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ABSTRACT

BACKGROUND/OBJECTIVES: In this study, we investigated the beneficial effects of 
skate cartilage extracts containing chondroitin sulfate (SCS) on hyperlipidemia-induced 
inflammation and oxidative stress in high cholesterol diet (HCD)-fed mice in comparison 
with the effects of shark cartilage-derived chondroitin sulfate (CS).
MATERIALS/METHODS: Low-density lipoprotein receptor knockout (LDLR-KO) mice were 
fed HCD with an oral administration of CS (50 and 100 mg/kg BW/day), SCS (100 and 200 
mg/kg BW/day), or water, respectively, for ten weeks.
RESULTS: The administration of CS or SCS reduced the levels of serum triglyceride (TG), 
total cholesterol (TC), and LDL cholesterol and elevated the levels of high-density lipoprotein 
cholesterol, compared with those of the control group (P < 0.05). Furthermore, CS or SCS 
significantly attenuated inflammation by reducing the serum levels of interleukin (IL)-1β and 
hepatic protein expression levels of nuclear factor kappa B, inducible nitric oxide synthase, 
cyclooxygenase-2, and IL-1beta (P < 0.05). In particular, the serum level of tumor necrosis 
factor-alpha was reduced only in the 100 mg/kg BW/day of SCS-fed group, whereas the IL-6 
level was reduced in the 100 and 200 mg/kg BW/day of SCS-fed groups (P < 0.05). In addition, 
lipid peroxidation and nitric oxide production were attenuated in the livers of the CS and SCS 
groups mediated by the upregulation of hepatic proteins of antioxidant enzymes, such as 
superoxide dismutase, catalase, and glutathione peroxidase (P < 0.05).
CONCLUSIONS: These results suggest that the biological effects of SCS, similar to those of 
CS, are attributed to improved lipid profiles as well as suppressed inflammation and oxidative 
stress induced by the intake of HCD.
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INTRODUCTION

Hyperlipidemia is a common feature of dyslipidemia characterized by an increase of 
triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and 
a decrease of high-density lipoprotein cholesterol (HDL-C) in the blood. The high levels of 
plasma lipid are strongly associated with a typical pathological condition of numerous diseases, 
such as atherosclerosis, non-alcoholic fatty liver diseases (NAFLD), and inflammation-related 
disorder [1-4]. Dietary cholesterol is a well-known cause for hyperlipidemia [5]. Numerous in 
vivo studies demonstrated that a cholesterol-rich diet induces hyperlipidemia [5-8].

Under the condition of hyperlipidemia, the inflammation and oxidative stress are 
predominant [9]. Dietary cholesterol-induced hyperlipidemia leads to an inflammatory 
response and enhances oxidative stress in organs [5,6]. In particular, hepatic inflammation 
plays a vital role in the progression of steatohepatitis, fibrosis, and finally, cirrhosis [10]. 
The excessive intake of cholesterol provokes hepatic inflammation, which directly results 
in the development of hepatitis [4]. Inflammatory responses are promoted by the release of 
inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, 
and IL-6, and inflammatory enzymes, such as inducible nitric oxide synthase (iNOS) and 
cyclooxygenase-2 (COX-2), regulated by the nuclear factor-kappa B (NF-κB) activation [11]. 
In addition, elevated oxidative stress produces peroxynitrite and increases lipid peroxidation 
[12], which impairs the body's antioxidant status via downregulation of antioxidant enzymes, 
such as superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) [13].

