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In few years our understanding of microRNA (miRNA) biogenesis, molecular mechanisms by which miRNAs regulate gene
expression, and the functional roles of miRNAs has been expanded. Interestingly, numerous miRNAs are expressed in a spatially
and temporally controlled manner in the nervous system, suggesting that their posttrascriptional regulation may be particularly
relevant in neural development and function. MiRNA studies in neurobiology showed their involvement in synaptic plasticity
and brain diseases. In this review ,correlations between miRNA-mediated gene silencing and Alzheimer’s, Parkinson’s, and other
neurodegenerative diseases will be discussed. Molecular and cellular neurobiological studies of the miRNAs in neurodegeneration
represent the exploration of a new Frontier of miRNAs biology and the potential development of new diagnostic tests and genetic
therapies for neurodegenerative diseases.
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1. Introduction

Neurodegenerative diseases represent a large group of neu-
rological disorders with heterogeneous clinical and patho-
logical expressions, affecting specific groups of neurons,
in specialized functional anatomic systems. A mixture
of environmental and genetic factors seems to engender
neurodegenerative diseases, and aging has been found a
common risk factor. Neurodegenerative diseases result from
the gradual and progressive loss of neuronal cells, leading
to nervous system dysfunction. They are characterized by
the formation of distinct pathological changes in the brain,
including extracellular protein deposits, cellular inclusions,
and remodelling of cell morphology. However, while many
different forms of neurodegenerative disease are recognized,
the lines that separate one from another are often unclear.
For instance, symptoms such as motor impairment and
memory loss may occur in many different types of neu-
rodegenerative disease. Alzheimer’s disease, Parkinson’s dis-
ease, prion diseases, and polyglutamine disorders, including
Huntington’s disease and various spinocerebellar ataxias, are

well-known neurodegenerative disorders [1]. To date, with
few exceptions, no diagnostic laboratory tools exist that
can clearly indicate the presence, absence, or category of a
neurodegenerative disease. Diagnoses are usually based on
clinical evaluation of the symptoms.

The microRNA-(miRNA-) guided RNA silencing path-
way is a recently discovered process found to regulate gene
expression acting on messenger RNA (mRNA). MiRNA bio-
genesis is mediated by Dicer which catalyzes the processing
of double-stranded RNAs (dsRNAs) into ≈22 nt-long small
miRNAs. These small noncoding RNA molecules operate
as guides for RISC (RNA Induced Silencing Complex) to
cleave a target mRNA in case of a perfect complementarity
(siRNA) or to block the target mRNA translation (miRNA)
when there is an imperfect pairing between miRNAs and the
targets. In mammalian cells the repression of translation by
miRNA is mediated by an imperfect pairing with 3′UTR of
the mRNA target [2]. MiRNAs are conserved throughout
the evolution, and their expression may be constitutive
or spatially and temporally regulated. Increasing efforts to
identify the specific targets of miRNAs lead to speculate
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that miRNAs can regulate more than 90% of human genes.
Specific miRNA subsets were expressed in specific brain area
and in neuronal and glial cell subtypes [3]. The studies of
microRNAs expression profiles in nervous system represent
the first step in understanding how, where, and when
miRNAs are involved in the regulation of neurodevelopment,
differentiation, dendritic spine development, local protein
synthesis, and synaptic plasticity [4]. Several works have
shown spatially and/or temporally restricted distribution of
miRNAs, suggesting that they might regulate neuronal gene
expression. By comparative analysis of miRNA expression in
the normal and pathologic brain, the microRNA signatures
in several neurodegenerative diseases, including polyglu-
tamine expansions, Parkinson’s and Alzheimer’s diseases are
coming up. To date we have few pieces of information about
the expression profiles, and the complex composition of
the brain, containing several neuronal and glial istotypes,
while representing its main biological characteristic, is also
the principal obstacle for an accurate analysis. Furthermore
in order to interpretate miRNA expression data from post-
mortem human brains affected by neurodegenerative dis-
eases, the source of neural tissues, together with the RNA
isolation techniques used, need to be carefully considered.
Overall, the identification of miRNA’s physiological target
genes should be a primary approach to reveal the specific
contribution of microRNAs to neural function. Recent
studies of microRNA in nonneuronal cellular systems could
drive future research in primary neuronal cells. In fact,
prediction of microRNA targets utilizing different algorithms
based on the general rule of the seed region has been
complemented by an elegant proteomic approach which
uses a mass spectrometric method called stable-isotope
labelling with aminoacid in cell culture (SILAC) to measure
changes in protein levels in response to miRNA induction
or knockdown. SILAC approach showed that individual
microRNA can reduce the production of hundred proteins
[5, 6]. Many targets are repressed at both mRNA and protein
level and others are predominantly regulated at protein level.
Although several miRNA-induced changes in the proteome
correlate with the presence of seeds in the mRNA of the
affected proteins, some changes remain to be explained. They
might be due both to indirect effects and/or to miRNA
direct targeting mediated by still unknown rules. Remarkably
an increasing level of complexity of species-specific miRNA
expression during evolution emerged. However, 447 new
miRNA genes expressed in human fetal and chimpanzee
adult brains were identified. Many of them are not conserved
beyond primates, indicating a recent evolutionary origin.
Since 8% of miRNA were found to be human-specific,
they might play a role in the human brain evolution.
However, expression levels of miRNAs common to human
and chimpanzee were not determined, because different
regions were analyzed at various ages. Several features in
cognitive functions of humans and chimpanzees are probably
elucidated by variations in cortical structures. Therefore, the
diversity of miRNA repertoire in the brain likely contributes
to the dissimilarities between human and chimpanzee,
arguing for a role of miRNA in brain evolution and function
[7].

