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Background: Glioma is the most common malignant brain tumor with complex
carcinogenic process and poor prognosis. The current molecular classification cannot
fully elucidate the molecular diversity of glioma.

Methods: Using broad public datasets, we performed cluster analysis based on the
mutational signatures and further investigated the multidimensional heterogeneity of the
novel glioma molecular subtypes. The clinical significance and immune landscape of four
clusters also investigated. The nomogram was developed using the mutational clusters
and clinical characteristics.

Results: Four heterogenous clusters were identified, termed C1, C2, C3, and C4,
respectively. These clusters presented distinct molecular features: C1 was
characterized by signature 1, PTEN mutation, chromosome seven amplification and
chromosome 10 deletion; C2 was characterized by signature 8 and FLG mutation; C3
was characterized by signature 3 and 13, ATRX and TP53 mutations, and 11p15.1,
11p15.5, and 13q14.2 deletions; and C4 was characterized by signature 16, IDH1
mutation and chromosome 1p and 19q deletions. These clusters also varied in
biological functions and immune status. We underlined the potential immune escape
mechanisms: abundant stromal and immunosuppressive cells infiltration and immune
checkpoints (ICPs) blockade in C1; lack of immune cells, low immunogenicity and antigen
presentation defect in C2 and C4; and ICPs blockade in C3. Moreover, C4 possessed a
better prognosis, and C1 and C3 were more likely to benefit from immunotherapy. A
nomogram with excellent performance was also developed for assessing the prognosis of
patients with glioma.

Conclusion: Our results can enhance the mastery of molecular features and facilitate the
precise treatment and clinical management of glioma.
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INTRODUCTION

For Glioma is the most common malignant brain tumor
associated with high heterogeneity and poor prognosis (Louis
et al., 2016). The standardization regimen consisting of surgery
resection combined with chemoradiotherapy is currently the
dominant treatment for glioma. However, the overall
therapeutic benefits remain unsatisfactory, especially
glioblastoma, with a median survival of only 14.6 months after
standardization therapy (Stupp et al., 2005). Hence, it is
imperative to pursue new means to improve the treatment and
management of glioma.

With the rapid development of bioinformatics and the rise of
molecular diagnosis, precision therapy and immunotherapy have
made it possible to emerge from the current dilemma
(Reifenberger et al., 2017; Fecci and Sampson, 2019). The 2016
World Health Organization Classification of Tumors of the
Central Nervous System incorporated molecular parameters
into traditional histological diagnosis of glioma, dividing
gliomas into distinct molecular phenotypes, such as IDH
mutant and IDH wild gliomas, 1p/19q co-deletion and 1p/19q
integrity gliomas (Louis et al., 2016). Accumulated evidence
indicated that glioma patients with IDH mutation and those
with 1p/19q co-deletion were relatively more sensitive to
radiotherapy and chemotherapy, as well as had a favorable
prognosis (Sabha et al., 2014). However, this classification only
focuses on one or a few genomic alteration features, which lacks a
global perspective, and fails to fully elucidate the high molecular
heterogeneity of glioma. Therefore, a systematic exploration of
genomic alterations in gliomas is necessary to reveal its molecular
heterogeneity.

Over the past decade, immunotherapy has achieved great
success in the treatment of tumors (Yang, 2015; Payandeh
et al., 2019). In glioma, recent studies have reported that
immunotherapy such as anti-PD-1 and anti-VEGFA could
predominantly prolong the survival of some glioma
patients, but the response population was not stable, only a
subset of patients could benefit from immunotherapy
(Sandmann et al., 2015; Lyon et al., 2017; Schalper et al.,
2019). The immunotherapy limitation may be due to the
high heterogeneity of gliomas and their complex immune
escape mechanisms (Jackson et al., 2019; Wildes et al.,
2020). Thus, investigating the molecular heterogeneity and
potential immune escape mechanisms of gliomas may
contribute to the development of immunotherapy.

Cancer is a complex disease arise from the constant
accumulation of genomic alterations (Stratton et al., 2009).
The 30 mutational signatures described by Alexandrov et al.
systematically characterized the mutation accumulation leading
to tumorigenesis, and linked the mutation process to DNA
damage mechanisms and clinical characteristics, providing a
new opportunity for in-depth analysis and understanding of
the tumor molecular features (Alexandrov et al., 2015). But so
far, there was no study have systematically analyzed genomic
alterations and dissected mutational signatures of glioma.

Obviously, a deeper grasp of the molecular features and
more refined molecular classification are essential for the

precise treatment of gliomas, and the development of
bioinformatics and the accumulation of broad data make it
promising. In the present study, we performed molecular
clustering based on the mutational signature profile of
glioma patients, hoping to identify distinct molecular
heterogeneous subtypes and better understand the biological
characteristics of glioma. As a result, we successfully identified
four heterogeneous subtypes with specific molecular
characteristics, potential immune escape mechanism, and
clinical outcomes in glioma. Combining the four subtypes
and clinical features, we also constructed a nomogram with
excellent performance to facilitate clinical prognosis
management.

