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Abstract: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central
nervous system. Various pre-clinical models with different specific features of the disease are available
to study MS pathogenesis and to develop new therapeutic options. During the last decade, the
model of toxic demyelination induced by cuprizone has become more and more popular, and it has
contributed substantially to our understanding of distinct yet important aspects of the MS pathology.
Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls
should be avoided.
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1. Introduction

Multiple sclerosis (MS) is a frequent disease of the central nervous system (CNS) affecting
predominantly young adults. On the histopathological level, the disease is characterized by focal white
and grey matter demyelination, caused by the interplay of brain resident cells (such as microglia and
astrocytes) and peripheral immune cells (such as lymphocytes and monocytes). Besides demyelination,
the focal and diffuse invasion and (re-) activation of these immune cells results in damage to nerve
cells [1]. Of note, virtually all neuronal subcellular structures can be destroyed in the brains of MS
patients, including axons, dendrites or synaptic spines [2–5]. Eventually, entire nerve cells can get
lost [5,6]. On the clinical level, distinct disease courses can be distinguished: at the beginning of
the disease, most patients suffer from the sudden occurrence of new neurological symptoms, which
usually disappear after several weeks [7]. This initial disease course is called relapsing remitting
MS (RRMS), which means that symptoms appear (i.e., a relapse) and then fade away, either partially
or completely (i.e., remitting). By definition, during the RRMS disease phase, the level of clinical
disability remains stable in between two relapses. After several years (10–15 years), the frequency of
relapses decreases, and the patients clinically deteriorate independent of the relapses. This so-called
secondary progressive MS (SPMS) course is thus characterized by chronically progressive clinical
worsening over time, with or without superimposed relapses. In about 15% of the patients, the disease
is characterized by neurologic worsening (accumulation of disability) from the onset of symptoms,
without early relapses or remissions, called primary progressive MS (PPMS).

On the pathological level, the RRMS disease course is characterized by recurrent episodes
of inflammatory white matter demyelination. These inflammatory events are probably driven by
peripheral, autoreactive immune cells, which invade the CNS parenchyma via the blood–brain or
blood–liquor barrier. Consequently, drugs that interfere with leukocyte travelling and invasion, such

Cells 2020, 9, 843; doi:10.3390/cells9040843 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0001-8654-8904
https://orcid.org/0000-0002-2517-4440
https://orcid.org/0000-0001-5043-9052
http://www.mdpi.com/2073-4409/9/4/843?type=check_update&version=1
http://dx.doi.org/10.3390/cells9040843
http://www.mdpi.com/journal/cells


Cells 2020, 9, 843 2 of 21

as Natalizumab or Fingolimod, significantly decrease the frequency of relapses during the RRMS
disease phase.

Although patients can clinically recover completely from a relapse, this does not necessarily mean
that there is no residual damage to the brain parenchyma. Such residual damage can be triggered by
(i) instant and (ii) delayed neuronal damage. (i) From pre-clinical and post-mortem studies, there is
ample evidence that focal inflammatory demyelination induces neurodegeneration, such as axonal
transection or neuronal apoptosis [4,5,8]. In the classical autoimmune model of MS, experimental
autoimmune encephalomyelitis (EAE), encephalitogenic T helper 17 (Th17) cells have been shown to
form direct physical contacts with neurons during the development of inflammatory lesions [8]. These
Th17 cells eventually induce a marked, localized, and partially reversible raise in intra-axonal Ca2+

concentrations that might lead to axonal transection or neuronal soma degeneration. Of note, Th1 cells
were much less efficient at killing neurons through this mechanism, but have been shown to contribute
to neuronal damage by releasing tumor necrosis factor-related, apoptosis-inducing ligand, and by
activating the pro-apoptotic mediator caspase-3 in neurons [9]. (ii) Besides such immediate harmful
events, delayed degenerative processes can be triggered by the focal lesions. For example, if the focally
destroyed myelin sheath cannot be repaired (i.e., remyelination) different biochemical mechanisms can
trigger delayed axonal degeneration among an increased energy demand from impulse conduction
along excitable demyelinated axons [10], lack of axonal trophic support by oligodendrocytes [11], a
lethal rise in intra-axonal calcium levels [12], or a higher vulnerability of demyelinated axons against
cytotoxic substances. Beyond this, white and grey matter areas distant to the focal lesion side show
subtle yet important signs of tissue damage, such as microglia activation, abnormal blood vessels,
increased expression of genes related to proteolytic processing, or a decreased expression of genes
regulating oligodendrocyte survival [13,14]. Since these white and grey matter regions are not “normal”
(i.e., healthy) they are described as normal-appearing white and grey matter (NAWM and NAGM,
respectively). To conclude, although neurological function can fully recover after a relapse, some
slow-burning degenerative processes are triggered by focal lesions that are not yet apparent during
the early disease phase. These slow-burning degenerative processes are believed to be driven by
local, innate immune cells. Of note, the results of a recent clinical trial suggests that Siponimod,
which modulates sphingosine-1 phosphate receptor activities [15], might ameliorate such delayed
neurodegenerative processes by modulating sphingosine-1 phosphate receptor signaling expressed in
astrocytes, microglia, and oligodendrocytes [16].