In this review we discuss the recent studies on the
involvement of miRNA-mediated gene silencing in neurode-
generative diseases.

2. MicroRNAs in Neurodegenerative Diseases

2.1. MicroRNAs in Alzheimer’s Disease. Alzheimer’s Disease
(AD) is the best known degenerative disease affecting the
central nervous system [8]. AD is a chronic progressive
disease characterized by early memory impairments followed
by these cognitive deficits: aphasia (language disturbances),
agnosia (failure to recognize people or objects in presence of
intact sensory function), apraxia (inability to perform motor
acts in presence of intact motor system). Neuropathologically
the areas of brain most affected are the hippocampus
followed by association cortices and subcortical structures.
The neurodegeneration is characterised by synapse and
cellular loss, β-amyloid plaques, and neurofibrillary lesions.
The major component of plaques is the Aβ peptide which
derives from the proteolytic processing of its precursor
protein (APP). The neurofibrillary lesions contain aggre-
gates of hyperphosphorylated microtubule-associated pro-
tein tau. This histopathological hallmark is used in Braak’s
Alzheimer’s system [9] to describe postmortem AD brain
samples in six stages: in the transentorhinal stage (Stages I
and II), the neurofibrillary pathology is essentially confined
to the transentorhinal and entorhinal cortex and slightly
to the CA1/CA2 sections of the hippocampus; the limbic
stage (Stages III and IV) frames a severe involvement of
the entorhinal areas and a moderate engagement of the
hippocampus; the hallmark of the neocortical stage (Stages
V and VI) was the dismantlement of the neocortex. AD is the
most common cause of dementia in aged populations. About
1% early onset familial form of the disease (onset before 60
to 65 years of age) is due to mutations in three genes, APP,
presenilin 1 (PSEN1), and presenilin 2 (PSEN2) all of
which cause Aβ overproduction. Aβ production is initiated
by the processing of APP by the β-amyloid cleavage enzyme
1 (BACE1) which generated a C-terminal fragment of
APP, labelled as C99. This fragment is further cleaved by
γ-secretase complex, which includes the presenilins, and
generates the more abundant Aβ40 and the less abundant,
but more pathogenic, Aβ42 [8]. Aβ load in AD brain was
suggested to trigger neuronal dysfunctions. For the majority
of AD cases, which shows less obvious familial aggregation
(hence they are also called sporadic AD), the molecular bases
of the disease are matter of intensive research.

