans
and the WLE histopathology corresponding to the tissue adjacent to
that scanned with QME in the cavity. Coregistration was achieved
for all 38 scanned cavity aspects, including the 23 cases with
available cavity shavings and the 15 cases with only WLE specimens
(Step 5 in Fig. 1). However, close and negative margins from the
WLE specimens (13 of the 15 cases) were not used for validation of
in vivo QME because they could not adequately confirm the
presence or absence of cancer to 1 mm depth in in vivo QME scans
of the cavity, as described in Results.

Data availability
The data generated in this study are available within the article

and Supplementary Table S2. The raw OCT and QME data gen-
erated in this study are available upon request from the correspond-
ing author.

Results
QME results summary

In vivoQMEwas performed on 38 cavity aspects from21patients by
five surgeons (1.8� 0.5 cavity aspects scanned per patient) undergoing
initial BCS surgery (n ¼ 19) or reexcision (n ¼ 2; Supplementary
Table S2).WLE specimens from all 19WLE patients underwent IOSR.
Cavity shavings were taken at a rate of 1.1 � 0.7 cavity shavings per
patient. Table 1 summarizes the clinical characteristics of the 21 BCS
patients.

As illustrated in Fig. 2, coregistered histopathology of the WLE
specimens and cavity shavings identified cancer in four cavity aspects
scanned from four patients, based on one positive and one close
margin in the cavity shavings, and two positive margins in the WLE
specimens. Coregistered histopathology of the cavity shavings iden-
tified no residual cancer for 21 scanned cavity aspects based on
negative cavity shaving margins. For the remaining 13 scanned cavity
aspects, coregistered histopathology showed close (n ¼ 1) or negative
(n¼ 12) WLE margins with no available cavity shavings, which could

not sufficiently indicate the cancer presence/absence in the scanned
cavity aspects.

In all four cancer cases confirmed by coregistered histopathology,
QMEpresented elevatedmicroscale stiffness indicative of cancer based
on the cancer criteria published previously (25). All four patients
received follow-up reexcision surgery. In contrast, QME of 19 of 21
scanned cavity aspects with negative cavity shaving margins presented
low stiffness. In total, in vivo QME of 25 scanned cavity aspects was
validated using the coregistered histopathology of theWLE specimens
or cavity shavings, as shown in Fig. 2. For the remaining 13 cavity
aspects, QME was coregistered with histopathology of the WLE
margins (i.e., no available cavity shavings), but conclusive validation
was not possible, as the close (n¼ 1) or negative (n¼ 12)WLEmargins
were considered ambiguous predictors of the presence or absence of
cancer in the surgical cavity. Details and QME results of all these
scanned cavity aspects are summarized in Supplementary Table S2.
Below, representative images are presented that demonstrate the
capability of QME to identify cancer, based on high stiffness (Figs. 3
and 4), and benign tissue, based on low stiffness (Figs. 5 and 6).

QME of ductal carcinoma in situ
Results from Cavity Aspect 1 of Patient 2 [age: 56 years, body mass

index (BMI): 33.3 kg/m2] in Supplementary Table S2 are presented
in Fig. 3, including the en face OCT and QME images, respectively,
in Fig. 3A and B, OCT and QME B-scans, respectively, in Fig. 3C
and D, coregistered histopathology in Fig. 3E and IOSR image
in Fig. 3F. An iodine-125 seed was used to guide the resection of the
impalpable cancer in the left breast of the patient (37). During surgery,
IOSR of the WLE specimen (Fig. 3F) did not indicate cancer in the
margins, which contributed to the decision of no additional cavity
shaving. However, postoperative histopathology identified multiple
regions of ductal carcinoma in situ (DCIS; arrowheads in Fig. 3E)
at the lateral margin of the WLE specimen. Consequently, the patient
had a follow-up reexcision surgery �12 weeks after the initial BCS
surgery.

Table 1. Clinical characteristics of the 21 BCS patients.