During progression of the disease, two fundamental pathogenetic factors change: first, the activity
of the adaptive immune system decreases, which clinically results in a lower frequency of clinically
detectable relapses [17]. Why the adaptive (and maybe also the innate) immune system becomes less
active during disease progression is currently unknown, but immunosenescence probably plays an
important role [18]. Second, the slow-burning degenerative process reaches a certain threshold and
becomes clinically apparent. Two mechanisms likely play a role in the delayed clinical manifestation
of this slow-burning neurodegeneration. On the one hand, the function of damaged or degenerated
neurons can be carried from neighboring neurons, a process called neuronal plasticity [19,20]. On the
other hand, the destruction of single or a group of neurons does not necessarily result in overt clinical
deficits. This is maybe best illustrated by the fact that as many as 80% of the dopaminergic neurons
may be lost before clinical symptoms are apparent in affected Parkinson patients. Another, more plastic
example might be helpful: imagine in front of you is a container with 1000 balls. If somebody takes out
one single ball it is rather unlikely that this will be recognized. However, if just two balls are left, most
people will certainly recognize if another ball is taken out of the container. During the RRMS disease
stage, the initial loss of neuronal structures is not recognized by the patient or, in other words, does not
lead to overt clinical deficits. Later during the disease, at the transition phase from RRMS to SPMS,
when many neurons are already lost, the subsequent damage to additional neuronal structures results
in accumulating and overt clinical deficits.
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To summarize this part of the article, adaptive immunity is the driving force during RRMS,
whereas brain resident innate immune cells are believed to cause tissue damage during the progressive
phase of the disease. Beyond that, the loss of the myelin sheath makes axons more vulnerable, and
therefore, failure of remyelination aggravates disease progression. Current strategies to ameliorate or
even halt disease progression in SPMS and PPMS patients are (i) the strengthening of neuroprotective
pathways, (ii) amelioration of diffuse innate immune responses, and (iii) the induction of remyelination.

2. Characteristics of the Cuprizone Model

In the following chapter we will briefly introduce the cuprizone model, a toxin-induced
demyelination model [21,22]. We will then focus on technical aspects of this model, and thus
hope to provide the unexperienced scientist guidelines how to work effectively with this pre-clinical
MS tool.

Oral intoxication with the copper-chelator cuprizone induces oligodendrocyte apoptosis within
a few days, which is closely followed by the activation of the innate immune cells in the brain, i.e.,
astrocytes and microglia, finally leading to demyelination of distinct white and grey matter brain areas.
Although minor damage to the blood–brain barrier has been described in this model [23], cells of the
adaptive immune system, particularly T- and B-cells, are believed to play a non-dominant role during
cuprizone-induced demyelination [24,25]. This model thus reflects several important characteristics of
the progressive MS disease course. With the cuprizone model, two main aspects related to the MS
pathology can be investigated: first, mechanisms underlying innate immune cell-driven myelin and
axonal degeneration, and second, remyelination of the demyelinated axons.

To induce acute demyelination, young adult mice are intoxicated with cuprizone per os for 5 to
6 weeks. In our hands, consistent and intense demyelination is obtained after a 5 week intoxication
protocol (0.25% cuprizone, mixed into ground rodent chow). If animals are provided normal chow after
week 5 (i.e., acute demyelination), spontaneous endogenous remyelination occurs. In case the cuprizone
intoxication period is prolonged (i.e., chronic demyelination), this endogenous regenerative process is
severely disturbed [26–28]. Most labs, including ours, perform a 12–13 week cuprizone intoxication
period to obtain chronically demyelinated lesions. Although remyelination occurs after a chronic
cuprizone-induced demyelination as well, myelin repair is significantly slower [26,28]. It is important
to notice that after acute cuprizone-induced demyelination, one should not investigate the potency of a
pharmaceutical compound to induce remyelination, but rather can assess its potency to accelerate an
ongoing remyelinating process, or to inhibit it [29,30]. To study remyelination in the non-supportive
environment, one can either apply the chronic cuprizone model or, as demonstrated several years ago,
one can use aged animals [31], probably because of the induction of senescence-associated inhibitors of
oligodendrocyte differentiation [32,33].

After having provided a general introduction to the cuprizone model, we now will discuss
histopathological characteristics during the different experimental intoxication periods.