A discrete number of studies has suggested that a dys-
regulated microRNA expression could be aging-associated
and could contribute to AD. miRNA expression profiles are
changed in pathological conditions in all studies published
until now. Lukiw’s laboratory evaluated the expression of
12 miRNAs in hippocampal region of fetal, adult, and
AD brain [10]. They found that miR-9 was upregulated
in both fetal and AD hippocampus, and miR-128 was
increased specifically in AD hippocampus. However, the
translational changes induced by these specific miRNAs in
AD hippocampus remain to be investigated. More recently
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espression profiles of 328 microRNAs in anterior temporal
cortex from five sporadic AD patients and five age-mathced
controls showed 13 microRNAs significantly downregulated
in cortex of sporadic AD [11]. Using various prediction
algorithms to identify AD-related potential target genes, 7 of
the 13 microRNAs had candidate binding sites in the 3′UTR
of BACE (miR-15a, -29b-1, -9, and -19b) or APP (let-7, miR-
101, miR-15a, and miR-106b,) or in the 3′UTR of PSEN1
(miR-9). On the other hand, 6 microRNAs do not seem to
be related to obvious targets (miR-210, -181c, -22, -26b, -363,
-93). In particular the relationship between BACE1 and miR-
29 was deeply investigated (mentioned in what follows). The
changes of miRNA profiles might be specific for sporadic
AD and might cause or exacerbate the neuropathology.
Furthermore, linking microRNA expression to their specific
targets could suggest novel pathways of the disease.

A recent study evaluated the importance of deregulation
of miRNA expression in brains and cerebrospinal fluid
(CSF) of Alzheimer’s patients [12]. Over 300 microRNAs
were determined in the hippocampus, medial frontal gyrus,
and cerebellum from early and late stage AD compared
to age-matched control. Deregulated microRNAs have been
associated to known and novel molecular pathways in
AD pathogenesis such as neurogenesis, oxidative stress,
insulin resistance, and innate immunity. For example, miR-
9 and miR-132 downregulation was correlated to impaired
neurogenesis and neuronal differentiation. The finding that
miR-423 was upregulated in hippocampus while miR-98 was
decreased in cerebellum was appealing. In fact both miRNAs
modulate IDH2 (isocitrate dehydrogenase 2) expression and
IDH2 reduction was described to be involved in oxidative
stress in AD prefrontal cortex. These observations suggest
a mechanism for the specific susceptibility of particular AD
brain areas such as the hippocampus and the relative sparing
of others such as the cerebellum.

Sixty miRNAs were differentially expressed in the CSF
of patients between Braak stage 5 and stage 1. Among
these miRNAs few were brain enriched while several were
not correlated to the miRNAs changes observed in AD
brain regions. Therefore, CSF microRNAs were suggested to
derive from T lymphocytes present in the CSF. The altered
expression of miRNA in the CSF of patients affected by
Alzheimer’s disease, opens a new scenario on the use of
these expression profiles as putative AD biomarkers. To date,
CSF analysis from AD patients produced some of the most
reproducible biomarkers, such as decreased Aβ42, increased
total tau (ttau), and increased phosphorylated tau (p-tau)
[13]. Combinations of these CSF markers have been also
proposed to diagnosticate AD. Future work might be to
evaluate if the CSF miRNAs profile correlates with Aβ, total
and phosphorylated tau protein presently carried out in the
CSF of AD patients.

Specific molecular mechanisms involving microRNAs
and expression of BACE1 and APP are emerging in the AD
field. By microarray and in situ hybridization of superior-
medial frontal cortex of AD, Nelson’s laboratory showed
that the expression of miR-107 decreased during progression
of the disease in parallel to BACE1 mRNA increase. In
addition cell culture experiments showed that the expression