MATERIALS AND METHODS

Data Source
The glioma data (n � 736) were enrolled from The Cancer
Genome Atlas (TCGA) cohorts TCGA-LGG (low grade
glioma) and TCGA-GBM (glioblastoma), the details of
baseline information was shown in Supplementary Table S1.
Gene expression data and clinical information were retrieved
from TCGA data portal (https://portal.gdc.cancer.gov/). The
mutation data, copy number alteration data, and methylation
450K data were acquired from TCGA database. Three
independent immunotherapeutic cohorts containing expression
and clinical data were collected: (Louis et al., 2016) metastatic
melanoma patients treated with cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) and PD-1 blockades (Roh
cohort) (Roh et al., 2017; Stupp et al., 2005) melanoma
patients treated with adoptive T cell therapy (ACT)
(GSE100797) (Lauss et al., 2017; Reifenberger et al., 2017)
melanoma patients treated with anti-PD-1 (GSE78220) (Hugo
et al., 2016). According to the RECIST v1.1 criterion, patients
with complete response (CR) or partial response (PR) and
patients with stable disease (SD) or progressive disease (PD)
were deemed as immunotherapy responders and nonresponders,
respectively, and patients who were not evaluable (NE) were
removed.

Identification of Mutational Signature
Relevant Clusters
Somatic mutation data from TCGA-LGG and TCGA-GBM,
removing silent mutations, were used for subsequent analysis.
Mutational signatures described by Alexandrov et al. could be
obtained from COSMIC website (Alexandrov et al., 2015). We
calculated the proportion of 30 mutational signatures for each
patient via DeconstructSigs package with signature cutoff �
0.06 and “exome2genome” normalization (Rosenthal et al.,
2016). Next, the non-negative matrix factorization (NMF)
algorithm was employed to perform consensus clustering
and feature extraction in this study. Based on mutational
signatures, consensus NMF clustering was performed via
NMF package (Gaujoux and Seoighe, 2010) with the
following parameters: potential ranks � 2–5, number of
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runs to perform � 50, method � “lee”. Ultimately, the optimal
rank � 4 was determined by cophenetic coefficient
(Supplementary Figure S1I). The “nmf” and
“extractFeatures” function implemented in NMF package
were utilized to extract the basis-specific features of each
basis component. Out of 30 mutational signatures, 11
signatures were identified in above analysis based on
method � “max” from Carmona-Saez et al. (2006). To
investigate the importance of these signatures for each
clinical characteristic, the decision tree C5.0 algorithm was
performed with the C50 package, iterating 10 times. In
addition, the APOBEC enrichment analysis described by
Roberts et al. was further performed by the Maftool package
(Mayakonda et al., 2018).

Genomic Alterations Analysis
The prediction of driver genes was performed by the
OncodriveCLUST, an algorithm to identify candidate driver
genes with a significant bias towards mutation clustering
within the protein sequence (Tamborero et al., 2013). Genes
with q values less than 0.05 and mutation frequency greater
than 2% or genes with mutation frequency greater than 5%
were considered as drivers in this study. The GISTIC2.0
(Mermel et al., 2011) was applied to examine recurrently
amplified and deleted regions, and the regions altered in
greater than 15% of the samples were included in further
analysis.

Functional Annotation and Immune
Infiltration Assessment
To investigate the biological behaviors among the four clusters,
the gene set enrichment analysis (GSEA) was conducted based on
the Hallmark gene sets (“h.all.v7.1. symbols.gmt”), and the
biological function with FDR <0.05 was significance. We also
explored the correlation between clusters and other related
biological processes, using the gene sets proposed by
Mariathasan et al. (2018) (Supplementary Table S2). Single
sample gene set enrichment analysis (ssGSEA) algorithm
implemented in GSVA package was applied to estimate the
relative infiltration abundance of tumor microenvironment
(TME) cells. The gene sets for marking 28 immune cell types
were enrolled from Charoentong et al. (2017) (Supplementary
Table S3). As endothelial cell and fibroblasts were also critical
components of TME, we included another 40 genes from MCP-
Counter gene list to mark these two cell types (Becht et al., 2016)
(Supplementary Table S3).

Collection and Investigation of Immune
Escape Indicators
A series of tumor immune-related indicators (Supplementary
Table S4), including stromal and leukocyte fractions, nonsilent
mutation rate, neoantigen burden, cancer testis antigens (CTA)
score, aneuploidy score, intratumor heterogeneity, number of
segments (Segs), number or fraction of segments with loss of
heterozygosity (LOH), fraction altered, homologous

recombination deficiency (HRD), TCR diversity (Shannon
Entropy and Richness) score (Thorsson et al., 2018),
microsatellite instability (MSI) score (Bonneville et al., 2017),
cytolytic activity (Rooney et al., 2015), antigen processing and
presenting machinery score (APS) (Wang et al., 2019) and the
expression of immunomodulator molecules (Thorsson et al.,
2018), were enrolled or calculated for the investigation of
potential immune escape mechanisms in the four clusters.
Moreover, multi-omics regulation of 75 immunomodulator
molecules was further analyzed (Supplementary Table S5),
including somatic mutation, copy number variation (CNV)
and DNA methylation.