2.1. Week 1

As demonstrated by several groups, the first apoptotic oligodendrocytes appear days after
initiation of the cuprizone intoxication protocol (See Figure 1A for a schematic illustration of the course
of cuprizone-induced demyelination and Figure 1B, as well as Figure 2, for the appearance of apoptotic
oligodendrocytes). In a recently published work, we compared the mRNA expression levels in the
white matter tract corpus callosum isolated from control mice and animals intoxicated with cuprizone
for 2 days by gene array analysis [34,35]. As soon as 48 h after initiation of the cuprizone intoxication,
we found the expression levels of numerous mRNAs increased or decreased. The most impressive
finding was that those mRNA species which were found to be reduced in cuprizone-intoxicated mice
are reported to be mostly expressed by oligodendrocytes. As shown in Table 1 and Figure 3, 22 out of
the top 25 downregulated mRNAs were found to be enriched in oligodendrocytes (cellular enrichment
was retrieved from Brain RNA-Seq database [36]). In contrast, the top 25 upregulated mRNAs were
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found to be enriched in various cell types, such as astrocytes, microglia/macrophages, and endothelial
cells. Interestingly, two out of the top 25 induced genes were found to be enriched in oligodendrocyte
progenitor cells (i.e., Serpina3n and Fam46a), suggesting that oligodendrocyte progenitor cells (OPCs)
might also participate in inflammatory responses, as previously suggested [37]. Alternatively, it might
be that mature oligodendrocytes re-express proteins expressed during oligodendrocyte development,
as suggested for astrocytes [38], or that OPCs are activated early during the course of cuprizone-induced
demyelination. Nevertheless, this rough gene array analysis indicates that (i) cuprizone predominantly
impairs mature oligodendrocyte homeostasis, and (ii) that other glia cells, such as astrocytes and
microglia, but also endothelial cells and OPCs, are activated early in the intoxication period. After
a 1 week cuprizone intoxication period, oligodendrocyte loss and microglia/astrocyte activation are
clearly evident. The loss of oligodendrocytes can immunohistochemically be investigated by various
antibodies. Our lab most commonly uses either anti-oligodendrocyte transcription factor 2 (OLIG2)
or anti-adenomatous polyposis coli gene clone CC1 (APC or CC1) antibodies. Both can be reliably
used to quantify the loss of mature oligodendrocytes during the early cuprizone intoxication period.
However, one must take into consideration two important things: First, anti-OLIG2 antibodies are
not specific for mature oligodendrocytes, but are expressed as well in OPCs. However, during early
cuprizone-induced intoxication (i.e., after week 1) OPCs are not yet proliferating, and thus, the loss
of anti-OLIG2+ cells is a good estimate for the extent of cuprizone-induced mature oligodendrocyte
damage. Second, there have been some reports suggesting that CC1 is not just expressed by mature
oligodendrocytes, but that anti-CC1 antibodies can also label activated astrocytes [39,40]. For the
cuprizone model at least, CC1 expression in GFAP+ astrocytes has been ruled out by the Stangel’s
lab [41], suggesting that CC1 is a suitable marker to stain cells of oligodendroglial origin in this model.
As demonstrated in Figure 1B (right image), almost all CC1+ cells co-express the oligodendrocyte
lineage marker protein OLIG2. Alternatively, anti-OLIG2/CC1 double labelling can be performed to
quantify the loss of mature oligodendrocyte cell numbers. In that case, OLIG2+/CC1+ cells can be
considered to be mature oligodendrocytes, whereas OLIG2+/CC1− cells represent pre-mature ones
(white arrowheads in Figure 1B, right image).
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Figure 1. Hallmarks of the cuprizone model. (A) Schematic drawing illustrating pathological 
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Figure 1. Hallmarks of the cuprizone model. (A) Schematic drawing illustrating pathological hallmarks
during the course of cuprizone-induced demyelination. The blue line illustrates the levels of myelination.
(B) The left image illustrates interfascicular oligodendrocytes (arrowheads) in the corpus callosum of a
control mouse. The center image illustrates the appearance of an apoptotic cell (arrow) after 1 week
of cuprizone intoxication. The right image illustrates mature OLIG2+/CC1+ oligodendrocytes and
pre-mature OLIG2+/CC1− oligodendrocytes (white arrowheads). Scale bar = 10 µm. Abbreviations:
oligodendrocyte transcription factor 2 (OLIG2), adenomatous polyposis coli gene clone CC1 (CC1).
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Figure 2. Oligodendrocyte stress and degeneration. (A) Different appearances of apoptotic oligodendrocytes
in the white matter corpus callosum and grey matter cortex. The left image illustrates the appearance
of an apoptotic cell (arrowhead) in the corpus callosum after 1 week of cuprizone intoxication. The
center image illustrates a perineuronal oligodendrocyte in the cortex of a control mouse. The right image
illustrates an apoptotic perineuronal oligodendrocyte. Perineuronal oligodendrocytes are also called “satellite
oligodendrocytes”. Scale bar = 10 µm. (B) Expression of the stress transcription factor ATF3 in control
animals and in mice intoxicated with cuprizone for 4 days. White arrowheads highlight a stressed APC+

oligodendrocyte. Scale bar = 10 µm (upper row) and 5 µm (lower row). Abbreviations: activating
transcription factor 3 (ATF3).

Table 1. Top 50 up- and down-regulated genes in 2 day cuprizone vs. control. Top 50 up-regulated
(left column) and down-regulated (right column) genes in control versus 2 day cuprizone-intoxicated
mice. Data are adopted from [35]. Note that most of the down-regulated genes are predominantly
expressed by oligodendrocytes. We identified cell-specific gene expression using the online Brain
RNA-seq database [36]. OPC: oligodendrocyte progenitor cell.

Top 50 Up-Regulated Genes Highest Expressed Cell Type Top 50 Down-Regulated Genes Highest Expressed Cell Type

Atf3 Microglia/Macrophage Mog Myelinating Oligodendrocyte
Tgm1 Microglia/Macrophage Ppp1r14a Myelinating Oligodendrocyte
Cxcl10 Microglia/Macrophage Fa2h Myelinating Oligodendrocyte
Ccl3 Microglia/Macrophage Tmem63a Microglia/Macrophage
Osmr Endothelial Klk6 Myelinating Oligodendrocyte

Adamts1 Endothelial Efhd1 Myelinating Oligodendrocyte
Hmox1 Microglia/Macrophage Padi2 Myelinating Oligodendrocyte
Plscr2 Astrocytes S1pr5 Myelinating Oligodendrocyte
Tnc Astrocytes Ugt8a Myelinating oligodendrocyte

Cdkn1a Endothelial Mag Myelinating oligodendrocyte
Serpina3n OPC Mal Myelinating oligodendrocyte

Cd44 Astrocytes Pigz Myelinating oligodendrocyte
Ddit3 Microglia/Macrophage Gsn Myelinating oligodendrocyte

Serpinb1a Myelinating oligodendrocyte Gamt Myelinating oligodendrocyte
Cyr61 Astrocytes Carns1 Myelinating oligodendrocyte
Myc Microglia/Macrophage Ninj2 Myelinating oligodendrocyte

Tnfrsf12a Microglia/Macrophage Thbs4 Astrocytes
Fam46a OPC Ttyh2 Endothelial

Slc14a1 Astrocytes Cpm Newly formed
oligodendrocyte
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Table 1. Cont.