N (%) or mean � SD

Age (y) 54.6 � 11.2
BMI (kg/m2) 27.8 � 7.7
Neoadjuvant treatment 2 (9.5)
WLE procedure

Hookwire 1 (4.8)
Iodine-125 seed 13 (61.9)
Intraoperative specimen radiography 19 (90.5)

Duration of surgery (minutes) 61.4 � 23.2
Number of cavity shavings per patient 1.1 � 0.7
WLE pathologya

Invasive malignancyb 13 (61.9)
DCIS 10 (47.6)
Pleomorphic LCIS 1 (4.8)

Cavity shaving pathologya

Invasive malignancy 1 (4.8)
DCIS 2 (9.5)
LCIS 2 (9.5)

Abbreviations: BMI, body mass index; LCIS, lobular carcinoma in situ.
aPathology includes all cancers both within and beyond 1 mm of all margins.
bInvasive malignancy comprised 11 invasive ductal carcinomas not otherwise
specified, one mixed, and one with colloid (mucinous) ductal not otherwise
specified and mixed.
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QME scanning was performed on the lateral aspect of the surgical
cavity, with the en faceOCT andQME images shown in Fig. 3A andB,
where the tissue presents local regions of elevated stiffness
in Fig. 3B. Figure 3C–E presents coregistration of the OCT/QME
B-scans with histopathology. The scanned cavity tissue is adjacent to
the WLE specimen of the same lateral aspect and presents a similar
tissue structure at the surface (left to right: cancer/stroma/adipose
tissue). The identified cancer in Fig. 3E presents the common char-
acteristics of DCIS: clonal proliferation of malignant-appearing cells
within the lumens of the mammary ducts. The DCIS at the WLE
specimen surface (top arrowhead; with a possible tearing from the
stroma to its right) is confined to a local region and corresponds to the
moderately low OCT signal in Fig. 3C but, consistent with previous
ex vivoQME studies, it is difficult to differentiate DCIS based solely on
the OCT signal (25). In contrast, the corresponding QME B-scan
in Fig. 3D clearly identifies the region of DCIS as a local region of
elevated stiffness in the cavity.

In the en faceQME image in Fig. 3B, taken from a depth of 100 mm
below the tissue surface, the elevated stiffness reaches�300 to 400 kPa,
with an area of high stiffness larger than a 1-mmcircle. Using theQME
criteria for cancer (25), we determined that this region corresponded to
cancer present in the lateral aspect of the cavity, consistent with the
positivemargin in theWLE specimen identified by histopathology that
was coregistered with the OCT/QME images in Fig. 3.

QME of invasive ductal carcinoma
Results from Cavity Aspect 2 of Patient 16 (age: 47 years, BMI:

22.1 kg/m2) are presented in Fig. 4. The en faceOCT andQME images,
OCT and QME B-scans, coregistered histopathology, and IOSR image
are shown, respectively, in Fig. 4A–F. This patient received WLE of
the right breast without hookwire or iodine-125 seeds. IOSR during
surgery indicated possible cancer with high intensity at the medial to
superior-medialmargin (Fig. 4F), contributing to the decision to take a
cavity shaving from the superior-medial aspect of the cavity and no
cavity shaving from the lateral aspect of the cavity. Postoperative
histopathology identifies invasive ductal carcinoma (IDC) at the lateral
margin of the WLE specimen (Fig. 4E), corresponding to the lateral

cavity aspect scanned by the QME probe. Consequently, the
patient underwent a reexcision surgery �2 weeks after the initial BCS
surgery.

OCT from the lateral aspect of the cavity in Fig. 4A and C shows
mainly dense tissue with several structural features (e.g., horizontal
strips of tissue in Fig. 4C), but it is difficult to determine what this
dense tissue corresponds to. QME in Fig. 4B and D shows elevated
stiffness scattered across the image with high values in the range of 70
to 400 kPa in regions extending over several millimeters, indicating the
presence of cancer in the lateral aspect of the cavity, consistent with
IDC reported by histopathology (Fig. 4E). In addition, the surgeon
scanned the superior-medial aspect of the cavitywith the probe (Cavity
Aspect 21 in Supplementary Table S2) before taking the cavity shaving.
QME images show markedly lower stiffness in this region, below the
threshold for cancer, which is consistent with the absence of cancer in
the cavity shaving assessed by postoperative histopathology.