of a luciferase reporter gene fused to a 3′UTR containing
BACE1 microRNA 107 binding site is modulated by miR-
107 [14]. Another study, investigating changes in microRNA
expression profiles of anterior temporal cortex from sporadic
AD patients found that the expression of the cluster miR-
29a/b-1 was significantly decreased in a subgroup of AD
patients in which BACE 1 protein was abnormally upreg-
ulated while BACE 1 mRNA levels were unchanged [11].
Consistently, during mouse brain development from E17
to 1 year, BACE1 protein level decrease was correlated to
miR-29a/b-1 upregulation while BACE1 mRNA level was
stable. In cell culture experiments, BACE1 target validation
was demonstrated by monitoring the effects of miR-29a/b-
1 on the translation of a BACE1 3′UTR luciferase reporter
carrying wilde-type or mutated miR29a/b-1 responsive site.
Finally, upon either overexpression or downregulation of
miR-29a/b-1 in human cell culture both BACE1 protein
levels and APP cleavage product Aβ were, respectively,
reduced and increased.

In both previous studies [11–14], the loss of microRNA
in AD is not specific for a certain brain area more susceptible
to the disease, that is, miR-107 is also downregulated in
motor cortex of AD patients and miR-29a/b-1 expression
also decreases in AD cerebellum. Therefore, altered BACE
expression due to microRNA deregulation is not responsible
for increased sensitivity of particular brain regions. However
also in the AD familial cases, mutations of APP and PSEN
are present in all cells of the brain and only specific regions
are affected from AD.

Interestingly other two microRNAs, miR-298 and miR-
328, regulate BACE 1 protein expression in cultured neuronal
cells [15]. It is relevant that in APPswe/Psen1 transgenic
mice, an AD mouse model which recapitulates some features
of the disease, it was observed that BACE1 mRNA decreased
and protein levels increased in the hippocampus at 19
months of age. In transgenic mice, the expression of miR-
298 and miR-328 decreased in the granular neurons of the
hippocampus during aging. However, while the miR-328
sequence is perfectly conserved between mouse and human,
that of miR-298 is only 72% identical. Clearly, additional
work will be needed to determine whether all of these
microRNAs are really active in human brain and their relative
contribution to BACE expression in physiological and patho-
logical conditions and in different neuronal populations.

It has been shown that AD can be caused by increased
expression of the APP gene due to either genomic duplica-
tion or regulatory sequence alterations. In C. elegans, APP
orthologue APL-1 is regulated by developmentally timed
microRNA [16]. In particular, apl-1 expression in seam
cells is indirectly repressed by let-7 family microRNA, and
apl-1 transcription is regulated by downstream targets of
let-7 microRNA. This study opens new insights into the
time-dependent progression of AD. The 3′UTR of APP
mRNA is a potential target for several microRNAs. Recently,
utilizing human HEK-293 cells, it has been demonstrated
that miR106a and miR-520c negatively regulate expression
of reporter genes containing their predicted target sequences
present in the APP 3′UTR [17]. In addition, overexpression
of miR-106a or miR-520c (which is not expressed in brain)
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Figure 1: APP or BACE1 upregulation might lead to Aβ overproduction in Alzheimer’s Disease. The picture shows molecular pathways
modulating APP and BACE1 expression and amyloidogenic processing of APP by BACE1 and the γ-secretase complex leading to Aβ
production. Reduction of miRNA/RISC posttranscriptional regulation of APP and/or BACE1 mRNA induces the increase of the relative
proteins, which drive to Aβ accumulation. Changes of miRNA expression might trigger molecular events inducing AD pathology or generate
a feed-forward mechanism during AD progression (as suggested for miR-298 and miR-328).

reduces APP levels by 50%. It will be important to translate
these results in a cellular context relevant for AD pathology.
Interestingly, miR-106b is one of the four microRNA that
have been predicted to target the 3′UTR of APP (let-7,
miR-101, miR-15a, and miR-106b) and that were found
to be downregulated in anterior temporal cortex from five
sporadic AD patients [11]. All these investigations suggest
that dysregulation of miRNAs, by modulation of APP and
BACE1 expression, might be a cause or a consequence of AD
(Figure 1).