Top 50 Up-Regulated Genes Highest Expressed Cell Type Top 50 Down-Regulated Genes Highest Expressed Cell Type

Fosl1 Endothelial Gjc2 Myelinating oligodendrocyte

Dusp10 Astrocytes Tspan2 Newly formed
oligodendrocyte

Gadd45b Microglia/Macrophage Nipal4 Myelinating oligodendrocyte
Clcf1 Microglia/Macrophage Cmtm5 Myelinating oligodendrocyte
Gpr84 Microglia/Macrophage Tmem98 Endothelial

Ccl2 Microglia/Macrophage Plxnb3 Newly Formed
Oligodendrocyte

A2m Astrocytes Pstpip2 OPC
C3ar1 Microglia/Macrophage Slc15a2 Astrocytes
Nupr1 Microglia/Macrophage Apln Endothelial

Fos Astrocytes Ptgds Newly formed
oligodendrocyte

1200009O22Rik Unknown Adssl1 Myelinating oligodendrocyte
Ifrd1 Microglia/Macrophage Gstm7 Endothelial

Gadd45g Astrocytes Apod Myelinating oligodendrocyte
Arap2 Astrocytes Lrrn1 Opc

Tgif1 Microglia/Macrophage Pllp Newly formed
oligodendrocyte

Ifit1 Endothelial Cntn2 Myelinating oligodendrocyte
Lilrb4 Microglia/Macrophage Fah Myelinating oligodendrocyte

Hbegf Microglia/Macrophage Serpind1 Newly formed
oligodendrocyte

Lcn2 Microglia/Macrophage Agt Astrocytes
Ifit3 Astrocytes Anln Myelinating oligodendrocyte

Myd116 Microglia/Macrophage Cryab Myelinating oligodendrocyte
Stk40 Microglia/Macrophage Mboat1 Myelinating oligodendrocyte

Trib3 Endothelial Kndc1 Newly formed
oligodendrocyte

Gbp2 Endothelial Lrp4 Astrocytes
Myd88 Microglia/Macrophage Slc13a3 Astrocytes
Tagln2 Endothelial Nmral1 Myelinating oligodendrocyte

1810010H24Rik OPC Fzd2 Astrocytes
Slc1a5 Endothelial Paqr6 Astrocytes
Phlda1 OPC Gja1 Astrocytes
Egr2 Microglia/Macrophage Scd1 Myelinating oligodendrocyte

Slc7a11 Astrocytes Fam57a Myelinating oligodendrocyte

To visualize apoptotic oligodendrocytes is relatively simple, but due to increasingly strict
requirements of reviewers and journals, it is sometimes a challenging task. The cheapest and simplest
way to visualize apoptotic cells is the hematoxylin and eosin stain staining (H&E). In coronal sections,
oligodendrocytes can be identified by their characteristic positioning within the white matter. They are
aligned in rows between the nerve fibers of the white matter, and are therefore called interfascicular
oligodendrocytes (Figures 1B and 2A). As shown by Buschmann and colleagues, numerous apoptotic
oligodendrocytes (i.e., condensed or fragmented nuclei; Figure 1B, arrow) can be seen already after
2 days of cuprizone intoxication [42]. Although double-labelling experiments with, for example,
anti-active caspase3 antibodies and an oligodendrocyte marker protein antibody can principally be
performed, the blinded quantification of apoptotic bodies is, in our opinion, sufficient to estimate
the extent of cuprizone-induced oligodendrocyte apoptosis. Of note, while the identification of
apoptotic oligodendrocytes in the corpus callosum in H&E-stained sections is relatively easy, the often
perineuronal positing of cortical oligodendrocytes (Figure 2A) complicates the evaluation. However,
we would like to point out that to the best of our knowledge, no other cell type than oligodendrocytes
have been reported to degenerate during the early cuprizone intoxication period. Thus, apoptotic
cells, howsoever visualized (H&E, anti-active caspase 3, Terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL), etc.), should be regarded to represent apoptotic oligodendrocytes, at
least during the early cuprizone intoxication period. Recent studies from our lab showed that
stressed, pre-apoptotic oligodendrocytes can be visualized by using antibodies directed against certain
stress-related transcription factors, such as DNA damage-inducible transcript 3 protein (DDIT3 or
CHOP) or activating transcription factor 3 (ATF3; see Figure 2B) [34]. Both stainings, thus, provide an
elegant way to label the stressed oligodendrocyte population.
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Figure 3. Cellular expression signature. Cellular enrichment of the top 25 downregulated mRNAs as
shown in Table 1, retrieved from Brain RNA-Seq database [36]; # represents rank number. Full-size
image see Supplementary Figure S1. Abbreviations: myelin oligodendrocyte glycoprotein (Mog),
protein phosphatase 1 regulatory inhibitor subunit 14A (Ppp1r14a), fatty acid 2-hydroxylase (Fa2h),
transmembrane protein 63A (Tmem63a), kallikrein related peptidase 6 (Klk6), EF-hand domain family
member D1 (Efhd1), peptidyl arginine deiminase 2 (Padi2), sphingosine-1-phosphate receptor 5
(S1pr5), UDP galactosyltransferase 8A (Ugt8a), myelin-associated glycoprotein (Mag), myelin and
lymphocyte protein (Mal), phosphatidylinositol glycan anchor biosynthesis class Z (Pigz), gelsolin (Gsn),
guanidinoacetate N-methyltransferase (Gamt), carnosine synthase 1 (Carns1), nerve injury-induced
protein 2 (Ninj2), thrombospondin 4 (Thbs4), tweety family member 2 (Ttyh2), carboxypeptidase M
(Cpm), gap junction protein gamma 2 (Gjc2), tetraspanin 2 (Tspan2), NIPA-like domain containing 4
(Nipal4), CKLF-like MARVEL transmembrane domain containing 5 (Cmtm5), transmembrane protein
98 (Tmem98), and plexin B3 (Plxnb3).
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To visualize the activation of microglia cells, most laboratories, including ours, use anti-ionized
calcium-binding adapter molecule 1 (IBA1) antibodies. At the very beginning, we would like to stress
that anti-IBA1 antibodies do not specifically label microglia cells, but rather represent an excellent tool
to label monocytes and their derivatives. It is believed that microglia arise from yolk sac erythromyeloid
precursors and migrate into the brain parenchyma during early development [43–45]. Although
microglia represent a heterogeneous cell population [46], they still share several expression profiles
with primitive and adult macrophages, including IBA1. Thus, anti-IBA1 antibodies stain microglia
cells and invading monocytes. However, in the cuprizone model, and especially during the first week,
peripheral monocyte recruitment is negligible, and therefore, numbers of anti-IBA1+ cells represent a
good estimate for the extent of microglia activation. To quantify microgliosis during this early stage,
blinded quantification of cell numbers is a reliable and commonly applied approach. The procedure to
do so is relatively simple and straight forward: anti-IBA1 stained sections are digitalized, preferably
using a 20-fold or greater objective, the region of interest is outlined (see Section 3.3 in this review article
for more comments on the appropriate region of interest in the cuprizone model), and the number of
cells with a clearly visible cell body is counted. Finally, the results are given as cells/mm2. Of note, a
nuclear counterstain, such as haematoxylin for bright-field microscopy or 4′, 6-Diamidin-2-phenylindol
(DAPI) for fluorescence-microscopy, should be used to ease the identification of cell bodies. Another
frequently applied method is densitometric measurements of anti-IBA1 processed slides. Numerous
protocols are available, and different open-source software packages, such as ImageJ, can be used.
A less common, but as far as we are concerned, a very powerful and sensitive method to estimate
microglia activation during early cuprizone-induced demyelination is the quantification of microglia
morphology. As demonstrated in Figure 4B, following this strategy anti-IBA1 stained sections are
digitalized, preferably using a 40-fold objective, and the maximum projection area (also called the
convex hull; Ap = yellow line in Figure 4B) and the cell area (Ac = brownish area in Figure 4B) are
measured and related to each other. This results in the so-called ramification index Ri = Ap/Ac. Resting
microglia have a relatively high maximum projection area Ap, but a relatively small cell area Ac. In that
case, Ri has a high value. During their activation, microglia retract their fine processes, and both the
cell bodies and processes become hypertrophic. Activated microglia thus have a smaller maximum
projection area Ap but a bigger cell area Ac. In that case, Ri approaches a value close to 1 (exactly 1 in the
case of a perfectly round cell with equal values for Ap and Ac). Such measurements are best performed
in the deep layer cortex, since the morphology of cells, including microglia in the white matter tract
corpus callosum, is somewhat biased by the axonal bundles oriented in parallel. Other ways to
visualize the extent of microglia activation are the staining against commonly accepted microglia
activation markers, such as MAC-3, also known as CD107b or lysosomal-associated membrane protein
2 (LAMP-2) [47].