Clinical Relevance of the Four Clusters
Univariate and multivariate Cox regression analysis were
performed to assess the prognostic significance of clusters
and other vital clinical features. We included the features
with multivariate Cox p value < 0.05 to construct a
nomogram and further evaluated its performance by the
calibration and receiver operating characteristic (ROC)
curves. Subsequently, the package pRRophetic, which can
predict the patients’ chemotherapeutic response based on a
ridge regression (Geeleher et al., 2014), was employed to
estimate the sensitivity of the four clusters to gemcitabine
and bortezomib. Drug sensitivity was quantified by half-
maximal inhibitory concentration (IC50), the lower the
IC50, the more sensitive. Two methods were further
employed to predict the immunotherapeutic response of the
four clusters. First, the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm was utilized to predict the
immunotherapeutic response of each patient (Jiang et al.,
2018). Second, subclass mapping (Hoshida et al., 2007) was
applied to assess the similarity of gene expression profiles
between the four clusters and three published immunotherapy
cohorts (GSE100797, GSE78220, and Roh cohorts), if a pair’s
expression profiles shared the more similarity, their clinical
outcomes were more likely to be similar.

Statistical Analysis
The co-occurrence or exclusion of driver mutations were
evaluated by Fisher exact test. Spearman correlation analyses
were applied to compute the correlation coefficients of two
variables. The comparisons of two groups were conducted by
Wilcoxon rank-sum test, and when three or more groups,
Kruskal–Wallis test was employed. The Kaplan–Meier method
was applied to generate survival curves for prognosis analyses,
and the log-rank test was used to define the significance of
differences. The hazard ratios for variables were calculated by
univariate Cox regression analyses, and multivariate Cox
regression was employed to ascertain independent prognostic
factors. The receiver operating characteristic (ROC) curves for
survival variables were plotted by the timeROC R package. All
heatmap in this study were plotted by the ComplexHeatmap
package (Gu et al., 2016). All statistical p values were two-sided,
and p < 0.05 was deemed as statistically significance. P-adjust
value was obtained by Benjamini-Hochberg (BH) multiple test
correction. All data processing was completed in R 3.6.3 software.
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FIGURE 1 | The mutational signatures and driver genes of four clusters. (A) Importance of 11 extracted mutational signatures in distinguishing patients of different
age groups. (B) Distribution of 11 signatures in different age groups. (C) Basis component of NMF with rank � 4 in TCGA glioma cohort. (D) Consensus matrix after
clustering revealed four clusters with no overlap between clusters. (E) The distribution of APOBEC enrichment score among the four clusters. The asterisks represent the
statistical p value (ns, p > 0.05; ***p < 0.001). (F) Kaplan–Meier curves for OS among the four clusters in TCGA glioma cohort (G) Mutation landscape of 16
candidate driver genes in the four clusters. (H) Univariate Cox regression analysis of 16 candidate driver genes. (I)Mutation frequency of 16 candidate driver genes in the
four clusters.
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RESULTS

Identification of Mutational Signatures
Related Clusters
The somatic mutation landscape of 892 glioma patients was
summarized in this study (Supplementary Figure S1A). A
total of 56,369 somatic mutations were detected, and missense
mutation occupied the dominant fraction. In single nucleotide
variation (SNV), C > T displayed the highest frequency
followed by T > C and C > A, which was consistent with
the result of transition (Ti) and transversion (Tv)
(Supplementary Figure S1B). In addition, we observed
14,852 mutant genes in total, and 26 genes with a mutation
frequency of more than 3%. To better comprehend the
contribution of these mutations to glioma, an in-depth
exploration based on mutational signatures was conducted.
Using the decision tree algorithm, we evaluated the
importance of 11 extracted mutational signatures for
various clinical characteristics in glioma (Figures 1A,B,
Supplementary Figures S1C–H). There was no gender
related mutational signature. Signature 1 and signature 5
were previously considered to correlate with age of cancer
diagnosis, consistent with our findings in glioma (Figures
1A,B). We also observed that signature 1 was significantly
associated with IDH mutation, TERT promoter mutation,
MGMT promoter methylation, and the combination of
chromosome seven gain and 10 loss (7+/10−). Based on
previous studies, signature 3 was associated with
homologous recombination deficiency (HRD), signature 13
was associated with the activation of apolipoprotein B mRNA
editing enzyme, catalytic polypeptide-like (APOBEC), and
signature 16 was related to alcohol and transcription-
coupled damage (Letouzé et al., 2017). In this study, we also
found that signature 3 was linked to 7+/10−, signature 13 was
linked to ATRX mutation and MGMT promoter methylation,
and signature 16 was linked to grade in glioma. The proposed
etiology of signature 8 was unknown yet, but we detected it was
related to MGMT promoter methylation (Supplementary
Figures S1C–H). These results suggested that different
mutational signatures may be associated with specific
etiology and clinical characteristics in glioma.

Consensus NMF clustering was further performed to
identify heterogeneity clusters based on the fraction of 11
mutational signatures, and eventually four clusters were
determined, termed as C1, C2, C3, and C4 (Figures 1C,D).
C1 was characterized by signature 1, which was initiated by
spontaneous deamination of 5-methylcytosine and correlated
with age. C2 was characterized by signature 8, which
associated with MGMT promoter methylation. C3 was
characterized by signature 3 and signature 13, linked to
HRD and the activation of APOBEC. The APOBEC
enrichment results further revealed that C3 exhibited a
higher score (Figure 1E). C4 was characterized by
signature 16 associated with drinking and transcription-
coupled damage (Figure 1C). Survival analysis revealed
the different prognosis of four clusters, and C4 exhibited a
favorable prognosis (Figure 1F).