QME of benign tissue
In contrast to the observed high stiffness of cancer, benign tissue is

characterized bymarkedly lower stiffness in QME (25). Representative
cases of benign cavity aspects are presented in Figs. 5 and 6, respec-
tively. The en face OCT and QME images, OCT and QME B-scans,
coregistered histopathology, and IOSR image from Patient 3 (age:
45 years, BMI: 21.2 kg/m2), are shown, respectively, in Fig. 5A–F.
Based on IOSR of theWLE specimen presented in Fig. 5F, the surgeon
decided to take cavity shavings from the superior-lateral and the
superior-medial cavity, respectively, due to the observed calcification
(marked C in Fig. 5F). Prior to resecting the cavity shaving, QME was
performed on both cavity aspects with the results from the superior-
lateral aspect of the cavity (Cavity Aspect 7) shown in Fig. 5. Post-
operative histopathology identifies closemargins in theWLE specimen
corresponding to these cavity aspects, and the absence of cancer in the
two cavity shavings.

QME (Fig. 5B andD) shows predominantly low stiffness (<10 kPa),
although there is a local region ofmoderate stiffness (red arrow). Using
the QME cancer criteria, Fig. 5B indicates that there is no cancer in the
scanned cavity tissue, which is consistent with the absence of cancer in

Figure 2.

Classification of the 38 cavity aspects from 21 BCS patients scanned with in vivoQME. The numbers in the right three columns indicate the number of scanned cavity
aspects in each scenario, the ratio of the scanned cavity aspects showinghighor low stiffness inQME, and thenumber of patientswhounderwent follow-up reexcision
surgery corresponding to high stiffness, respectively. When QME of the cavity tissue is coregistered with the cavity shaving histopathology, as listed in
Supplementary Table S2, the positive (n ¼ 1) and close (n ¼ 1) margins indicate the presence of cancer in the scanned cavity aspects and thus the expected
high stiffness in QME, whereas the negativemargins (n¼ 21) indicate the absence of cancer in the scanned cavity aspects and thus the expected low stiffness in QME.
When QME is coregistered with histopathology of the WLE margin adjacent to the cavity tissue scanned by QME, only positive margins (n ¼ 2) can indicate the
presence of cancer in the scanned cavity aspects and thus expected high stiffness in QME, whereas close (n ¼ 1) and negative (n ¼ 12) margins are ambiguous
predictors of the presence or absence of cancer in the surgical cavity and thus cannot be used to validate QME.
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the cavity shaving by postoperative histopathology, as shown
in Fig. 5E.

Results fromPatient 6 (age: 49 years, BMI: 24.8 kg/m2) are presented
in Fig. 6. The en faceOCT and QME images, OCT and QME B-scans,
coregistered histopathology, and IOSR image are shown respectively
in Fig. 6A–F. Based on IOSR of the WLE specimen (Fig. 6F) and
palpation, the surgeon took cavity shavings from the inferior and
lateral aspects of the cavity. As the WLE specimen and two cavity
shavings all showed negative margins in histopathology, the patient
did not receive a follow-up surgery. Prior to taking the cavity shavings,
in vivoQME was performed on both the inferior and lateral aspects of
the cavity and showed low stiffness, indicating no cancer. QME and
OCT of the inferior aspect of the cavity (Cavity Aspect 12) are shown
in Fig. 6A–D, where an outlined region of high stiffness in Fig. 6Bwas
created by a marking suture, as validated in Supplementary Fig. S3. In
this validation, an additional scanning of the cavity shaving using a
benchtop OCT scanner (Supplementary Fig. S3A–S3C) was per-

formed, followed by coregistration of the photograph (Supplementary
Fig. S3A) and OCT images (Supplementary Fig. S3B and S3C) to those
from in vivoQME scanning of cavity (Supplementary Fig. S3D–S3H).

Discussion
This study presents the proof of concept of in vivo QME for direct

imaging of the surgical cavity and the capability to identify residual
cancer. The elevated microscale stiffness of cancer observed, including
in DCIS and IDC, in contrast to the much lower stiffness of the benign
tissue, demonstrates the potential for cancer detection. In addition, this
study demonstrates the feasibility of integrating in vivo QME into the
standard surgical workflow and a coregistration protocol to validate
the in vivo results. Supported by the high sensitivity and specificity
previously determined in an ex vivo QME study of WLE speci-
mens (25), in vivo QME has the potential to contribute to a more
complete removal of cancer while avoiding unnecessarily large cavity

Figure 3.