Chondroitin sulfate is a glycosaminoglycan, a type of polysaccharide that is present in 
the cartilages, skin, blood vessels, ligaments, and tendons of the body [14]. Chondroitin 
sulfate is mainly used for the treatment of osteoarthritis due to its anti-inflammatory 
activities [14,15]. Besides, biological activities have established regarding the improvement 
of lipid/glucose metabolism, anti-atherosclerosis, antioxidant, and anti-apoptotic effects 
[16-19]. One of the major sources of chondroitin sulfate is shark cartilage. Recently, it has 
become necessary to replace shark cartilage-derived chondroitin sulfate (CS) because of the 
prohibition of the capture and killing of sharks [19,20]. Therefore, several studies have made 
attempts to extract chondroitin sulfate from various sources, including cattle, pigs, chickens, 
and sea cucumbers [19,21]. The skate (Raja Kenojei) is a commonly found fish species in the 
northwestern Pacific Ocean, Korea, Japan, China, and possibly elsewhere. Only the fillet of 
the skate is consumed due to its unique odor; the remaining parts (e.g. skin, cartilage, and 
bone) weighing about 30%, are discarded [22]. We previously investigated the protective 
effects of skate cartilage extracts containing chondroitin sulfate (SCS) in lipopolysaccharide 
(LPS)-induced liver damage [18]. However, it has not been studied whether SCS could 
alleviate hyperlipidemia-induced inflammation and oxidative stress in high cholesterol diet 
(HCD)-fed mice. Therefore, the aim of the present study is to investigate the beneficial effects 
of SCS on hyperlipidemia, inflammation, and oxidative stress in the LDL receptor knockout 
(LDLR-KO) mice fed an HCD in comparison with the effects of CS.

MATERIALS AND METHODS

Preparation of skate cartilage extracts containing chondroitin sulfate
The SCS was provided by Yeongsan Skate (Yeongsan Skate Co., Ltd., Busan, Korea). Skate 
cartilage was obtained during the skate processing as mentioned in the previous study [22]. 
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Briefly, the byproduct of skate cartilage was heated at 95°C for 2 h to remove ribbon-type 
meat. Skate cartilage was dried for 24 h using a heated-air dryer and crushed. The powdered 
skate cartilage was added with 3 volumes of water and hydrolyzed by protease such as alcalase 
and protamex (Novozyme Co., Bagsværd, Denmark) at 50°C for 4 h, followed by heated at 
95°C for 30 min. Afterward, it was deodorized, filtered, and concentrated at 65°C. The final 
sample was freeze-dried at −75°C. The composition of SCS was as follows; moisture 2.09%, 
protein 46.97%, ash 3.5%, and chondroitin sulfate 47.44% (Food Analysis Center, Pukyong 
National Univ., Busan, Korea). The positive control, CS was purchased from Sigma-Aldrich 
(C4384; Sigma-Aldrich, St. Louis, MO, USA).

Animal and experimental diets
Forty-five male LDLR-KO mice (6-week-old, each 20-25 g) were obtained from Jackson 
Laboratories (Bar Harbor, Me, USA). Mice were housed in a plastic cage with a 12 h light-
dark cycle. The room had standard laboratory humidity (50 ± 10%) and temperature (20 ± 
2°C). After 1 week of acclimatization, mice were randomly assigned into five groups on the 
basis of body weights (n = 8 per group). The experimental groups were shown in Table 1. The 
dose of CS and SCS was determined according to a previous report [18]. In particular, the 
concentration of SCS was considered by the content of chondroitin sulfate in SCS (47.44%) 
[18], thus the dose of SCS groups is a half of that of CS groups. CS and SCS were orally 
administered via a stomach tube every day for 10 consecutive weeks. During the experimental 
period, mice were provided with free access to water and HCD composed of 20 kcal% 
protein, 45 kcal% carbohydrate, 35 kcal% fat (D12336, Research Diets, New Brunswick, NJ, 
USA). The percentage of cholesterol in HCD was 1.25%. Body weight was recorded every 
week, and food intake was examined every day. The food efficiency ratio (%) was calculated 
as total body weight gain/total food intake × 100.

The mouse was fasted for 12 hours before sacrifice, and anesthetized with CO2 gas. 
Immediately the blood was collected and centrifuged at 3,000 rpm for 20 min at 4°C to 
obtain serum. Liver tissues were perfused with 0.9% sodium chloride and removed. Serum 
and liver tissues were stored frozen in a deep freezer at −80°C. All experimental procedures 
were permitted (Approval No. PNU-2018-1887) using the guidelines established by the Pusan 
National University Institutional Animal Care and Use Committee (PNU-IACUC).