To visualize the activation of astrocytes is, unfortunately, more challenging. Most labs use anti-glial
fibrillary acidic protein (GFAP) antibodies to label activated astrocytes. Under physiological conditions,
the expression levels of GFAP in the murine brain are relatively low, especially in the grey matter cortex
region. Although filled with astrocytes, GFAP+ cells are hard to delineate in the cortex of healthy mice.
If so, GFAP+ cells can mainly be found around bigger blood vessels or the superficial pia mater. There,
they built up the glia limitans perivascularis and superficialis. Once activated, astrocytes up-regulate
the expression of GFAP, and numerous cells become visible. To conclude, anti-GFAP antibodies do
not label astrocytes, but rather activated astrocytes. Contrary to anti-IBA1 antibodies, which label
the entire cell body and the fine, distal processes of microglia, anti-GFAP antibodies predominantly
label the cell body and the thick primary processes of astrocytes. This fact makes morphological
measurements somewhat challenging, and we do not recommend this as a standard method of choice
to quantify the extent of astrocyte activation. Another circumstance that makes the analysis of astrocyte
activation in anti-GFAP-processed brain slides challenging is that within the cell body, GFAP is not
evenly distributed, but in many cases spares one site in the cell body (see Figure 5A, image 2). Thus,
even in optimally processed sections it is sometimes hard to decide whether or not a GFAP+ cell mass
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indeed represents the astrocytic cell body or simply a thick primary process. One possibility to work
around this limitation is the use of transgenic mice, which express a fluorescent protein under the
control of an astrocyte-specific promoter. We have recently applied this tool to decide whether or
not the translocator protein (TSPO), a protein of the outer mitochondrial membrane, is expressed by
astrocytes in the cuprizone model [48]. In this work, human glial fibrillary acidic protein–enhanced
green fluorescent protein (hGFAP-eGFP) transgenic mice [49] were used to visualize entire astrocyte
cell bodies and processes. To verify TSPO expression in astrocytes, brain slides from cuprizone-treated
hGFAP–eGFP-mice were processed for anti-TSPO immunofluorescence staining. As demonstrated in
Figure 5B, these mice express eGFP not only within their proximal astrocytic processes, but also within
the fine distal processes of astrocytes. Applying this elegant tool, fluorescence labelling clearly showed
that the anti-TSPO signal localizes to astrocyte cell bodies. Of note, other marker proteins are known
for astrocytes, such as aldehyde dehydrogenase 1 family member L1 (ALDH1L1), vimentin, brain lipid
binding protein (BLBP), or the calcium-binding protein S100ß, and can in principal be used to label
astrocyte subpopulations.
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row) and LFB/PAS (center row). Microglia activation was visualized by anti-IBA1 immunohistochemistry
(lower row). Scale bar = 100 µm. (B) The principle of quantifying microglia morphology by calculating
a ramification index. The maximum projection area Ap and the cell area Ac are measured. Resting
microglia have a relatively large maximum projection area Ap, but a relatively small cell area Ac. In that
case, the ramification index Ri has a high value. During their activation, microglia retract their fine
processes, and both the cell bodies and processes become hypertrophic. In that case, Ri approaches a
value close to 1 (exactly 1 in the case of a perfectly round cell with equal values for Ap and Ac). Scale
bar = 5 µm. Abbreviations: myelin proteolipid protein (PLP), Luxol fast blue/periodic acid-Schiff
stains (LFB/PAS), and ionized calcium-binding adapter molecule 1 (IBA1). (C) Toluidine blue-stained
semithin sections in control and cuprizone mice. The arrowhead and arrow indicate transverse or
longitudinal sections of an axon, respectively. Scale bar = 50 µm.
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Figure 5. Astrocyte morphology. (A) Two anti-GFAP positive cells are demonstrated. Cell 1 shows
anti-GFAP immunoreactivity within the entire perinuclear space, which allows for clear definition of the
astrocytic cell body. Cell 2 shows anti-GFAP immunoreactivity at just one site of the cell body, making
it difficult to clearly delineate the astrocyte cell body (highlighted by arrowheads). Scale bar = 20 µm
(center), 10 µm (left, right). (B) Expression of the mitochondrial protein TSPO (red) in eGFP-expressing
astrocytes. Adopted from [48]. Scale-bar = 25 µm. Abbreviations: glial fibrillary acidic protein (GFAP),
translocator protein (TSPO), enhanced green fluorescent protein (eGFP).