Mutation Driver Genes
The tumor mutation burden (TMB) investigation displayed a
decreasing trend from C1 to C4, although the difference between
four clusters was not very pronounced (Supplementary Figure
S2A). A total of 16 candidate driver genes were identified
(Supplementary Table S6; Supplementary Figure S2B;
Figure 1G). It was noted that there was a significant mutation
co-occurrence between IDH1, ATRX, and TP53, which often
appeared in astrocytoma. We also observed an exclusion between
IDH1 and EGFR, IDH1 and PTEN, along with a co-occurrence
between EGFR and PTEN, which often appeared in glioblastoma
(Supplementary Figure S2C) (Diplas et al., 2018). We visualized
the hotspots and other mutations in glioma via lollipop plots
(Supplementary Figure S2D). For example, the IDH1 mutation
focused on residue 132 of PTZ00435, consistent with previous
cognition (Kloosterhof et al., 2011). Univariate cox regression and
survival analysis further revealed the prognostic value of these 16
driver genes (Figure 1H; Supplementary Figure S2E). Out of
these genes, IDH1, IDH2, TP53, ATRX, CIC, and FUBP1
mutations were favorable factors for prognosis, while others
were poor factors. In addition, we also investigated the
mutation frequency of the driver genes in each cluster. It was
found that C1 was characterized by PTEN, C2 was characterized
by FLG, C3 was characterized by TP53 and ATRX, and C4 was
characterized by IDH1 (Figure 1I). In C4, genes that favor
prognosis exhibited a relatively higher mutation frequency,
while gene mutations that disfavor prognosis had a relatively
low frequency, which may constitute an explanation for the better
survival status of C4.

Significantly Altered Segments
The GISTIC algorithm revealed the landscape of significantly
recurrent amplification and deletion in glioma (Supplementary
Tables S7,S8; Supplementary Figures S3A,B). A total of 35
segments with alteration frequency more than 15% were
selected for further analysis (Figure 2A), and univariate Cox
regression assessed the prognostic significance of these
segments (Supplementary Figure S3C). Of these, we
revealed for the first time that in glioma, gains of 12q14.1
and losses of 6q22.31, 6q26, 13q14.2, 13q22.1, 15q14, and
22q13.32 were significantly linked to a poor prognosis
whereas loss of 4q34.3 was linked to a favorable prognosis.
C1 was characterized by the most frequent alterations
encompassing five amplifications on chromosome seven and
four deletions on chromosome 10, all linked to poor prognosis
(Figures 2B,C; Supplementary Figure S3C). Oncogenes such
as CDK6 (7q21.2) and MET (7q31.2) were appreciably
amplified, whereas tumor suppressor genes (TSGs) such as
CDKN2A/2B (9p21.3) and PTEN (10q23.31) were
significantly deleted, which may contribute to poor outcomes
in patients with chromosome seven gain, chromosome 9p loss
or chromosome 10 loss (Supplementary Tables S7,S8; Figures
2D–H; Supplementary Figures S3D–G). The combined
chromosome seven gain and chromosome 10 loss (7+/10−)
was altered frequently in some gliomas (Stichel et al., 2018),
we thus investigated the incidence of 7+/10− among four
clusters and found that it was highest in C1 (p � 2.33e-12)
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(Figure 2C). C3 exhibited higher frequency of 11p15.1, 11p15.5,
and 13q14.2 deletions in contrast to the other clusters. Four
deletions on 1p and two on 19q which linked to a favorable
prognosis were most frequently altered in C4 (Figure 2B;
Supplementary Figure S3C). Of note, patients with TSG-
associated deletions including 1p32.3 (CDKN2C), 1p36.23
(ERRFI1), 1p36.32 (AJAP1 and HES3), and 19q13.41
(PPP2R1A) had a survival advantage over no deletions (Figures
2I–K; Supplementary Table S8). This can be explained by the fact
that 1p/19q co-deletion was a driving event in oligodendroglioma
but could increase patient sensitivity to chemoradiotherapy
(Kaloshi et al., 2007; Barthel et al., 2018). In addition, another

deletion significantly associated with a favorable prognosis, 4q34.3,
also had the highest alteration frequency in C4.

Biological Characteristics of the Four
Clusters
To explore and characterize the biological behaviors among the
four clusters, we performed GSEA enrichment analysis. C1 was
enriched in stromal and immune activation relevant pathways,
such as angiogenesis, epithelial mesenchymal transition, hypoxia,
IL-6 JAK STAT3 signaling, and IFN-γ response (Figure 3A). C2
presented pathways involved in promoting proliferation such as