Serum lipid profiles, atherogenic index, and cardiovascular risk index
Serum triglyceride (TG, AM157S-K, Asan Pharm., Seoul, Korea), total cholesterol (TC, 
AM202-K, Asan Pharm, Seoul, Korea), and high-density lipoprotein cholesterol (HDL-C, 
AM203-K, Asan Pharm, Seoul, Korea) concentrations were measured using commercially 
available kits. Low-density lipoprotein cholesterol (LDL-C) concentration was calculated 
as TC - HDL-C / (TG / 5) [23]. The atherogenic index (AI) was calculated as (TC - HDL-C) / 
HDL-C, and the cardiac risk factor (CRF) was calculated as TC / HDL-C.
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Table 1. The experimental groups in this study
Group Treatment
Control HCD + oral administration of water
CS50 HCD + oral administration of CS (50 mg/kg/day)
CS100 HCD + oral administration of CS (100 mg/kg/day)
SCS100 HCD + oral administration of SCS (100 mg/kg/day)
SCS200 HCD + oral administration of SCS (200 mg/kg/day)
HCD, high cholesterol diet; CS, shark cartilage-derived chondroitin sulfate; SCS, skate cartilage-derived 
chondroitin sulfate extract.
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Serum inflammatory cytokine concentration
Serum inflammatory cytokine concentrations were measured using ELISA kits. The following 
cytokines were measured: TNF-α (#560478, BD, Franklin Lakes, NJ, USA), IL-1β (MLB00C, 
Minneapolis, MN, USA), IL-6 (#550950, BD, Franklin Lakes, NJ, USA), and prostaglandin E2 
(PGE2, M6000B, Minneapolis, MN, USA).

Lipid peroxidation in the liver tissue
The content of malondialdehyde (MDA) in liver tissue was measured according to the method 
of Ohkawa et al. [24]. After centrifugation at 3,000 rpm for 10 min, the supernatant was 
mixed with 1% phosphoric acid and 0.67% thiobarbituric acid TBA), and the mixture was 
boiled for 30 min and then cooled. Seven milliliters of butanol was added and the mixture 
was centrifuged at 3,000 rpm for 10 min. The absorbance of the supernatant was measured 
at 540 nm. The standard curve was prepared using different concentrations of MDA, and the 
extent of lipid peroxidation was calculated.

Nitric oxide (NO) production in the liver tissue
The NO contents of liver tissue were measured according to the method of Schmidt et al. 
[25]. The liver tissues were homogenized with a homogenizer by adding a physiological 
saline solution (0.9% NaCl) and centrifuged at 3,000 rpm for 10 min. After, 150 µL of 
the supernatant and 130 µL of distilled water were mixed, and then 100 µL of the mixture 
was added to the Griess reagent (1:1 ratio) and incubated at room temperature for 15 min. 
The absorbance was measured at 540 nm. The standard curve was prepared by different 
concentrations of NaNO2 and the inhibition of NO production was calculated.

Western blot analysis
The liver tissues were homogenized with lysis buffer containing a protease inhibitor cocktail. 
The homogenates were centrifuged at 12,000 rpm for 20 min at 4°C. After the supernatant 
was collected, the protein concentration was determined using the Bio-Rad protein assay 
kit (Bio-Rad, Irvine, CA, USA). An equal amount of proteins were resolved on 10% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After electrophoresis, 
proteins were transferred to polyvinylidene difluoride (PVDF) membrane (Millipore, 
Burlington, MA, USA). The membrane was incubated with 5% skim milk for 50 min at room 
temperature and then washed with PBS-T. The membrane was incubated with a primary 
antibody overnight at 4°C and then washed with PBS-T. The primary antibodies used were: 
β-actin (1:1,000; Cell Signaling, Beverly, MA, USA), NF-κB p65 (1:500, Abcam, Cambridge, 
UK), iNOS (1:500, Merk, Kenilworth, NJ, USA), COX-2 (1:1,000, Cell Signaling, Beverly, MA, 
USA), IL-1β (1:500; Bioss Antibodies, Boston, MA, USA), SOD (1:500; Santa Cruz, Dallas, 
TX, USA), catalase (1:500; Santa Cruz), and GSH-Px (1:500, Santa Cruz). The membranes 
were incubated with secondary antibodies for 1 h. The immuno-complexes were visualized 
by enhanced chemiluminescence solution (ELPIS Biotech, Daejeon, Korea) and bands were 
visualized with a chemiluminescent imaging system (Davinci Chemi, Seoul, Korea).