2.2. MicroRNAs in Parkinson’s Disease. Parkinson’s disease
(PD) is associated with progressive neurodegeneration
of dopaminergic neurons (DNs) in the substantia nigra
and leads to tremor, rigidity, and bradykinesia. Futrher-
more, widespread neuronal modifications lead to complex
and variable non-motor symptoms. Lewy bodies are a
neropathological feature of PD and are cellular inclusions
comprising a dense core of filamentous material surrounded
by a halo of fibrils, which mainly consists of a-synuclein.
Mutations in genes coding for synuclein (SNCA), parkin,
pink1, DJ-I, Lrrk2, can explain only a limited number of
familial PD cases, while the molecular bases of vast numbers
of non familial cases are not yet understood [18]. A recent
study shed some light on the role of microRNA in DNs
differentiation and raises the question whether microRNA

are involved in etiology of PD. Deletion of Dicer impairs
the ability of ES cells to differentiate into DNs. Since
Dicer deletion was partially rescued by transfection of small
RNA derived from embryonic mouse midbrain, it is likely
that microRNAs are involved in DNs differentiation and
survival [19]. In addition, specific deletion of Dicer in
vivo, in mouse midbrain dopaminergic neurons, leads to
cell death in the substantia nigra. Behavioural studies of
the animals revealed reduced locomotion in an-open-field
assay, reminiscent of the phenotype of human patients with
PD. MiRNA expression profiles of normal adult midbrain
compared with the profiles of midbrain depleted of DNs
from PD patients revealed alterations of certain midbrain-
enriched miRNA, in PD brain [19]. The role of miR-133b,
enriched in midbrain and absent in the brains of PD patients,
was further investigated. It was demonstrated that miR-133b
constitutes a negative feedback loop with the transcription
factor Ptx-3: Ptx-3 transcribes miR-133b which in turn
represses Ptx-3 translation. In vitro experiments showed
that depletion of miR-133b increases the expression of DN
markers and depolarization-induced dopamine release while
miR-133b overexpression suppresses the full differentiation
of DN neurons and produces a significant decrease in
dopamine release [19]. Thus, although miR-133b is involved
in differentiation and function of DN neurons, additional
microRNAs should be responsible for Dicer deletion pheno-
type in DN.
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Polymorphisms affecting the interactions between
microRNAs and their targets are emerging in various studies
on neurodegenerative disease. Genetic analyses showed that
relevant polymorphic variations in the fibroblast growth
factor 20 gene (FGF20) are associated with the risk of
developing PD. FGF20 is preferentially expressed in the
substantia nigra and promotes survival of dopaminergic
neurons. More recently, one SNP (rs 127202208), located
within the FGF20 3′UTR, was strongly associated with
PD. SNP rs 127202208 lies within a predicted binding
site for microRNA 433 which is highly expressed in the
brain [20]. Through several functional assays, it was
demonstrated that the risk allele rs 127202208 damped a
binding site for microRNA 433 and increased translation
of FGF20. In cell culture experiments and in PD brains, the
increased FGF20 translation was correlated with increased
synuclein expression. Synuclein is included into the genes
responsible for familial cases of PD and althought the
function of this protein is not yet defined, it has been
demonstrated that overexpression and point mutations can
cause PD.

2.3. MicroRNAs in Polyglutamine Diseases. Polyglutamine
(polyQ) disorders constitute a family of dominantly inher-
ited neurodegenerative diseases caused by the expansion
of CAG triplet repeats in a specific gene. A common
signature is the accumulation of the mutant protein in
large intranuclear inclusions. The clinical features include
spasticity and cognitive impairments. To date, ten such neu-
rodegenerative disorders known to be caused by expansion
of the CAG repeat in the coding region of the respective
genes have been identified [21]. These prototypical protein
misfolding disorders include Huntington disease (HD), six
distinct forms of spinocerebellar ataxia (SCA-1, 2, 3, 6, 7
and 17), dentatorubropallidoluysian atrophy (DRPLA), and
spinobulbar muscular atrophy (SBMA).