FIGURE 2 | The significant recurrent segments obtained from GISTIC algorithm in TCGA glioma cohort. (A) The oncoplot of 35 frequently segments in the four
clusters. (B) Frequency of amplification (red) and deletion (green) among the four clusters. (C) The distribution of combined chromosome seven gain and 10 loss in the
four clusters. (D–H) Kaplan-Meier survival analysis of CDK6 (D) and MET (E) amplifications as well as CDKN2A (F), CDKN2B (G) and PTEN (H) deletions. (I-K)
Chromosome 1p deletion (I), chromosome 19q deletion (J) or 1p/19q co-deletion (K) were associated with poor overall survival in glioma patients.
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FIGURE 3 | Biological characteristics of the four clusters. (A–D) GSEA enrichment analysis revealed activated Hallmark pathways of C1 (A), C2 (B), C3 (C) and
C4 (D), the FDR of the biological function was <0.05. (E) The distribution of known signatures (immune-relevant signatures, mismatch-relevant signatures, and stromal-
relevant signatures) and TME cells assessment (adaptive immune cells, innate immune cells and stromal cells) in the four clusters.
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KRAS signaling, E2F targets and G2M checkpoint (Figure 3B).
C3 displayed intense pathways associated with immune
activation encompassing allograft rejection, complement, IL-2
STAT5 signaling, inflammatory response, and IFN-γ response
(Figure 3C). C4 was enriched in pathways pertinent to
metabolism such as bile acid metabolism, fatty acid
metabolism, and peroxisome (Figure 3D). We also examined
known signatures in four clusters to better understand the
functionality of them. Stroma-related signatures such as

epithelial-mesenchymal transition (EMT) and pan-fibroblast
TGF beta response (Pan-F-TBR), and mismatch repair
(MMR)-related signatures such as base excision repair, were
markedly enhanced in C1; immune-related signatures such as
antigen processing machinery, CD8 T effector and immune-
checkpoint were appreciably enhanced in C3 (Figure 3E,
Supplementary Figure S4A). This confirmed the findings in
GSEA. Of note, C1 exhibited not only stromal activation but also
immune activation. Analysis of TME cell infiltration

FIGURE 4 | Potential extrinsic immune escapemechanisms of each cluster. (A) The scaled signature score distributions of five cell subsets among the four clusters.
(B,C)Comparison of leukocyte fraction (B) and stromal fraction (C) among the four clusters. (D)Comparison of 14 immunogenicity associated indicators among the four
clusters, the cell represented by the mean value of corresponding cluster divided by the overall mean value. (E,F) Comparison of cytolytic activity (E) and APS (F) among
the four clusters. For all boxplots, the asterisks represent the statistical p value (ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
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demonstrated that immune cells such as activated CD4+ T cell
and activated CD8+ T cell were most abundant in C3, followed by
C1; stromal activation-associated cells such as endothelial cell and
fibroblasts were most enriched in C1 (Figure 3E, Supplementary
Figure S4B). This confirmed again that C1 was characterized by
stromal and immune dual activation, while C3 was characterized
by immune activation. Moreover, C1 also displayed the highest
infiltration of MDSC and regulatory T cell (Figure 3E,
Supplementary Figure S4B). We speculated that with the
stromal activation, C1 may progress from an immune
activation state similar to C3, towards an immunosuppressive
state. Overall, C1 was classified as stromal and immune dual
activation phenotype, C2 was classified as proliferation
phenotype, C3 was classified as immune activation phenotype,
and C4 was classified as metabolism phenotype.

Potential Extrinsic Immune Escape
mechanisms
We further investigated the specific immune escape mechanisms
of each subtype. Extrinsic immune escape mainly encompassed
absence of immune cells, emergence of immunosuppressive cells,
and high abundance of stromal cells (Schumacher and Schreiber,
2015; Wang et al., 2019). We pooled together the relative
abundance of TME cells among four clusters. C1 and C3
exhibited a high level of TME cells, innate immune cells and
adaptive immune cells, which were considered as immune-hot
phenotypes. Whereas C2 and C4 demonstrated overall low TME
cell levels, which were considered as immune-cold phenotypes
(Figure 4A, Supplementary Figures S5A–C). In addition, C1
also displayed significantly superior levels of immunosuppressive
cells and stromal cells (Supplementary Figures S5D,E),
suggesting an immune-hot but suppressive microenvironment.
This phenomenon may contribute to the extrinsic immune
escape of C1. The stromal and leukocyte fractions from
Thorsson et al. study also indicated that C1 was characterized
by high stromal fraction while C3 was characterized by high
leukocyte fraction, further validating the above findings (Figures
4B,C). In term of C2 and C4, the lack of immune cells implied an
inability to immunologically eliminate tumor. Molecules
associated with initiation of innate immunity, such as
CLEC7A, PYCARD and TLR2, were also relatively low
expressed in these two clusters (Supplementary Figure S5F).
These results illustrated that absence of immune cells may be an
extrinsic immune escape mechanism for C2 and C4.

Potential Intrinsic Immune Escape
mechanisms
The exploration of intrinsic immune escape mechanism mainly
included three major aspects: tumor immunogenicity, antigen
presentation capacity and immune checkpoint molecules
expression (Schumacher and Schreiber, 2015). We first
assessed a series of factors associated with tumor antigenicity,
including mutations, MSI, neoantigens, CTA, and CNV-related
indicators (Figure 4D). C4 exhibited a lower rate of nonsilent
mutation compared to C1 and C2 (p < 0.05; Figure 4D,

