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Abstract

Nano-sized (1029–1027 m) particles offer many technical and biomedical advances over the bulk material. The use of
nanoparticles in cosmetics, detergents, food and other commercial products is rapidly increasing despite little knowledge of
their effect on organism metabolism. We show here that commercially manufactured polystyrene nanoparticles,
transported through an aquatic food chain from algae, through zooplankton to fish, affect lipid metabolism and behaviour
of the top consumer. At least three independent metabolic parameters differed between control and test fish: the weight
loss, the triglycerides:cholesterol ratio in blood serum, and the distribution of cholesterol between muscle and liver.
Moreover, we demonstrate that nanoparticles bind to apolipoprotein A-I in fish serum in-vitro, thereby restraining them
from properly utilising their fat reserves if absorbed through ingestion. In addition to the metabolic effects, we show that
consumption of nanoparticle-containing zooplankton affects the feeding behaviour of the fish. The time it took the fish to
consume 95% of the food presented to them was more than doubled for nanoparticle-exposed compared to control fish.
Since many nano-sized products will, through the sewage system, end up in freshwater and marine habitats, our study
provides a potential bioassay for testing new nano-sized material before manufacturing. In conclusion, our study shows that
from knowledge of the molecular composition of the protein corona around nanoparticles it is possible to make a testable
molecular hypothesis and bioassay of the potential biological risks of a defined nanoparticle at the organism and ecosystem
level.

Citation: Cedervall T, Hansson L-A, Lard M, Frohm B, Linse S (2012) Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish. PLoS
ONE 7(2): e32254. doi:10.1371/journal.pone.0032254

Editor: Vipul Bansal, RMIT University, Australia

Received September 21, 2011; Accepted January 25, 2012; Published February 22, 2012

Copyright: � 2012 Cedervall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Nano Vaccin Centre (Copenhagen), the Crafoord Foundation (Lund), Swedish Government to the Nanometer Structure
Consortium (Lund), and the Swedish Research Council, VR. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Sara.Linse@biochemistry.lu.se

¤ Current address: The Nanometer Structure Consortium (nmC@LU) and Division of Solid State Physics, Lund University, Lund, Sweden

Introduction

Urgent efforts are needed to make manufactured nanoparticles

less reactive if there is any risk that they enter natural envi-

ronments. Nano-sized particles offer many advantages in biomed-

ical and technical applications [1–3] due to unique physical and

optical properties related to their small size and large specific

surface area. The commercial use of nanoparticles in, for example

detergents, cosmetics, food, and dental products, is therefore

rapidly growing, leading to a rapidly increasing release of possibly

very potent particles into the environment. This specifically raises

concerns about nanoparticle effects in freshwater and marine

ecosystems since many products containing nanoparticles will end

up there through sewage systems.

In a biological fluid, nanoparticles are not pristine, but covered

with a protein corona, which mediates the biological effects of

nanoparticles [4–8]. Previous studies have pointed to a remarkable

specificity in the composition of this corona, depending on

nanoparticle size and surface chemistry [6–7]. The corona is

dynamic in nature, and changes over time as the nanoparticle

moves from one fluid/compartment to another; the time-

dependent evolution of the corona is governed by the relative

rate constants, affinities, stoichiometry and concentrations of

different proteins [9]. Proteins in the corona may have perturbed

structure and aggregation propensity [10–13], loss or gain of

function [14] or produce an increased inflammatory response [15].

A striking observation is the accumulation of apolipoproteins,

particularly apolipoprotein A-I (ApoA-I), in the corona around

nanoparticles of several different materials [5–7,16–22]. Apolipo-

proteins are fundamental components of the fat metabolism in

most organisms, including humans. Moreover, ApoA-I is a

structural and functional protein in HDL (High Density

Lipoproptein particles) and forms complexes with phospholipids,

cholesterol, and triglycerides. For copolymer particles it is shown

that complete HDL bind to the nanoparticles [23]. In most

toxicological studies, for example on fish, the studied substances

are presented to the organism directly in the surrounding medium.