2.3.1. Huntington Disease. Huntington’s disease (HD) is the
most common and well-studied polyglutamine neurodegen-
erative disorder [22]. It is an hereditary autosomal dominant
disease characterized by motor, cognitive, and psychiatric
symptoms. It affects about 3 in 100 000 individuals. The
onset of symptoms typically occurs between the ages 35 and
50 years, though it may appear at any age. The molecular
basis of the disease is the expansion of the trinucleotide
CAG in the first exon of a gene on chromosome four (4p
16.3). This gene encodes the protein huntingtin (Htt) of
3136 amino acids. The mutation of huntingtin produces
an expanded stretch of glutamine (Gln) residues. This
CAG/polyGln expansion has 6–39 units in normal individ-
uals and 36 to 180 units in HD patients. Huntingtin appears
to be associated to protein trafficking, transcriptional regu-
lation, synaptic signalling, vesicle transport, and apoptosis.
HD patients show progressive loss of cortical and striatal
neurons associated with choreic movement and dementia.
The neuropathological hallmark is the gradual atrophy of the
striatum (caudate nucleus and putamen), observed in 95%

of the HD brains. Mechanisms of neurodegeneration impli-
cated in HD pathology are excitotoxicity, dopamine toxicity,
mithocondrial dysfunction, oxidative stress, apoptosis, and
autophagy.

Several observations suggested microRNAs dysregulation
in HD. Interaction between wild type Htt and Repres-
sor Element1 Silencing Transcription (REST) factor was
described. In pathological conditions Htt mutation inhibits
its interaction with REST and provokes REST build-up
in the nucleus of HD neurons, decreasing neuronal gene
expression. REST is a transcriptional repressor of neural
genes, including several microRNAs [23].

Recently, Johnson et al. [24] identified miRNA regulated
by REST in neurons, and measured the expression of
these miRNAs in the brains of HD mouse models and
in postmortem tissue of HD patients. Several changes in
microRNAs expression profile were allocated to species-
specific differences, and others to the comparative analysis
of a specific human cortex, area versus whole mouse cortex.
Both in HD mouse model and in human HD cortex, miR-132
was downregulated, and its mRNA target p250 GAP, which
modulates dendritic plasticity, was increased. Since REST
is highly involved in HD, microRNAs are likely expected
to play an important role in the disease pathogenesis. In
addition, it was demonstrated that huntingtin protein co-
purified with Argonaute proteins, fundamental components
of RISC complex. Argonaute proteins have been shown to
localize to cytoplasmic foci, named P bodies. Htt, colocalized
with Argonaute2 in P bodies, and depletion of Htt showed
compromised RNA-mediated gene silencing. Thereafter, in
mouse striatal neurons expressing Htt mutation, P bodies
formation and translation miRNA-mediated repression were
impaired. These data suggest that Htt play a role in miRNA
processes [25].

2.3.2. Spinocerebellar Ataxia Type 3. The polyglutamine
(polyQ) protein Ataxin-3 is mutated in the human polyg-
lutamine disease spinocerebellar ataxia type 3 (SCA3),
resulting in a progressive dysfunction of the cerebellum.
SCA3 is typically a late-onset fatal autsosomal dominant
neurodegenerative disease that, like all ataxias, is character-
ized by loss of motor coordination and balance. In SCA-
3 Drosophila model, the suppression of miRNA processing
by dicer mutation increases ataxin-3 toxicity, inducing a
neurodegenerative phenotype. Moreover, depletion of R3D1,
a dsRNA-binding protein, that forms a stable complex
with Dicer-1, causes accumulation of precursor miRNA,
increasing ataxin-3-induced toxicity [26, 27]. In HeLa cell
line, dicer reduction by RNAi enhances polyQ protein
toxicity only in cells expressing pathogenic Ataxin-3, causing
loss of 70% of the cultured cells. These findings suggest a
neuroprotective role of miRNAs in these neurodegenerative
diseases [27].

2.3.3. Spinocerebellar Ataxia Type 1. Spinocerebellar ataxia
type 1 (SCA1) is a dominant inherited disease caused by
expanded trinucleotide repeats resulting in an increased
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polyglutamine tract in the gene product ataxin-1 (ATXN-1).
SCA1 patients loose motor coordination and develop slurred
speech, spasticity, and cognitive impairments. A typical
feature of SCA1 pathology is the atrophy and loss of Purkinje
cells from the cerebellar cortex. Purkinje cells are the major
integrative neurons of the cerebellar cortex, projecting their
axons onto the deep cerebellar nuclei. A recent study showed
that a conditional Purkinje (PK) cell-specific ablation of
Dicer leads to PK cell death, cerebellar dysfunction, and
ataxia indicating an involvement of miRNAs in cerebellar
neurodegeneration [28].