Statistical analysis
Data are presented as mean ± SD. Results were assessed using one-way analysis of variance 
(ANOVA) and Duncan's test for multiple comparisons. Statistical significance was considered 
as P < 0.05.
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RESULTS

Body weight, food intake, and food efficiency ratio
Changes in body weight, the amount of daily food intake, and food efficiency ratio are presented 
in Table 2. These data were not significantly different among all experimental groups.

Serum lipid profiles, atherogenic index, and cardiovascular risk index
As shown in Fig. 1, serum lipid profiles, atherogenic index (AI), and cardiovascular risk 
index (CRF) were determined. The administration of CS50, CS100, SCS100, and SCS200 
significantly decreased the TG levels to 3.64 mmol/L, 3.72 mmol/L, 4.03 mmol/L, and 4.09 
mmol/L, respectively, compared to those of the untreated control group (4.97 mmol/L). The 
concentration of TC was 71.45 mmol/L in the control group, whereas the CS50, CS100, SCS100, 
and SCS200 groups significantly reduced the TC level to 65.71 mmol/L, 64.20 mmol/L, 64.93 
mmol/L, and 67.03 mmol/L, respectively. The LDL-C concentrations were significantly reduced 
in the CS50, CS100, SCS100, and SCS200 groups to 56.75 mmol/L, 54.67 mmol/L, 53.69 
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Table 2. Body weight and food intake in high cholesterol diet fed LDL receptor knockout mice for 10 weeks
Group1) Initial body weight (g) Final body weight (g) Body weight gain (g) Food intake (g/day) Food efficiency ratio (%)2)

Control 19.20 ± 1.23NS 23.61 ± 1.64NS 4.41 ± 1.01NS 2.32 ± 0.41NS 21.11 ± 4.84NS

CS50 18.98 ± 1.39 23.86 ± 1.75 4.89 ± 1.19 2.36 ± 0.40 23.00 ± 5.58
CS100 18.68 ± 1.33 23.54 ± 1.69 4.86 ± 0.78 2.30 ± 0.39 23.47 ± 3.76
SCS100 18.79 ± 1.53 23.20 ± 1.53 4.41 ± 0.83 2.27 ± 0.42 23.32 ± 4.40
SCS200 18.80 ± 1.69 23.51 ± 1.63 4.71 ± 0.78 2.38 ± 0.41 22.03 ± 3.66
Values are mean ± SD (n = 8 each group). Statistical analyses were conducted by Duncan's multiple range test (P < 0.05). NS, Non-significance.1)Control, LDL 
receptor knockout (LDLR-KO) mice fed high cholesterol diet (HCD) and oral administration (OA) of purified water; CS50 and CS100, LDLR-KO mice fed HCD and 
OA of CS at a concentration of 50 and 100 mg/kg/day, respectively; SCS100 and SCS200, LDLR-KO mice fed HCD and OA of SCS at a concentration of 100 and 200 
mg/kg/day, respectively.2)Food efficiency ratio (%) : (total weight gain/total food intake) × 100.
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Fig. 1. Effects of chondroitin sulfate from shark cartilage (CS) and chondroitin sulfate from skate cartilage extract (SCS) on serum lipid profiles in high cholesterol diet 
fed LDL receptor knockout mice for 10 weeks. (A) TG, triglyceride; (B) TC, total cholesterol; (C) LDL-C, low density lipoprotein cholesterol; (D) HDL-C, high density 
lipoprotein; (E) AI, atherogenic index; (F) CRF, cardiac risk factor. See the legend of Table 1 for experimental groups in detail. Values are means ± SD (n = 8 per 
group). a~cMeans with the different letters are significantly different (P < 0.05) by Duncan's multiple range test.
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mmol/L, and 50.77 mmol/L, respectively, relative to that in the control group (63.96 mmol/L). 
The HDL-C concentrations were significantly increased in the CS50, CS100, SCS100, and 
SCS200 groups to 8.71 mmol/L, 9.74 mmol/L, 10.59 mmol/L, and 15.24 mmol/L, respectively, 
compared with the control group (4.07 mmol/L). Subsequently, the CS or SCS significantly 
decreased the AI and CRF. Compared with the control group, the CS50, CS100, SCS100 and 
SCS200 groups showed a decrease in the AI index by 6.98%, 6.22%, 5.35%, and 3.53%, and a 
decrease in the CRF index by 7.98%, 7.22%, 6.35%, and 4.53%, respectively.