2.2. Weeks 1–3

As pointed out above, the first week of cuprizone intoxication is dominated by oligodendrocyte
apoptosis, paralleled by the early activation of astrocytes and microglia. Anti-myelin stains do
not show any abnormalities at this early stage. Between weeks 1 and 3, the degeneration of
oligodendrocytes continues, paralleled by a more severe accumulation of astrocytes and microglia
cells. At the end of week 3, the first signs of commencing demyelination become evident (see
Figure 4A). Of note, the pathology of the myelin sheath is, at week 3, easier to visualize by
histochemical stains (e.g., by the Luxol fast blue (LFB)/periodic acid-Schiff (PAS) stain), compared
to immunohistochemical approaches. As recently demonstrated by our group, the optical density
within the corpus callosum of anti-proteolipid protein (PLP), anti-myelin-associated glycoprotein
(MAG), and anti-2′,3′-Cyclic-nucleotide 3′-phosphodiesterase (CNPase) processed sections did show
only minor differences between the control and 3 week cuprizone-intoxicated mice [50]. In contrast,
myelin pathology was clearly visible by LFB/PAS stains and ultrastructural studies [34]. At this time
point, the loss of mature oligodendrocytes is severe and paralleled by first but clear signs of acute
axonal pathology.

As demonstrated in Figure 4A, astrocyte and microglia reactivity are already severe at week 3,
which makes their quantification by counting single cells challenging or even impossible. Therefore,
we suggest densitometric analyses of staining intensities as the method of choice to quantify astrocyte
and microglia activation, at least in the affected corpus callosum. In the cortex and other grey matter
regions, microglia and astrocyte activation is less severe [51,52], and therefore the quantification of cell
numbers and cell morphology might still be feasible. Acute axonal injury is commonly visualized
in anti-amyloid precursor protein (APP)-processed sections. APP is an integral glycoprotein type
1, which is synthetized in the neuronal soma and then transported to the axonal terminal via the
anterograde axonal transport machinery [53]. In case of a disturbed axonal transport machinery,
APP accumulates at the sites of axonal injury, and can be visualized by immunohistochemistry as
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spheroids [54,55]. Of note, the focal accumulation of APP has also been observed in MS lesions
and other animal models of MS [4,56]. A recent study of our group showed that both vesicular
and mitochondrial proteins accumulate as spheroids at sites of acute axonal injury in the cuprizone
model [57]. Thus, the visualization of acute axonal injury can as well be performed with antibodies
specific for synaptic vesicles (e.g., anti-VGLUT1) or integral mitochondrial proteins (e.g., anti-VDAC1
or anti-COX4). If one quantifies the number of axonal spheroids, a nuclear stain is absolutely required.
Both APP and mitochondrial proteins are not just expressed in the axonal compartment, but also in
astrocytes, microglia, and oligodendrocytes. To be able to decide whether a “spheroid” belongs to an
axon or a glia cell body, the spatial relation to a nucleus is extremely helpful. Just spheroids with no
spatial relation to a nucleus should be counted (see Figure 6A for an example). Furthermore, very
small dots should also be excluded from the analyses, since these could represent mitochondria or
APP in thick glia cell processes.Cells 2020, 9, x 12 of 22 
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Figure 6. Acute axonal injury. (A) Acute axonal injury after 5 weeks of cuprizone intoxication,
visualized by anti-APP stains. Arrowheads in the left image highlight APP spheroids. Arrowheads in
the right image highlight small APP+ particles in close vicinity to a cell nucleus. These small APP+

particles might belong to glia cells rather than axons. (B) Acute axonal injury visualized by the two
mitochondrial-specific antibodies anti-VDAC1 and anti-COX4, as well as the synaptic protein specific
antibody anti-GLT1. Arrowheads highlight the sites of acute axonal injury, indicated by a breakdown
of the anterograde axonal transport machinery. Scale bar = 30 µm. Abbreviations: amyloid precursor
protein (APP), voltage-dependent anion-selective channel 1 (VDAC1), cytochrome c oxidase subunit 4
(COX4), glutamate transporter 1 (GLT1).