Another line of evidence suggesting a role of miRNAs in
SCA1 pathogenesis comes from the observation that miR-19,
miR-101, and miR-130 cooperatively regulate ATXN1 levels
[29]. When miR-19, miR-101 and miR-130 were inhibited by
2′-O-methyl oligonucleotides, an increase of ATXN1 protein
level was observed. Moreover, it was demonstrated that
miR-19, miR-101, and miR-130 were expressed in mouse
cerebellum and Purkinje cells by Northern blot analysis and
in situ hybridization. These miRNAs regulate the cell toxicity
of the polyQ-expanded ATXN1, suggesting to investigate
miRNAs-mediated regulation in SCA1 neurodegenerative
disorder.

2.4. MicroRNAs in Frontotemporal Dementia. Frontotempo-
ral dementia (FTD) is a neurodegenerative disease repre-
senting ∼5% of all dementia patients, characterized by the
progressive degeneration of the frontal and anterior temporal
cortex. Considering the involvement of the frontal lobe,
the clinical picture is cognitive and memory impairment,
language dysfunction, and/or changes in personality or
behavioural disorders. FTD can be divided into two main
neuropathological subtypes: frontotemporal lobar degen-
eration (FTLD) with neuronal and glial tau inclusions
(FTLD-tau), and FTLD with neuronal cytoplasmic inclu-
sions (NCIs) that are positive for ubiquitin and TAR DNA-
binding protein (TDP-43) (FTLD-U). However, 20%–30%
of cases of FTD follow an autosomal dominant pattern
of inheritance, and half of them are caused by defects in
microtubule-associated protein tau (MAPT), multi-vesicular
body protein 2B (CHMP2B), and valosin-containing protein
(VCP) [30].

Mutations in the progranulin gene (GRN), encoding a
secreted growth factor, on chromosome 17q21, have recently
been identified as a major cause of familial FTLD-U. These
cases have a characteristic pattern of neuropathology that
is a distinct subtype of frontotemporal lobar degeneration
with ubiquitinated inclusions (FTLD-U), with NCIs in
layer II of the cortex and lentiform neuronal intranuclear
inclusions (NIIs). To date, more than 60 different mutations
in GRN were mapped, and a recent breakthrough was
the identification of a genetic variant (rs5848), located in
the 3′UTR of GRN mRNA, in a binding site for miR-
659 [32]. This research showed that miR-659 targets GRN
suppressing its translation, and demonstrated a decrease of
GRN protein levels of∼30% in FTLD-U rs5848 homozygous
TT carriers compared to CC carriers. Consistently, in FTLD-
U patients heterozygous for rs5848, an intermediate dosage

of GRN protein was determined. miR-659 seems to be
a specie-specific human microRNA, which expressed in
brain, including frontal and temporal neocortex. In addition
“seed” sequence for miR-659 in the GRN 3′UTR is only
present in humans, and is not found in other mammals.
Although a small number of FTLD-U patients were exam-
ined, the enhanced binding of miR-659 to the 3′UTR of
the GRN gene is an important risk for TDP-43-positive
FTLD-U. Future studies on specific human cortical miRNAs
might be relevant to decrypt human neurodegenerative
disease.