Serum inflammatory cytokine levels
The effects of CS and SCS on serum inflammatory cytokines, such as TNF-α, IL-1β, IL-6, and 
PGE2 are shown in Fig. 2. The concentrations of TNF-α were decreased to 20.38 pg/mL, 18.08 
pg/mL, 16.54 pg/mL, and 21.62 pg/mL in the CS50, CS100, SCS100, and SCS200 groups, 
respectively, compared with control group (26.46 pg/mL). In particular, the SCS100 group 
showed a significantly decreased level of TNF-α. In CS50, CS100, SCS100, and SCS200 
groups, the IL-1β levels were significantly reduced to 124.53 pg/mL, 121.16 pg/mL, 129.47 
pg/mL, and 126.87 pg/mL, respectively, from those in the control group (145.05 pg/mL). In 
addition, the IL-6 level in the CS50, CS100, SCS100, and SCS200 groups were decreased by 
112.69 pg/mL, 119.19 pg/mL, 116.94 pg/mL, and 111.94 pg/mL, respectively, compared with 
control group (123.69 pg/mL). However, no significant difference in PGE2 levels was noted in 
any experimental group.

Inflammation-related protein expression in the liver
The effects of CS and SCS on the hepatic inflammatory-related protein levels, such those of as 
NF-κB, iNOS, COX-2, and IL-1β, are shown in Fig. 3. The administration of CS or SCS lowered 
the protein expression levels of NF-κB, iNOS, COX-2, and IL-1β. In particular, compared to 
those of the control group, the protein expression levels of NF-κB and IL-1β in the CS100, 
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SCS100, and SCS200 groups were significantly decreased by 31.17%, 33.50%, and 42.03%, 
respectively, and by 13.35%, 19.88%, and 16.97%, respectively (P < 0.05). Those levels of 
iNOS in the CS50, CS100, SCS100, and SCS200 groups were significantly reduced by 24.72%, 
51.69%, 53.61%, and 38.46%, respectively (P < 0.05). Those levels of COX-2 in the CS100 and 
SCS200 groups were significantly decreased by 49.00% and 41.44%, compared to those of 
the control group (P < 0.05)

Lipid peroxidation and nitric oxide formation in the liver
The inhibitory effects of CS and SCS on lipid peroxidation and NO are shown in Fig. 4. The 
hepatic MDA levels were significantly decreased in the CS50, CS100, SCS100, and SCS200 
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groups, to 8.04 µmol/mg protein, 5.38 µmol/mg protein, 6.33 µmol/mg protein, and 8.39 
µmol/mg protein, respectively, compared with the control group (12.04 µmol/mg protein). 
In particular, the CS100 and SCS100 groups showed the lowest MDA levels. The NO levels 
were significantly reduced in the CS100, SCS100, and SCS200 groups by 124.81 µmol/mg 
protein, 123.09 µmol/mg protein, and 123.94 µmol/mg protein, respectively, but there was no 
significant difference, compared with that of the control group (130.55 µmol/mg protein).

The effects of CS and SCS on hepatic antioxidant enzymes, including SOD, catalase, 
and GSH-Px are shown in Fig. 5. The protein expression levels of SOD and catalase were 
significantly higher in the SCS100 (by 102.67% and 115.07%) and SCS200 groups (by 112.46% 
and 134.49%) than the control group. In addition, GSH-Px expression level was significantly 
increased in the CS50, CS100, SCS100, and SCS200 groups by 91.23%, 128.70%, 148.66%, 
and 174.12%, respectively, compared to that of the control group. In particular, SCS-
administered groups showed a dose-dependent increase in the levels of hepatic antioxidant 
enzymes, including SOD, catalase, and GSH-Px.