The effects can in those studies be a result of uptake of the

substance through the skin or a direct effect on the gills and

their function. In a more natural pathway nanoparticles form

complexes with substances in nature and are taken up by the fish

through food. Therefore we here test the hypothesis that

polystyrene nanoparticles are transferred through the aquatic

food chain from algae, through zooplankton to fish (Fig. 1) and

that the fat metabolism of fish, specifically the mobilization of fat

reserves, is affected by nanoparticles.
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Results

The feeding time (the time it took the fish to eat 95% of the

zooplankton added to the tank) was measured at day 18, 21, 24, 27

and 30, and was at all these time points longer for test compared to

control fish (Fig. 2). The average feeding time over these five time-

points is more than twice as long for fish exposed, compared to

not exposed, to nanoparticles (16.662.7 and 6.060.7 minutes,

respectively; F1,6 = 33.20; p,0.035; repeated measures ANOVA

(analysis of variance)). Ocular observations indicated that test fish

were moving more slowly and to a much less extent than control

fish and that they did not hunt for zooplankton during the feeding.

A striking observation is that test fish let Daphnia swim in and out of

their mouth without trying to eat them. These data imply a strong

behavioural disturbance on the fish after eating food containing

nanoparticles.

Many spherical nanoparticles bind fat-carrying apolipoproteins

and lipoproteins that are essential for the fat metabolism. In

human plasma several apolipoproteins bind to polystyrene

nanoparticles [7] and among them apoA-I. To identify proteins

that bind to polystyrene particles in fish serum, we incubated

polystyrene nanoparticles with serum collected from several fish

species. (Fig. 3). For all fish species investigated, one of the main

proteins bound to the nanoparticles migrates as expected for a

protein with molecular weight around 25 kDa. The protein band

from Atlantic salmon (Salomo salar) was cut out and subjected to

trypsin proteolysis followed by mass spectrometry. Atlantic salmon

was chosen because its genome has been sequenced, and the

molecular weights of the tryptic peptides identify the protein as

apoA-I (Fig. 3). The sequence identity for apoA-I from different

fish species is as low as 40% which makes protein identification

difficult in species with unknown amino acid sequence. However,

apoA-I from most fish has a molecular weight around 25 kDa [24–

27] and likely constitutes the nanoparticle bound 25 kDa protein

from Crucian carp (Carassius carassius) and the other species.

ApoA-I and HDL are important in the lipid metabolism. While

the data above imply that polystyrene nanoparticles bind Apo AI

in serum of our test fish, it is likely that the nanoparticles bind

apoA-I and HDL in blood after being taken up through the

intestinal wall and travelling to blood and other organs. The

nanoparticles might thereby influence the lipid metabolism. As an

attempt to register changes in the lipid metabolism we followed the

concentrations of triglycerides and phospholipids in blood serum,

liver, and muscles throughout the experiment. Two distinct

differences were seen between the control and test group. The

triglycerides:cholesterol ratios in blood serum were similar after 14

days (Fig. 4A). After 22 days the ratio for the control fish was very

low, whereas only a small decrease was seen in test fish. After 29

days the ratios had increased for both the control and test group.

In addition, the distribution of cholesterol among muscle and liver

changed during the experiment (Fig. 4B). After 14 days the

distribution of cholesterol was the same in control and test fish.

However, after 22 days the cholesterol concentrations in the

control group were elevated in muscle and liver (Fig. 4B). After 29

days the distribution of cholesterol was again similar.

Figure 1. Cartoon illustrating the test food chain with 24 nm polystyrene nanoparticles added at a concentration of 0.01% (w/v) to
an algal culture, which after 24 h was filtered and fed to herbivorous zooplankton (algae from 250 ml culture given to 30 adult
Daphnia). After another 24 h, the zooplankton were gently washed on a net in order to remove remaining or released free nanoparticles before
zooplankton were presented to the top consumers of the food chain (fish; 4 individuals per replicate tank). The food chain was restarted every third
day and the fish remained the same throughout the study. The control food chain was operated in the same way except that no nanoparticles were
added. Each food chain started with 16 fish divided into four tanks. The number of fish in each tank decreased over time due to sacrifice of fish for
sampling.
doi:10.1371/journal.pone.0032254.g001

Figure 2. Mean feeding time over four tanks (±standard error
of the mean) needed for the top-consumer (fish) to reduce the
food (zooplankton) by 95%. Closed symbols denote test fish
exposed to nanoparticles and open symbols control fish.
doi:10.1371/journal.pone.0032254.g002
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Figure 3. Identification of protein corona on polystyrene nanoparticles in fish serum. Serum from different fish species was mixed with
polystyrene nanoparticles. Bound proteins were separated from unbound proteins by centrifugation followed by washing and elution in SDS loading
buffer. The eluted proteins were separated according to size by SDS-PAGE. The sequence of Atlantic salmon (Salomo salar) apoA-I is shown to the
right with peptides identified by mass spectrometry analysis after tryptic digestion of the 25 kDa protein band in red. The identified peptides cover
31.8 percent of the sequence.
doi:10.1371/journal.pone.0032254.g003