2.5. MicroRNAs in Prion Disease. Prion diseases or trans-
missible spongiform encephalopathies (TSEs) are a family
of rare progressive neurodegenerative disorders that affect
both humans and animals. They are distinguished by
long incubation periods, characteristic spongiform changes
associated with neuronal loss, and a failure to induce
inflammatory response. The causative agent of TSEs is
believed to be a prion, a transmissible agent, which is
able to induce abnormal folding of normal cellular prion
proteins in the brain [33]. According to the protein-only
hypothesis, the central event in the pathogenesis of prion
diseases is the conversion of a normal cellular protein termed
PrP(C) to PrP(Sc), a conformational isoform. Prion dis-
eases impair brain function, causing memory impairment,
personality changes, dementia, and movement disorders
and the characteristic signs and symptoms of the disease.
TSEs begin in adulthood are rapidly progressive and lead
to death within a few months to several years. Familial
prion diseases of humans include classic Creutzfeldt-Jakob
disease (CJD), Gerstmann-Sträussler-Scheinker syndrome
(GSS), and fatal insomnia (FI). To explain TSE pathogenesis,
it is important to identify disease-associated alterations in
gene expression. Recently, by microarrays and RT-PCR, the
analysis of miRNA expression was made [31]. Brain miRNAs
expression of mice infected with mouse-adapted scrapie
showed changes of 15 miRNAs. Among these, only two,
miR-338-3p and miR337-3p, were downregulated, whereas
the others were up-regulated. Several predictions of the
theoretical mRNA targets of changed miRNAs during prion
disease were performed, using web-based computational
algorithms. From this in silico analysis, genes involved both
in transcription, cell cycle, ubiquitin-proteasome pathway,
and in normal functioning of synapses, neuronal activity,
neurogenesis, and neurites growth were identified. Lastly,
only one target, the transcriptional regulator EGR1, was
experimentally validated by luciferase assay in vitro. In
particular, the authors suggested that the prion disease
upregulates miR-191 which represses the EGR1 mRNA
translation. The transcriptional regulators EGR1 and CREB1
were already identified as downregulated prion-related genes
with a central role in biologically relevant networks in
prion infection [34]. As a consequence, miRNAs mediated
regulation of these prion-related genes could contribute to
neuronal death and neurodegeneration. Finally, the miRNA
expression profile was proposed as potential biomarker of
prion diseases.
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Table 1: MIND: MicroRNAs in neurodegenerative diseases.

miRNA Neurodegenerative disease mRNA target Reference

miR-298; miR328 ↓ Alzheimer’s Disease mouse model BACE1 [15]

miR-107 ↓ Alzheimer’s Disease BACE1 [14]

miR-29a/b-1 ↓ Alzheimer’s Disease BACE1 [11]

miR-133b ↓ Parkinson’s disease Pitx3 [19]

miR-433 Parkinson’s disease FGF20 (SNP rs127202208) ↑ [20]

miR-191 ↑ Prion disease EGR1 [31]

miR-132 ↓ Huntington disease P250GAP [24]

miR-659 Frontotemporal dementia GRN (SNP s5848) ↓ [32]

3. Concluding Remarks

The studies on miRNA in neurodegenerative diseases
(Table 1) are only now coming to light. Until now, both
changes of several miRNA expression profiles and polymor-
phisms affecting the interactions between miRNAs and their
targets are emerging in various studies on neurodegenerative
disease. It is difficult to determine if the changes in miRNA
expression detected in the brains or CSF of patients are
primary or secondary events, or both. Nevertheless early or
late in the evolution of the disease, they could contribute to
the pathogenesis of the observed lesions and neuronal loss.
Unique patterns of miRNA expression profile in the CSF
of particular neurodegenerative disease could be useful as
molecular biomarkers for disease diagnosis and eventually
prediction of therapeutic responses. The identification of
miRNA causing a specific pathology could open new ther-
apeutic perspectives to block endogenous miRNAs or deliver
exogenous miRNAs. Until now either antisense oligonu-
cleotides chemically modified [35] or expressed sequences
corresponding to multiple miRNA seed target (miRNA
sponge) [36] have been used as microRNA inhibitors.
Delivery of these molecules to the CNS, avoiding toxicities,
could be the challenge of future research. Furthermore
since in several neurodegenerative disorders specific nuclear
or cytoplasmic protein accumulation is causative of the
neuropathological picture, the identification of microRNAs
regulating the translation of these targets could represent
the first step aimed to therapeutic applications. The second
step might be to evaluate the quantitative effects on the
proteome of specific amounts of the “therapeutic” microR-
NAs.
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