Imaging of the lateral aspect of the surgical cavity of Patient 2.A and B, En faceOCT (A) and en faceQME (B) at a depth of 100 mmbelow the tissue surface. C andD,
OCT B-scan (C) and QME B-scan (D) from the locations indicated by the dashed lines in A and B, respectively. Dashed lines in Dmark the silicone layer-sheath and
sheath-tissue interfaces. Color bars, OCT 0–33 dB; QME 1–500 kPa with the black line marking 26 kPa. E, Coregistered histopathology of the WLE specimen at the
lateral margin. Arrowheads, regions of DCIS. F, IOSR of the WLE specimen. The yellow arrow marks the region adjacent to that imaged by QME in the cavity. The
yellow linemarks the approximate locationof the histopathology slidematched toOCTandQME.E is extracted froma location at the green line inF. A, adipose tissue;
C, cancer; ST, stroma; I, inferior; L, lateral; M, medial; S, superior.
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shavings. Now that the proof-of-concept and clinical protocols have
been established in this study, future studies will focus on performing
in vivo QME on a large patient cohort to determine the diagnostic
accuracy of in vivoQME in the detection of residual cancer in the cavity
and will also investigate the clinical efficacy of in vivo QME for
reducing reexcision surgery.

In-cavity QME was validated through coregistration with either
postoperative histopathology of cavity shavings (n ¼ 23) or WLE
specimens (n¼ 2). This validation was enabled by the development of
a customcoregistration protocol. In this protocol, cavity tissue scanned
by in vivo QME was in the uppermost region of the cavity shaving (if
taken) and was adjacent to the corresponding margin of the WLE
specimen. When the cavity shaving showed positive (n ¼ 1) or close
(n ¼ 1) margins, or when the WLE specimen corresponding to the
cavity aspect scanned showed positive margins (n ¼ 2) based on
histopathology, the scanned cavity aspect was expected to have
residual cancer. In all four such cases, QME observed elevated stiffness

indicative of the presence of cancer. In contrast, when the cavity
shavings (n ¼ 21) showed negative margins based on histopathology,
the scanned cavity aspects were expected to have no cancer, which
largely agreedwith the low stiffness detected byQME (19 of 21 scanned
cavity aspects). The two false-positive cases might be due to excessive
pressure applied to the tissue, indicated by an abnormally large
reduction in the thickness of the silicone layer, which could be avoided
in the future through additional surgeon training.

In the two cases with positive WLEmargins, the use of coregistered
histopathology to indicate the presence of cancer in the cavity assumes
that the resection of the WLE specimen cut through the cancerous
region and that residual cancer remained in the patient at the cavity
surface. This assumption is the basis for the standard clinical practice
used to determine if there is residual cancer in the cavity and,
consequently, if reexcision is required. The closely matched tissue
structures at the surface between the in vivo QME images and
histopathology (e.g., Fig. 3C and D vs. Fig. 3E) suggest that this is

Figure 4.

Imaging of the lateral aspect of the surgical cavity of Patient 16. A and B, En face OCT (A) and en face QME (B) at a depth of 100 mm below the tissue surface.
C and D, OCT B-scan (C) and QME B-scan (D) from the locations indicated by the dashed lines in A and B, respectively. Dashed lines in D mark the silicone
layer–sheath and sheath–tissue interfaces. Color bars, OCT 0–35 dB; QME 1–500 kPa with the black line marking 26 kPa. E, Coregistered histopathology of the
WLE specimen at the lateral margin. F, IOSR of the WLE specimen. The yellow arrow marks the region adjacent to that imaged by QME in the cavity. The yellow
line marks the approximate location of the histopathology slide matched to OCT and QME. E is extracted from a location at the green line in F. I, inferior; L,
lateral; M, medial; S, superior.
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an accurate validation method in the case of positive margins in the
WLE specimen. To achieve a more complete validation of in vivo
QME, in future studies, it would be preferable to modify the protocol
such that in vivo QME is only performed on those cavity aspects with
corresponding cavity shavings.