2.3. Weeks 3–5

Between week 3 and week 5, microglia gain their full activation status and phagocytose the myelin
sheaths. Astrocytosis, microgliosis, and acute axonal injury become more severe, and demyelination
becomes clearly visible by immunohistochemistry. Demyelination can also be demonstrated in
semi-thin processed sections (see Figure 4C) or by ultrastructural analyses [58–62]. This demyelination,
together with astrocytosis and microgliosis, triggers the activation and recruitment of OPCs. Therefore,
it is not surprising that the number of OLIG2+ cells after a 5 week cuprizone intoxication period is similar
or even increased compared to control animals. At least during the acute stage of cuprizone-induced
demyelination, these new OPCs are believed to originate from both the subventricular zones and
the corpus callosum parenchyma [63]. While discussing mechanisms involved in oligodendrocyte
differentiation, particularly in the cuprizone model, is out of the scope of this article, we refer to
previously published articles addressing this important aspect [47,64].

Although not in the focus of this review article, numerous studies have demonstrated functional
deficits induced by cuprizone intoxication. For example, demyelination of the corpus callosum has
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been linked with impaired motor coordination [65–68]. Motor deficits persist or are only partially
recovered during remyelination, which is measured by different testing paradigms, such as the motor
skill sequence test (MOSS), the rotarod test, or the beam cross test [69–71]. Mice also showed impaired
spatial memory and a changed social behavior after cuprizone intoxication [65,72,73]. For a more
in-depth discussion on behavioral deficits in the cuprizone model, we refer to an excellent recently
published article [22].

We finally would like to point out that the perfect animal model for MS does not exist. Due to
the manifold and heterogeneous pathological processes in MS, each singular animal model allows us
to study very distinct aspects of the disease, rather than its entire complexity. Some of the aspects of
progressive MS that can be re-capitulated in the cuprizone model are listed in Table 2. A comparison of
histopathological characteristics between different MS animal models is given in [6,74,75].

Table 2. Comparison between histopathological hallmarks of progressive MS and the cuprizone model.
BBB: blood brain barrier.

Histopathology of
Progressive MS Reference Cuprizone Model Reference

Gray matter
demyelination [5,76] Demyelination in cortical and

subcortical structures [77,78]

Diffuse white matter
damage [76,79]

Demyelination of white matter
tracts, especially in the corpus

callosum
[78,80]

Axonal damage [81–83] Axonal damage in
demyelinated areas [56,84]

Minor immune cell
infiltration [85,86] Little or no infiltration of

lymphocytes [87,88]

Minor BBB integrity loss [89–91] Minor BBB integrity loss [22,23]
Profound oxidative

injury [92–94] Accumulation of oxidative
damage [95,96]

Progressive worsening of
function [97,98]

Impaired motor coordination,
spatial memory and social

behavior
[22,50,65–70,72,73]

3. Dos and Do Nots in the Cuprizone Model

After having addressed the histological characteristics of the cuprizone model and having
discussed how different cellular parameters are best quantified, we next aim to list some “dos and do
nots” during experimental planning, conduction, and evaluation.

3.1. Animal Weight

In most studies, cuprizone intoxication is realized via per os administration, by mixing the
pulverized cuprizone into ground rodent chow. Some labs have also reported intoxicating their mice
by oral gavage of solubilized cuprizone. While sex, genetic background, and age of the animals have
been identified as important variables for the reproducibility and the extent of cuprizone-induced
pathological changes [99–101], “weight” as a critical variable for reliable and consistent demyelination
has just recently been systematically addressed. In a recent work, we have investigated this issue,
and were able to show that animal weight is an important variable for reliable cuprizone-induced
demyelination [102]. In our group, we obtain the most reliable results if we order male mice from
the vendor at an age of 6–7 weeks with weights ranging from 18 to 20 g. Of note, the weight of the
mice should be determined after 1 week of rest, because mice show considerable weight loss due to
transport-induced stress.

Especially in animal facilities with limited space, it is usually not feasible to design the experiment
in a way that all mice have a similar weight at the beginning of the cuprizone-intoxication period.
Therefore, one should try to balance the weight between the different study groups in such a way that
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lightweight and heavyweight mice are equally distributed among the groups. The same applies for the
sex of the animals.

3.2. Cuprizone Formulation

In order to ensure reproducibility, a standardized cuprizone intoxication protocol is absolutely
mandatory. In our lab, cuprizone-containing chow is prepared freshly every day by physically mixing
cuprizone into ground rodent chow. Alternative methods, such as the provision of cuprizone-containing
pellets [103–105], mixing of cuprizone into the drinking water [106], or oral gavage of dissolved
cuprizone (personal communication) have successfully been applied. However, the effectiveness
and reproducibility of these methods have been unknown until recently. In a recent study, we were
interested in whether cuprizone-induced demyelination can be achieved in a reliable and reproducible
manner by providing animals with cuprizone-containing pellets rather than preparing cuprizone daily
in ground rodent chow. We were clearly able to demonstrate that although the preparation of cuprizone
in ground rodent chow is laborious and bears the risk of cuprizone inhalation, it is the method of
choice to achieve reproducible, demyelinated white matter lesions [107]. This observation is well
in line with a report from Hagemeyer and colleagues. The authors noted that cuprizone-containing
pellets, instead of cuprizone in ground chow, failed to induce consistent demyelination [68]. Why
cuprizone provided in pellet formulation is not as effective as the ground rodent chow formulation
remains to be clarified. It was assumed that cuprizone is heat-sensitive [47], and therefore could be
partially deactivated during the pellet pressing procedure. However, Heckers and colleagues recently
showed that thermal pretreatment of cuprizone neither abolished its demyelinating effects nor the
glial responses in cuprizone-intoxicated mice. Thus, heat exposure does not inactivate cuprizone [108].
We have another theory about why cuprizone is less effective in pellet formulation. It is well known
that cuprizone chelates copper [106]. Since copper is present in the pellet, prolonged interaction of
cuprizone with this copper might inactivate cuprizone over time. In this context, it is important to
notice that in our lab, the cuprizone powder is prepared freshly every day at a concentration of 0.25%.
A copper-mediated inactivation would, thus, also be possible during ground rodent chow formulation,
in case the mixture is not prepared freshly every day. Although we do not know the exact underlying
mechanisms of cuprizone activity loss in pellet formulation, we strongly suggest mixing cuprizone
into ground rodent chow and preparing this mixture freshly every day. This is indeed time-consuming,
but assures reproducible results and successful experiments.