Supplementary Figure S6A). MSI score displayed a decreasing
trend from C4 to C1, although it was not significant (Figure 4D,
Supplementary Figure S6B). Neoantigens and CTA were also
vital source of tumor-specific antigens, but they were not
significantly different between the four clusters (Figure 4D,
Supplementary Figures S6C–E). C1 presented higher
aneuploidy score and fraction of segments with LOH, in
contrast to the other three clusters (p < 0.05; Figure 4D,
Supplementary Figure S6F, Supplementary Figure S6L). C3
exhibited a high level of homologous recombination deficiency,
consistent with its mutation cluster characteristics (mutational
signature 3) (Figure 4D, Supplementary Figure S6J). In
addition, TCR diversity and cytolytic activity were applied to
further assess tumor immunogenicity (Rooney et al., 2015). C2
and C4 exhibited a lack of TCR diversity and low cytolytic
activity, as opposed to C1 and C3 (Figures 4D,E,
Supplementary Figures S6M,N). Overall, C2 and C4
displayed lower immunogenicity, which may be an intrinsic
immune escape mechanism for these two clusters. In term of
antigen processing and presenting machinery, C1 exhibited the
highest APS while C2 and C4 were quite the opposite (p < 0.05;
Figure 4F). Expression of MHC molecular were also relatively
low in C2 and C4 (Figure 5A). Of note, corresponding to MHC
loss, TCR diversity was also lacking in C2 and C4. The absence of
MHC stimulation may be responsible for the scarcity of TCR
diversity in these two clusters (Figure 4D). Therefore, we believed
the defect of antigen presentation capacity may be another
intrinsic immune escape mechanism for C2 and C4.

Multi-Omics Analysis of Immunomodulators
The expression and regulation of immune checkpoint molecules
were also a crucial intrinsic immune escape mechanism
(Figure 5A). In this research, the expression of
immunomodulators varied across the clusters, with the vast
majority being highly expressed in C1 and C3, but quite low
in C4 (Figure 5A). C1 had higher expression of many stimulators
(e.g., CD80, CCL5, CD70, and PRF1) and inhibitors (e.g., CD274
and VEGFA) compared with the other three clusters. C3
exhibited markedly high expression of stimulators such as
TLR4, and inhibitors such as C10orf54, CTLA4 and HAVCR2.
These results hinted that C1 and C3 may escape immune
elimination by overexpressing immune inhibitors after
stimulating immune activation, implying an intrinsic immune
escape mechanism for these two clusters.

To advance this investigation, we further analyzed the multi-
omics features of the immunomodulators among the four clusters
(Figure 5A). Most immunomodulators presented rare somatic
mutations. In term of CNVs, C1 exhibited frequent amplification
and deletion of many immunomodulator genes such as CD70,
ICAM1, C10orf54, etc., in line with the high genomic instability
of C1. Of note, we found the expression levels of CD70, CD40,
and ICAM1 with amplification were higher than those without
amplifications, while C10orf54 with deletion displayed lower
expression level relative to no deletion (Figures 5A–C,
Supplementary Figures S6O,P). This phenomenon indicated
that CNVs played a non-negligible role in regulating the
expression of certain immunomodulators. We also detected
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FIGURE 5 | Multi-omics analysis of 75 immunomodulators in glioma. (A) From left to right: mRNA expression (z-score), mutation frequency, amplification
frequency, deletion frequency, and expression vs. methylation (gene expression correlation with DNA-methylation beta-value) of 75 immunomodulators in the four
clusters. (B) Comparison of CD70 relative expression between amplification and non-amplification groups. (C) Comparison of C10orf54 relative expression between
deletion and non-deletion groups. (D) Correlation analysis of DNA methylation levels and mRNA expression levels for HLA-B, CD80, CD274, CCL5, IL10, CD40,
TNFRSF18, ITGB2, and PRF1. For boxplot, the asterisks represent the statistical p value (ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 6 | Clinical relevance of the four clusters in TCGA glioma cohort. (A) Distribution of grade, age, gender, IDH status, 1p-/19q−, 7+/10− and MGMT-
promoter methylation in the four clusters. The right asterisks represent the statistical p value (ns, p > 0.05; **p < 0.01; ***p < 0.001) for significance of the difference among
clusters. (B) The nomogram for predicting the 1-, 2-, 3- ,and 5-years survival possibility of individuals. (C,D) Calibration curve (C) and ROC curve (D) for evaluating the
performance of nomogram. (E,F) The estimated IC50 of gemcitabine (E) and bortezomib (F) among the four clusters. The asterisks represent the statistical p value
(ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001). (G) The distribution of the immunotherapy responders predicted by TIDE algorithm in the four clusters. (H) Submap
analysis of the four clusters and Roh cohort with detailed anti-PD1 and anti CTLA4 therapy information. (I) Submap analysis of the four clusters and GSE100797 with
detailed ACT information. (J) Submap analysis of the four clusters and GSE78220 with detailed anti-PD1 therapy information. For submap analysis, a smaller p-value
implied a more similarity of paired expression profiles.
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that DNA methylation levels of many immunomodulator genes,
such as HLA-B, CD80, CD274, CCL5, IL10, CD40, TNFRSF18,
ITGB2, and PRF1, were inversely correlated with their gene
expression levels, implying their essential role by epigenetic
silencing (Figures 5A,D). In summary, CNVs and methylation
modification were prominent participants in the regulation of
immunomodulators, which suggested a novel orientation for the
development of immune therapy.