One limitation of the validation by histopathology is that a cavity
shaving was not taken for some of the cavity aspects scanned (n¼ 15),
determined by the surgeons based on IOSR and palpation. In these
cases, close (n ¼ 1) and negative (n ¼ 12) margins in the WLE,
determined by histopathology, were ambiguous predictors of the
presence or absence of cancer in the scanned cavity aspects, as the
WLE margins were adjacent to the cavity tissue scanned by QME.
Consequently, a number of QME scans could not be validated,
especially those corresponding to negative WLE margins (n ¼ 12).
Although current clinical practice is to consider that these cases
indicate no cancer remaining in the cavity, we observed two cases

(Cavity Aspects 3 and 4) with negative margins in the WLE that had
positive or close margins in the corresponding cavity shavings, indi-
cating cancer that would have remained in the cavity had the cavity
shavings not been taken. Therefore, we did not use negative or close
WLE margins without a cavity shaving to validate QME. Although
these cases could not be validated, they largely presented low stiffness
in in vivo QME images (12 of 13 as described in Supplementary
Table S2), indicating the absence of cancer, which is consistent with an
expected low risk of residual cancer using current clinical practice.

The study also included two reexcision patients to assess in vivo
QME’s capability to detect residual cancer, although they introduced
heterogeneity to the study population, which mainly comprised
patients undergoing initial BCS surgery. The purpose was to provide
a more comprehensive assessment of in vivo QME as reexcision
patients may also potentially benefit from in vivo QME by detecting
residual cancer in the newly formed surgical cavity, thus reducing the

Figure 5.

Imaging of the superior-lateral aspect of the surgical cavity of Patient 3.A and B, En faceOCT (A) and en faceQME (B) at a depth of 100 mmbelow the tissue surface.
Red arrow, local region of moderate stiffness. C andD,OCT B-scan (C) and QME B-scan (D) from the locations indicated by the dashed lines inA and B, respectively.
Dashed lines in D mark the silicone layer-sheath and sheath-tissue interfaces. Color bars, OCT 0–30 dB; QME 1–500 kPa with the black line marking 26 kPa. E,
Coregistered histopathology of the cavity shaving from the margin of the superior-lateral tissue. Arrowheads, local regions of benign terminal duct lobular units. F,
IOSR of theWLE specimen. The yellow arrowmarks the region adjacent to that imaged by QME in the cavity. The yellow bar marks the location where the superior-
lateral cavity shaving was taken for histopathology. The green line indicates the slicing direction of the cavity shaving to generate the best match of histopathology
(E) to OCT and QME. C, calcification; I, inferior; L, lateral; M, medial; S, superior.
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chance of additional reexcision. However, to determine the diagnostic
accuracy of in vivo QME in well-powered future studies, the hetero-
geneity of the study population will need to be carefully considered.

In vivo QME could potentially be used as an intraoperative adjunct
to complement existing clinical procedures. In general, the goal of
intraoperative imaging during BCS is to provide a more complete
removal of cancer during surgery so that the pathologist observes fewer
positive margins in the resected specimen, leading to a reduction in
reexcision rates. However, it is not clear whether the reduced reexci-
sion rate would affect the survival rate. Long-term follow-up studies on
a large patient cohort in the future will be required to assess the
impact (38, 39).

In the current scanning protocol, only selected local tissue regions
inside the surgical cavity were scanned for preliminary validation, and
the protocol was not designed to screen the entire surgical cavity. In the
context of this proof-of-concept study, as in vivoQMEwas not used to

inform patient treatment and standard postoperative histopathology
was performed for routine assessment, failure to detect all residual
cancer was not relevant. To avoidmissing residual cancer in the cavity,
and resulting false negatives, further development is needed to refine
the protocol to allow all cavity aspects to be scanned after a more
complete validation of in vivoQME. Such a protocol would allow us to
determine the benefit of in vivo QME in providing more complete
cancer detection and, potentially, in reducing the need for reexcision
surgery.

On the macroscale, through palpation, utilizing the increased
stiffness of breast cancer to identify cancer is an integral component
of breast cancer surgery (40). Ultrasound elastography and magnetic
resonance elastography have further demonstrated that breast cancer
lesions can be identified based on elevated stiffness on the macro-
scale (41, 42). More recently, studies on the microscale have provided
insight into the physiologic basis for this stiffening. These studies have

Figure 6.