Figure 4. Metabolic changes in fish over time. A. The ratio of triglycerides to cholesterol in blood serum of Crucian carp (Carassius carassius)
exposed (filled bars) and not exposed (white bars) to food containing polystyrene nanoparticles. Each bar shows the average over 4 fishes. B. Mean
distribution (6 average deviation) of cholesterol (mg/mg) in liver (y-axis) and muscle (x-axis) of Crucian carp (Carassius carassius) over four fishes per
data point. Black symbols denote nanoparticle-exposed and white symbols denote control fish. C. The average weight change at each time point
relative to the preceding time point is shown (for day 15 relative to day -4). Filled bars refer to the nanoparticle-exposed fish and white bars to the
control group. The bars show averages over 16, 12, 8 and 3 control fish, or 16, 12, 8 and 2 test fish, at day 15, 21, 27 and 39, respectively.
doi:10.1371/journal.pone.0032254.g004

Nanoparticles Affect Fish Behaviour and Metabolism

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e32254



Throughout the experiment the weight of the fish was

measured. A change in weight is a good parameter of the overall

metabolic status of the fish. As the fish is fed with a limited amount

of zooplankton, a weight loss is expected because the fish is forced

to use its energy reserves. A significant weight loss was observed for

both the test and control group from the first feeding to the 15th

day of the experiment (Fig. 4C). Between day 15 and 21 the weight

loss slowed down for both groups. After this, the control group

continued to lose weight whereas the test fish actually gained

weight at the end of the experiment. A likely explanation is that in

the beginning of the experiment both control and test fish used the

same energy reserves, resulting in weight loss. Later, from day 15,

the control fish continued to use the energy reserves and therefore

continued to lose weight. The test fish, however, were inhibited

from utilizing the energy reserves due to an accumulation of

nanoparticles.

Nanoparticle transport through the food chain was studied in a

parallel experiment using 28 nm polystyrene nanoparticles with

encapsulated fluorescent molecules. After 24 hours test algae show

marked fluorescence (Figure 5A,B), whereas no fluorescence was

observed from control algae (Figure 5C,D). Control and test algae

were given to Daphnia that were imaged after another 24 hours. A

large number of nanoparticles were clearly visible as distinct

fluorescent points in test Daphnia (Figure 5E,F), whereas diffuse and

much weaker auto-fluorescence was found for both test and

control Daphnia (Figure 5G,H). When Daphnia were imaged

before washing on the net, a significant fraction of fluorescent

nanoparticles were observed in the surrounding liquid and these

were removed during the washing step. These data imply that

nanoparticles are transported through the whole food chain and

are delivered to the top consumer, fish, through their food.

Discussion

Nano-sized material, for example, fullerenes [28]24, single

walled carbon nanotubes [29] and titanium dioxide [30], are

known to cause biochemical changes in the brain of e.g. fish,

which can lead to behavioural changes [29]. Moreover, polysty-

rene nanoparticles taken up through gills and via the blood are

transferred to several organs, including the brain [31]. The fish in

our study, which were fed polystyrene nanoparticles through a

food chain, moved and hunted more slowly, i.e. showed strong

behavioural changes compared to the control fish. In addition, at

least three independent metabolic parameters differed between

control and test fish: the weight loss, the triglycerides:cholesterol

ratio in blood serum, and the distribution of cholesterol between

muscle and liver. This strongly suggests that there is a disturbance

of the lipid metabolism as a consequence of nanoparticle intake.

Interestingly, changes occurred around 22 days after the

nanoparticles intake and starving began, indicating that the

nanoparticle-related disturbance of the lipid metabolism is a slow

process or that an accumulation of nanoparticles is needed for an

effect to be observed. Also interesting, it was the control fish that

changed while the test fish showed more stable values. A likely

explanation is that the normal adaptation to starvation that seen in

the control fish is disturbed or inhibited in the test fish because of

the nanoparticles in the system, suggesting that nanoparticles make

the fat metabolism less adaptable to starvation.