Distinct Clusters Associated With Different
Clinical Outcomes
We examined the distribution of clinical characteristics including
grade, age, gender, IDH-status, 1p−/19q−, 7+/10− and MGMT-
promoter methylation in the four clusters (Figure 6A). The
percentage of elderly patients and senior grade glioma patients
displayed a decreasing trend from C1 to C4 (Supplementary
Figures S7A,B). There was no significant difference in gender
distribution among the four clusters (Figure 6A; Supplementary
Figure S7C). Of note, C4 had the highest percentage of IDH
mutation, 1p/19q codeletion and MGMT-promoter methylation
(Supplementary Figures S7D–F; Figure 2C). Univariate and
multivariate Cox regression analysis further revealed the
prognosis value of these characteristics, and then we identified
five independent prognostic factors encompassing the clusters,
grade, age, gender and IDH-status (Supplementary Table S9).
Based on these five factors, we developed a nomogram to assess
the 1-year, 2-years, 3-years, and 5-years survival of individual
patients (Figure 6B). The calibration curve demonstrated good
agreement between nomogram-predictions and observations
(Figure 6C). The Area Under the Curve (AUC) of ROC curve
for 1-year, 2-years, 3-years and 5-years were 0.859, 0.910, 0.925, and
0.888, respectively (Figure 6D). These results suggested that the
nomogram had an excellent performance. In addition, the
chemotherapy and immunotherapy sensitivity of each cluster was
further evaluated.We first predicted the response of the four clusters
to two chemotherapeutic drugs: gemcitabine and bortezomib, which
can benefit glioma patients in combination with standard
chemotherapeutic drug temozolomide (Bastiancich et al., 2018;
Kong et al., 2018). In contrast to the other clusters, C1 and C3
were more sensitive to bortezomib and gemcitabine,
respectively (all p-value <0.05) (Figures 6E,F). The previous
results suggested that C1 and C3 were considered as immune-
hot subtypes, while C2 and C4 were considered as immune-cold
subtypes. Therefore, we further investigated the sensitivity of
each cluster to immunotherapy. The TIDE algorithm was
utilized to assess the immunotherapeutic response of patients
in each cluster, and it indicated that C1 (41%) and C3 (32%) had
a higher response rate relative to C2 (21%) and C4 (14%)
(Figure 6G). Subclass mapping analysis in Roh cohort (Roh
et al., 2017) revealed that C1 displayed high similarity with
patients who responded to anti-PD1 therapy (p-value <0.01),
and C3 was significantly similar with anti-CTLA4 treatment
responders (p-value � 0.04), implying that C1 and C3 were more
prospective to respond anti-PD1 and anti-CTLA4
immunotherapy, respectively (Figure 6H). This phenomenon
precisely corresponded to the high expression level of CD274

(PD-L1) in C1 and CTLA4 in C3 (Supplementary Figures
S7G,H). In another two cohorts, GSE100797 and GSE78220,
C1 was more likely responded to adoptive cell therapy (ACT,
p-value <0.01) and anti-PD1 treatment (p-value � 0.03), further
demonstrating that C1 was more promising to benefit from
immunotherapy (Figures 6I,J).

DISCUSSION

Glioma is characterized by high heterogeneity and complex immune
escape mechanism, which are increasingly recognized as critical
factors that limit the progress of glioma treatment (Reardon and
Wen, 2015; Jackson et al., 2019). Specific genomic alterations drive
the formation ofmultidimensional heterogeneity in gliomas (Barthel
et al., 2018). Mutational signatures that characterize different
mutational processes play a crucial role in the investigation of
genomic variation. Our study identified four distinct clusters
based on mutational signatures, evidencing the intertumoral
molecular variability in glioma. These clusters varied regarding
genomic variation, biological characteristics, underlying immune
escape mechanisms and clinical characteristics (Supplementary
Table S10). To the best of our knowledge, the present study is
the first to dissect the mutational signatures of glioma, and
systematically investigate molecular heterogeneity of glioma from
the perspective of genomic variation and immune escape.
Meanwhile, we revealed plenty of prognosis relevant genomic
driver events. In addition, the nomogram was developed to serve
as a robust and promising tool for predicting the prognosis of glioma
patients.

Basically, the four clusters enriched in specific mutational
processes with different DNA damage mechanisms. C1 was
characterized by signature 1 and related to spontaneous
deamination of 5-methylcytosine, which was reported to be able
to mediate a high incidence of C > T transition in some tumor-
suppressor genes and play a role in carcinogenesis of human tumors
(Laird and Jaenisch, 1994). Signature 8 was the characteristic of C2,
but its proposed etiology was unknown yet. Based on the results of
decision tree analysis, we hypothesized that signature 8 was
associated with MGMT promoter methylation, which can
epigenetically silence the DNA mismatch repair enzyme MGMT
(Hegi et al., 2005). In C3, the characteristics were signature 3,
associated with homologous recombination deficiency, and
signature 13, linked to APOBEC activation. Cytosine deamination
of genomic DNA catalyzed by APOBEC family members is a
mechanism fueling cancer heterogeneity and evolution (Swanton
et al., 2015). In C4, the characteristic was signature 16, associated
with alcohol consumption and transcription-coupled damage
according to a recent study (Letouzé et al., 2017). DNA damage
caused by various mechanisms drives genomic instability and
ultimately the cancer process (Lord and Ashworth, 2012).
Therefore, the distinct mutational processes may translate into
different molecular and clinical features among the four clusters.