3.3. Selection of the Region of Interest for Histological Analyses

Spatio-temporal information about lesion development and progression is an indispensable
prerequisite for straightforward de- and remyelination studies. In contrast to the autoimmune-driven
EAE model, the site of lesion development in the cuprizone model is highly predictive. However,
not all brain regions are equally affected by the toxin. While demyelination is pronounced in the
corpus callosum and somato-sensory cortex region [109], other CNS parts, such as the spinal cord [110],
the cerebellum [111,112], or the internal capsule [78] are less severely affected. In most studies, the
corpus callosum is defined as the region of interest (ROI) in this model. Of note, and this aspect
of the model is very important for reliable histological evaluations, not the entire corpus callosum
gets demyelinated during the course of the cuprizone intoxication. For example, at the level of the
rostral corpus callosum, demyelination is severe and almost complete within the lateral parts, whereas
demyelination is incomplete and inconsistent within the midline of the corpus callosum. In contrast,
at more occipital levels, such as the body part of the corpus callosum, lateral parts are less severely
affected, but demyelination is severe and reproducible within its midline (see Figure 7B, arrowheads).
It is therefore mandatory to compare equal brain levels between the different experimental animals.
In our lab, we usually analyze two distinct brain regions, which can be outlined very clearly in the
coronal processed brain. The first region is at the level of the anterior commissure (slide 53 in the
reference Allen Brain atlas [113] or slide 215 in the High Resolution Mouse Brain Atlas by Sidmann et
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al., [114]). At this brain level, the olfactory limbs of the anterior commissure merge within the midline
of the brain, and thus, topographically define a well-demarcated level of the mouse brain (Figure 7A).
At the level of the anterior commissure, we suggest separately analyzing both medial and lateral
aspects of the corpus callosum. The borders of the cingulum provide a good separation of both parts
(dashed line in Figure 7A). The second region is at the level of the rostral hippocampus (slide 64 in the
reference Allen Brain atlas or slide 265 in the High Resolution Mouse Brain Atlas by Sidmann et al.),
just where the pyramidal layer of the hippocampal cornu ammonis region becomes visible. At the level
of the rostral hippocampus, we recommend analyzing the midline of the corpus callosum. In a recently
published manuscript from our group, we have tried to mathematically define which part of the
midline of the corpus callosum is most severely affected. This study revealed that the first five sectors,
compromising a distance of 500 µm from the midline of the corpus callosum, showed most severe
demyelination in three different immunohistochemical stains, whereas more laterally-orientated sectors
showed incomplete demyelination [50]. The neuroanatomical topography of the corpus callosum and
neighboring structures are also highly relevant for an accurate histological evaluation of brain sections.
Directly beneath the corpus callosum runs the hippocampal fornix. While demyelination is severe
within the medial parts of the corpus callosum, loss of myelin staining intensity is by far less severe in
the underlying white matter tract fornix [80]. This study clearly demonstrates that neighboring white
matter tracts of the corpus callosum display distinct vulnerability to cuprizone-induced demyelination,
and this has direct relevance for evaluation strategies in this frequently used MS animal model.
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4. Conclusions 

The cuprizone model is an elegant and straightforward-to-apply tool to study different aspects 
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are nicely recapitulated by the cuprizone-induced pathology. Similarities between the cuprizone 
model and progressive MS pathology are innately driven myelin and axonal injury, functional 
activation of oxidative stress pathways [96], and relative preservation of the blood–brain barrier. 
Although out of the scope of this review article, recent results have shown that the cuprizone model, 
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brain-intrinsic degenerative events for peripheral immune cell recruitment [115,116]. A better 
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MS patients. 
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Figure 7. Topographical aspects. (A) Principal regions suggested by the authors for histopathological
analyses. As shown in the right image, the tip of the cingulum provides a good anatomical border
to delineate the lateral border of the midline of the corpus callosum at the level of the anterior
commissure (i.e., R215). Scale-bar = 1300 µm (left, center); 150 µm (right). (B) Overview of anti-PLP
stained sections at the level of the rostral hippocampus from control and 5 week cuprizone-intoxicated
mice. The arrowheads highlight severe demyelination of the midline corpus callosum. Scale bar =

650 µm. (C) Overview and high magnification of anti-PLP stained sections from control and 5 week
cuprizone-intoxicated mice. Arrowheads highlight the fornix, which is somewhat resistant to the
cuprizone intoxication. Scale bar = 300 µm (left column); 600 µm (right column). Abbreviations: myelin
proteolipid protein (PLP).
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4. Conclusions

The cuprizone model is an elegant and straightforward-to-apply tool to study different aspects of
the MS pathology. In particular, different aspects of progressive MS pathological characteristics are
nicely recapitulated by the cuprizone-induced pathology. Similarities between the cuprizone model
and progressive MS pathology are innately driven myelin and axonal injury, functional activation of
oxidative stress pathways [96], and relative preservation of the blood–brain barrier. Although out of
the scope of this review article, recent results have shown that the cuprizone model, if combined with
active or passive EAE induction, is an elegant tool to study the relevance of brain-intrinsic degenerative
events for peripheral immune cell recruitment [115,116]. A better understanding of factors regulating
the various histopathological aspects of the cuprizone intoxication will thus potentially pave the way
for the development of novel therapeutic strategies in MS patients.
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