Our study shows that from knowledge of the molecular

composition of the protein corona around nanoparticles it is

possible to make a testable molecular hypothesis and bioassay of

the potential biological risks of a defined nanoparticle on organism

and ecosystem level. Like many other spherical nanoparticles,

Figure 5. Fluorescence and bright field images of test and control algae and Daphnia. A. Bright field images of algae taken from test
sample, After 24 h incubation with 28 nm fluorescently labeled nanoparticles. B. Fluorescence micrograph of algae from A, imaged with Deep Blue
filter cube (see Methods), here algal cells are fluorescent due to adsorption of fluorescently labeled nanoparticles. C. Bright field images of algae
taken from control sample. D. Fluorescence micrograph of algae from C, imaged with Deep Blue filter cube, here algal cells are clearly non-
fluorescent. Scale bars, A–D: 10 mm. E. Fluorescence micrograph of Daphnia, taken after 24 hrs incubation with test algae and a light wash through
filter. F. Close up of E, nanoparticles can be seen in and on the Daphnia. G. Fluorescence micrograph of control Daphnia, taken after 24 hrs incubation
with control algae and a light wash through filter. H. Close up of G, note some auto-fluorescence in the gut and heart and developing offspring,
much of which is distributed evenly. Scale bars, E–H: 500 mm.
doi:10.1371/journal.pone.0032254.g005
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polystyrene binds apoA-I which may lead to consequences in the

lipid metabolism. We show that when polystyrene nanoparticles

are transported up the food chain, they have devastating effects on

the lipid metabolism of top-consumers, in this case fish. Moreover,

the nanoparticles affect the behaviour of the fish thereby having

potential effects on ecosystem functioning. It is, to our knowledge,

the first time a link between the protein corona and an effect on

the metabolism and behaviour of an organism and its function at

the ecosystem level has been shown. Hence, in addition to showing

that nanoparticles used in everyday products may strongly affect

top-consumers both behaviourally and metabolically, we also

present a procedure on how to test nanomaterials, such that

manufacturing can be optimized in order to avoid future potential

environmental and health care disasters.

Materials and Methods

The study complies with the current laws in Sweden; ethical

concerns on care and use of experimental animals were followed

under permission (M14-04) from the Malmö/Lund Ethical Com-

mittee. Commercially available polystyrene nanoparticles were

purchased from Bangs Laboratories Inc. (Fishers, IN, U.S.A.). The

diameter was determined by dynamic light scattering (DLS) to be

24 nm in H2O. Before the experiments, the nanoparticles were

extensively dialysed towards tap water that was used to grow algae,

zooplankton and fish in. No aggregation of the particles was

observed after dialysis.

We designed a bioassay protocol which as far as possible ensures

that the nanoparticles are taken up through food and the intestinal

wall. A three-day process was set up for the food chain as follows:

day 1) addition of nanoparticles to the algal culture, day 2) feed

zooplankton with algae, day 3) feed fishes with zooplankton. This

three day process was repeated throughout the 6 week long

experiment (Fig. 1). Two parallel food chains were constructed,

one with nanoparticles added during algal growth (test) and one

with no nanoparticles added (control). The individual steps were

performed as follows. On the first day of the process 250 mL of a

green algal laboratory culture (Scenedesmus sp., 25 mm in diameter)

was distributed to each of eight glass bottles. Four bottles were set

aside for the control group. Four bottles were used for the test

group and supplemented with 25 mg polystyrene nanoparticles

each, yielding a nanoparticle concentration of 0.01% (w/v). The

solutions were mixed by shaking for 5 minutes. Algae were then

grown together with nanoparticles for 24 hours at 20uC and at a

light/dark cycle of 14/10 h (Fig. 1). The 0.01% concentration was

chosen to allow a significant number of nanoparticles to be

transferred to the fish as a large fraction may remain outside algae

and Daphnia and be removed during the washing step which

follows before presenting Daphnia to fish.

Zooplankton (Daphnia magna; approximate size 3 mm) were

taken from culture and placed in each glass jar (30 adult Daphnia

per 250 ml jar). On the second day of the process, the filtered

algae were added to the respective Daphnia jars (test or control) and

the jars were incubated at 20uC for 24 hours (Fig. 1). Four control

and four test aquaria were filled with 15 liter of water and aerated.

Four Crucian carp (Carassius carassius) were randomly assigned to

each of the aquaria. On the third day of each experimental cycle,

Daphnia were collected on a 50 mm net and presented to the fish.

Fish feeding times were monitored five times (Day 18, 21, 24, 27,

and 30), by recording the time it took the fish to eat 95% of the

Daphnia added to the tank. Differences in feeding time between

treatments were tested with Repeated Measures ANOVA.