Imaging of the inferior aspect of the surgical cavity of Patient 6.A andB, En faceOCT (A) and en faceQME (B) at a depth of 100 mmbelow the tissue surface. Outlined
region inB shows an artifact due to amarking suture as identified in Supplementary Fig. S3.C andD,OCTB-scan (C) andQMEB-scan (D) from the locations indicated
by the dashed lines inA and B, respectively. Dashed lines inDmark the silicone layer–sheath and sheath–tissue interfaces. Color bars, OCT 0–29 dB; QME 1–500 kPa,
with the black line marking 26 kPa. E, Coregistered histopathology of the cavity shaving from the margin of the inferior tissue. F, IOSR of the WLE specimen. The
yellow arrow marks the region adjacent to that imaged by QME in the cavity. The yellow bar marks the location where the inferior cavity shaving was taken for
histopathology. The green line indicates the slicing direction of the cavity shaving to generate the best match of histopathology (E) to OCT and QME. A, adipose
tissue; ST, stroma; I, inferior; L, lateral; M, medial; S, superior.
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reported that breast tissue becomes progressively stiffer during tumor-
igenesis, and that this stiffening is often caused by increased collagen
deposition and crosslinking, and extracellular matrix (ECM) deposi-
tion and remodeling (43–45). Themetabolism of collagen, as themajor
scaffolding protein in ECM, is deregulated in cancer with increased
collagen expression, elevated deposition, and altered organization (43),
which contribute to increased stiffness. The increased stiffness also
promotes the epithelial cell transformation toward cancer, promotes
malignancy, and enhances cancer aggression (45, 46). Previous QME
studies performed on ex vivo tissue have additionally demonstrated
that densely packed cancer cells within the cancer microenvironment
can manifest as elevated stiffness and that fluid pressure in mucinous
carcinomas also presents as elevated stiffness (23, 25, 33). This finding
has been further shown in Supplementary Fig. S4 (histopathology of
four specimens in Supplementary Fig. S4A–S4D; corresponding en
face OCT and QME images respectively in Supplementary Fig. S4E–
S4H and Supplementary Fig. S4I–S4L) on ex vivo breast tissue includ-
ing common cancer types of invasive lobular carcinoma (ILC), IDC,
and DCIS.

In this study, hematoxylin and eosin staining was used for histo-
pathology of the resected tissue to identify the tissue types for
validating in vivo QME. Although other staining options, such as
immunohistochemistry staining (47), could provide additional in-
formation, they have not been adopted to assess ECM constituents in
the hospital where the study was performed, because of the lack of
objective measures and challenges with reproducibility. Future studies
could seek to use other alterative stains to further consolidate the
physiologic basis of the elevated stiffness of breast cancer.

A variety of fluorescence-based methods have used cancer-specific
proteins, antigens, enzymes, or pH to activate fluorescence for cancer
detection with studies reporting excellent sensitivity (>90%) and
accuracy (>90%; refs. 10, 48–50). Compared with fluorescence-
based methods, in vivo QME uses endogenous mechanical contrast
in tissue to provide label-free imaging, eliminating the need for the
injection of exogenous contrast agents and the issue of the target
enzymes or proteins not being expressed in all cancer types (10). The
stiffness measured by in vivo QME does not vary over the time of the
surgery, whereas some fluorescence methods provide a time-varying
signal, complicating cancer detection and limiting the reproducibility
of results and practical deployment (50). Additionally, in vivo QME
provides 3D imaging to enable examination of the tissue microstruc-
ture and stiffness at different depths and locations of interest, in
contrast to fluorescence images, which are generally two-dimensional.
Yet, future studies are needed to assess whichmethodwill ultimately be
most effective for intraoperative assessment during BCS. Another
possibility is to combine imaging methods that use different
contrast mechanisms into a multimodal approach, for example, based
on both chemical and mechanical contrast, to enhance cancer
detection.

A potential advantage of in vivo QME is that a quantitative tissue
property is measured (i.e., microscale stiffness) to detect residual
cancer in the cavity. The quantitative measurement enabled the
adoption of the cancer criteria previously established in the accuracy
study of ex vivo breast tissue to in vivo cavity imaging (25). However, in
future studies, further verification and optimization of the cancer
criteria for in vivoQME scans may be necessary across a larger patient
population. In addition, the quantitative measurement helped to
minimize variations among physicians, as indicated by the consistent
QME results among the five surgeons in this study.

In conclusion, this study demonstrates that a purpose-built hand-
heldQMEprobe has the potential to detect cancer based on its elevated

microscale stiffness by in vivo imaging of the surgical cavity. The study
demonstrates the potential of in vivo QME to provide more complete
removal of cancer during BCS. The proposed technique and clinical
scanning protocol together pave the way for future clinical studies to
determine the reduction in reexcision rate that can be achieved using
in vivo QME.
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