DISCUSSION

Blood TG and TC are essential components for maintaining the function of the human 
body [26]. However, it has been reported that excessive intake of HCD increases the fat 
concentration in the blood, which causes atherosclerosis and NAFLD [1,5,6-8,27,28]. 
Therefore, it is crucial to control the blood lipid level in order to prevent these chronic 
diseases. LDLR-KO mice have widely used in the study for hyperlipidemia and hepatic lipid 
metabolism [4,29,30]. Furthermore, the intake of HCD in LDLR-KO mice induces a rapid 

182https://doi.org/10.4162/nrp.2020.14.3.175

Beneficial effects of skate chondroitin sulfate

Control CS50 CS100 SCS100 SCS200

0
Control CS50 CS100 SCS100 SCS200

c c
d

b
a

e

d
c

b
a

(A) SOD

SOD

(B)

SO
D/
β-

ac
tin

 (f
ol

d 
of

 c
on

tro
l)

0.8

1.4

0.4
0.6

1.2

0.2

1.0

0
Control CS50 CS100 SCS100 SCS200

d
c

e

b
a

0
Control CS50 CS100 SCS100 SCS200

Catalase

Catalase

(C)

Ca
ta

la
se

/β
-a

ct
in

 (f
ol

d 
of

 c
on

tro
l)

0.8

1.6

0.4

1.2

GSH-Px

GSH-Px
β-actin

(D)

G
SH

-P
x/
β-

ac
tin

 (f
ol

d 
of

 c
on

tro
l)

2.0

3.0

1.0

1.5

2.5

0.5

Fig. 5. Effects of chondroitin sulfate from shark cartilage (CS) and chondroitin sulfate from skate cartilage extract 
(SCS) on antioxidant enzymes expression in the liver of high cholesterol diet fed LDL receptor knockout mice. 
(A) Representative Western blot analysis; (B) SOD, superoxide dismutase; (C) Catalase; (D) GSH-Px, glutathione 
peroxidase. See the legend of Table 1 for experimental groups in detail. Values are means ± SD (n = 9). a~eMeans 
with the different letters are significantly different (P < 0.05) by Duncan's multiple range test.



https://e-nrp.org

increase in plasma lipid levels as well as stimulates the TG synthesis in the liver. Chondroitin 
sulfate from salmon nasal cartilage has anti-hyperlipidemia via inhibition of absorption 
of dietary fat in high-fat diet fed mice [31]. In our previous study, SCS downregulated the 
protein expression levels of transcription factors, such as SREBP-1 and -2, thereby reducing 
serum TG and TC levels in LPS-injected mice [18]. In the present study, the CS and SCS 
administered groups had improved lipid profiles by decreasing the levels of TG, TC, and 
LDL-C, and increasing the levels of HDL-C compared with the control group. In particular, 
the AI and CRF indexes were the lowest in the SCS200 group among all experimental groups, 
which was probably due to the augmented HDL-C levels. These results might be associated 
with the reduced synthesis of fatty acid and cholesterol by SCS. These data indicate that SCS 
is expected to effectively alleviate hyperlipidemia in HCD-induced dyslipidemia.