Unsurprisingly, the present study detected a significant
heterogeneity among the four clusters in genomic variation. A
total of 16 significantly mutated genes were identified as drivers
involved in the tumorigenesis and evolution of gliomas. Of these,
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PTEN mutation, co-occurring with EGFR but repelling with IDH1
mutation, was more specific to C1; FLG mutation, repulsive to IDH
mutation, occurred more frequently in C2; ATRX and TP53
mutations were significantly enriched in C3; and IDH1 mutation
was more specific to C4. PTEN, EGFR, ATRX, TP53 and IDH
mutations were all oncogenic drivers, predominantly related to
molecular diagnosis and different prognosis in glioma (Louis
et al., 2016; Diplas et al., 2018). FLG mutation, associated with
ichthyosis vulgaris and atopic eczema (Akiyama, 2010), was first
identified as a biomarker linked to a poor prognosis in glioma. For
copy number variation, the clusters also exhibited distinct
characteristics, as summarized in Supplementary Table S10. The
most frequent alterations were located on chromosomes 1p, 7, 10,
and 19q, in line with the focus of earlier studies (Louis et al., 2016;
Stichel et al., 2018). Copy number variation can lead to oncogene
activation or tumor suppressor gene (TSG) inactivation in cancer. In
the present study, it was detected that 7q21.2 (CDK6) and 7q31.2
(MET), more specific to C1, were appreciably amplified; 10q23.31
(PTEN), occurred more frequently in C1, and 1p32.3 (CDKN2C),
1p36.23 (ERRFI1), 1p36.32 (AJAP1 and HES3), and 19q13.41
(PPP2R1A), more specific to C4, were appreciably deleted. These
oncogene-relevant amplifications and TSG-relevant deletions may
contribute to the tumorigenesis and progression of glioma. In
addition, the present study also revealed that 12q14.1
amplification, and 6q22.31, 6q26, 13q14.2, 13q22.1, 15q14,
22q13.32, and 4q34.3 deletions were significantly related to
prognosis in glioma, implying that these alterations may be able
to serve as novel prognostic biomarkers.

The heterogeneity among the four clusters was also reflected in
biological function and immune status. As described, C1 was
characterized by activation of stroma and immunity and high
infiltration of immune and stromal cells, corresponding to stromal
and immune dual activation phenotype; C2 was characterized by
proliferation promotion, corresponding to proliferation phenotype;
C3 was characterized by activation of immunity and high immune
cells infiltration, corresponding to immune activation phenotype; and
C4 was characterized bymetabolism-related pathways, corresponding
to metabolism phenotype. Further, we summarized and underlined
the potential immune escape mechanisms of each cluster: abundant
stromal and immunosuppressive cells infiltration and immune
checkpoint blockade in C1; lack of immune cells, low
immunogenicity and antigen presentation defect in C2 and C4;
and immune checkpoint blockade in C3. The comprehensive
understanding of distinct biological characteristics and potential
immune escape mechanisms could guide more effective
personalized therapy. Moreover, we detected that CNVs and
methylation modification were prominent participants in the
regulation of immunomodulators, which suggested a novel
orientation for the development of glioma immunotherapy.

The present study had important implications for clinical
translations and application. Synchronization with
heterogeneous molecular features, the four clusters also varied
in clinical characteristics, as summarized in Supplementary
Table S10. First, the novel molecular subtypes had prognostic
significance. C4 displayed a better OS in contrast to the other
clusters. Consistently, this cluster also exhibited a higher
percentage of IDH mutation, 1p/19q codeletion and MGMT-

promoter methylation, which were all reported being associated
with a favor prognosis in glioma (Hegi et al., 2005; Sabha et al.,
2014). Based on the clusters, grade, age, gender and IDH-status,
an accurate nomogram was developed to predict the 1-year, 2-
years, 3-years, and 5-years survival of individual patients. Second,
our results can provide a reference for the selection of suitable
patients for chemotherapy or immunotherapy. The present study
deciphered that C1 and C3 were more sensitive to bortezomib
and gemcitabine, respectively. The combination of the standard
chemotherapy drug, temozolomide, and these two drugs can
achieve better treatment in gliomas (Bastiancich et al., 2018;
Kong et al., 2018). Further, according to the biological
function and immune pattern analysis, we observed C1 and
C3 belonged to the “immune-hot” subtype, and they also
exhibited high expression of immune checkpoint molecules,
which were the promising targets of immunotherapy. Thus,
we suspected that C1 and C3 may be more sensitive to
immunotherapy. Meanwhile, the results of TIDE and subclass
mapping analyses evidenced our speculation. C1 was more
sensitive to anti-PD1 therapy and ACT, and C3 was more
sensitive to anti-CTLA4 therapy. Consistent with this, PD-L1
and CTLA4 were up-regulated in C1 and C3, respectively. In
addition, combining the four clusters and clinical features, we
developed an excellent nomogram for prognostic evaluation,
which could guide more effective clinical management.

The present study also has some limitations. First, candidate
genomic carcinogenic drivers and abundance of TME cells
require further experimental verification. Second, patients
suitable for bortezomib and gemcitabine have been predicted
by bioinformatics algorithms, but further clinical validation is
also required. Finally, intra-tumor heterogeneity was not
considered due to the lack of relevant data.

CONCLUSIONS

The present study revealed four heterogeneous glioma clusters
with distinct genomic variants, functional phenotype, immune
escape mechanism, and clinical characteristics. The nomogram
with excellent performance was developed to serve as a powerful
prognostic predictor. These results could enhance the mastery of
molecular features and promote the precise therapy and clinical
management of glioma.
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