Four days before the experiment, Day -4, all fish were weighed

and measured. Thereafter the fish were weighed before feeding at

day 15, 21, 27 and 39. On days 14, 21, 27, and 39 one fish from

each tank was removed for blood and tissue sampling. Blood was

collected around the gills after decapitation, allowed to coagulate

and centrifuged, 2000 rpm, to remove cells and coagulate. The

supernatant was centrifuged again at 13000 rpm to remove small

aggregates and cell debris and stored in aliquots at 270uC.

Nanoparticle uptake and transfer through the food chain was

studied in a parallel experiment using 28 nm diameter polystyrene

particles (1% w/v) with encapsulated fluorophore (Duke Scientific

Corp., Palo Alto, CA). Green algae (Scenedesmus sp., 25 mm in

diameter) were grown in the absence (control) or presence of the

fluorescent nanoparticles (test) at a concentration of 0.01% (w/v)

for 24 hours at 20uC followed by bright field and fluorescence

microscopy. Imaging of samples was performed with an inverted

Nikon Eclipse TE2000-U microscope (Nikon Corporation, Tokyo,

Japan) using an Andor Ixon EMCCD camera (Andor Technology,

Belfast, Northern Ireland), with bright field or epifluorescence

illumination with white light or Deep Blue filter cube set (Ex/Em

455/520 nm), respectively. Image acquisition was performed with

IQ software (Andor Technology, Belfast, Northern Ireland). The

algae were filtered and added to Daphnia (test or control) in the

same proportions as above and the jars with Daphnia were

incubated at 20uC for 24 hours. Daphnia were collected on a

50 mm net and washed to remove free nanoparticles, followed by

bright field and fluorescence microscopy as above.

Fish blood from Crucian carp (Carassius carassius), Bleak (Alburnus

alburnus), Rudd (Scardinius erythrophthalmus), Tench (Tinca tinca), Pike

(Esox esox), and Atlantic salmon (Salmo salar), was collected and sampled

according to the same procedure as for the Crucian carp (see above).

From each fish, 100 ml serum was mixed with 1 mg polystyrene

particles, 200 nm (to allow pelleting by centrifugation), in PBS and

incubated at 23uC for 1 hour. The mixtures were centrifuged,

13000 rpm, for 10 min and the supernatants discarded. The pellets

were dispersed in 0.5 ml PBS and the samples centrifuged again. This

was repeated once. Proteins bound to the particles in the pellets were

desorbed by adding SDS-PAGE loading buffer, and separated on a

12% SDS-PAGE. Proteins migrating at a position corresponding to

around 25 kDa were cut out and digested with trypsin.

Trypsin digested peptide extracts were resuspended in 10 ml of

0.1% TFA, and 0.5 ml of each extract was dispensed directly on a

MALDI-TOF sample support. The samples were allowed to dry

prior to addition of 0.5 ml of matrix solution (5-mg/ml a-cyano-4-

hydroxycinnamic acid, 50% acetonitrile, 0.1% TFA, 25 mM citric

acid) to each sample. MALDI-TOF mass spectrometry was

performed using a 4700 proteomicsanalyzer (Applied Biosystems,

Framingham, MA) mass spectrometer in positive reflector mode.

For MS and tandem MS (MS-MS) analyses, approximately 1,000

and 2,000 single laser shot spectra were summed up, respectively.

Samples of muscle and liver from Crucian carp were weighed and

1 ml PBS/100 mg tissue was added and the tissue was homogenized.

The homogenized tissue was centrifuged, 13000 rpm, 6 min, and the

supernatant transferred to new tubes. The absorbance of the

supernatant was measured at 280 nm as a control that the procedure

resulted in similar levels of homogenization. The triglyceride and

cholesterol concentrations were measured in serum, muscle and liver

homogenates. Serum Triglyceride Determination Kit, Sigma TRO

100 and Amplex Red Cholesterol Assay Kit, Sigma A12216, were

used to determined triglyceride or cholesterol concentrations,

respectively, according to the manufacturer’s instructions.
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affecting blood coagulation. Nanomedicine. In press. http://dx.doi.org/10.

1016/j.nano.2011.12.001,14051.

15. Chang C (2010) The immune effects of naturally occurring and synthetic

nanoparticles. J Autoimmun 34: 234–46.

16. Diederichs JE (1996) Plasma protein adsorption patterns on liposomes:

establishment of analytical procedure. Electrophoresis 17: 607–11.
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