Inflammatory responses are observed under the hyperlipidemia. Several inflammatory 
cytokines and mediators are involved in inflammation, such as TNF-α, IL-1β, IL-6, and 
PGE2 [32]. TNF-α is a major pleiotropic cytokine that exerts proinflammatory effects in 
atherosclerosis [32]. In addition, IL-6 and IL-1β are multifunctional cytokines that regulate 
various aspects of the immune response, acute-phase reaction, and hematopoiesis [33]. 
In addition, NF-κB plays a key role in hepatic inflammation. NF-κB activated by IκB 
phosphorylation leads to release numerous pro-inflammatory genes such as iNOS and COX-
2 in the nucleus [34,35]. iNOS leads to the production of excessive amounts of NO in the 
vascular smooth muscle cells, macrophages, and other cells [36]. COX-2 converts arachidonic 
acid to prostaglandin H2, which may trigger and maintain the inflammatory response in the 
various diseases, including atherosclerosis [37]. In the current study, the administration of 
SCS or CS decreased the serum levels of TNF-α and IL-1β and the expression levels of hepatic 
NF-κB, iNOS, and IL-1β, compared with those of the control group. In addition, the serum 
IL-6 level was reduced in the only SCS group. In particular, serum TNF-α and hepatic iNOS, 
COX-2, and IL-1β levels were the lowest in the SCS-administered group, with 100 mg/kg BW. 
In contrast, the serum IL-6 level was significantly lower only in the CS groups. These results 
were consistent with the previous study that chondroitin sulfate reduced serum inflammatory 
cytokines such as IL-1β and TNF-α in the obese mice and suppressed the activation of NF-κB 
in the inflamed human coronary artery endothelial cells [16]. In addition, chondroitin sulfate 
inhibits inflammatory reaction through downregulation of monocyte chemoattractant 
protein-1 (MCP-1) in the LPS-treated 3T3-L1 adipocytes [38]. Bovine-derived chondroitin 
sulfate attenuates IL-1β [39] or lipopolysaccharide [17] induced-inflammatory responses via 
suppression of NF-κB nuclear translocation. Similarly, our previous study demonstrated that 
SCS suppressed LPS-induced inflammation via downregulation of TNF-α, iNOS, and COX-2 
in the liver tissue [18]. These results suggest that SCS could attenuate the inflammation 
induced by excessive intake of cholesterol in the serum and liver tissue, in a manner 
comparable to CS.

Oxidative stress elevated under hyperlipidemia is caused by free radicals produced 
by macrophages and directly damages lipid, protein, and other biological molecules. 
By contrast, oxidative stress could be accelerated due to hyperlipidemia and 
hypercholesterolemia [40,41]. The MDA, the final product of lipid peroxides, affects cell 
membrane function, modifies protein, induces DNA damage, and reduces their function 
[42]. The excessive production of NO easily reacts with reactive oxygen species, which 
generates peroxynitrite in the human body [43]. The production of peroxynitrite leads 
to lipid peroxidation as well as remarkable modifications in the antioxidant defense 
system [44]. Oxidative stress accompanies a lower level of antioxidant enzymes [45]. 
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Hypercholesterolemia diminishes the antioxidant defense system and inhibits the activities 
of antioxidant enzymes such as SOD, GSH, and catalase [44]. In the present study, CS or 
SCS-administered groups showed a significant reduction of hepatic MDA levels, compared 
to the control group. In contrast, the expression level of GSH-Px was significantly higher in 
all CS and SCS groups, when compared to the CS-administered group. Moreover, those levels 
of SOD and catalase were elevated in SCS groups in which effects were dose-dependent. 
These results suggested that the reduction of MDA level in the liver was partially attributed 
to the elevation of antioxidant enzymes. These results are consistent that SCS exhibited the 
protective effects against hepatic oxidative stress via up-regulation of GPx in LPS-injected 
mice [18]. Similarly, the previous studies reported the protective effects of chondroitin 
sulfate on oxidative stress by downregulation of extracellular ROS and upregulation of 
antioxidant-related proteins such as heme oxygenase-1 in the hydrogen peroxide-treated 
cells [17]. In addition, chondroitin sulfate attenuated oxidative stress through the reduction 
of lipid peroxidation and activation of antioxidant enzymes in the CCl4-induced oxidative 
stress mouse model [46]. Therefore, the results of the present study indicate that CS or SCS 
may contribute to alleviating the oxidative stress induced by HCD through the enhanced 
expression of antioxidant enzymes in hypercholesteremic mice.

In conclusion, we investigated the beneficial effects of SCS on hyperlipidemia-induced 
inflammation and oxidative stress and compared them with those of CS in HCD-fed LDLR-
KO mice. Administration of SCS improved the levels of serum lipid, reduced the levels of 
serum and hepatic inflammation-related proteins, and augmented the antioxidant status 
in dyslipidemic mice. These effects of SCS were comparable with those of the CS group. 
Our findings suggest that the biological effects of SCS are attributed to the alleviation of 
hyperlipidemia, inflammation, and oxidative stress like shark CS.
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