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Abstract: In this paper, a multiple ensemble neural network model with fuzzy response aggregation
for the COVID-19 time series is presented. Ensemble neural networks are composed of a set of
modules, which are used to produce several predictions under different conditions. The modules
are simple neural networks. Fuzzy logic is then used to aggregate the responses of several predictor
modules, in this way, improving the final prediction by combining the outputs of the modules in an
intelligent way. Fuzzy logic handles the uncertainty in the process of making a final decision about
the prediction. The complete model was tested for the case of predicting the COVID-19 time series
in Mexico, at the level of the states and the whole country. The simulation results of the multiple
ensemble neural network models with fuzzy response integration show very good predicted values
in the validation data set. In fact, the prediction errors of the multiple ensemble neural networks
are significantly lower than using traditional monolithic neural networks, in this way showing the
advantages of the proposed approach.
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1. Introduction

Recently, we noticed the rapid propagation of the COVID-19 Coronavirus around the world,
appearing initially in China and then spreading to neighbor countries, like Thailand, Korea, and Japan,
and after that to Europe, America, and later Africa. In particular, Europe, Italy, Spain, France, the
United Kingdom, and Germany have been hit hard with the propagation of the COVID-19 virus,
having to this moment many confirmed cases and deaths. After that, the virus spread to the American
continent, and the United States and Canada which were also hit hard with the spread of the COVID-19
virus. Finally, the virus arrived in Mexico, where it is now becoming a large problem with almost
50,000 confirmed cases as of 18 May 2020.

In relation to COVID-19 prediction, we can mention the following work. In Chen et al. [1],
the authors outline the prediction of the SARS-CoV-2 (2019-nCoV) 3C-as a protease structure.
In Fan et al. [2], the authors outline an approach for the prediction of the epidemic spread of the
coronavirus, driven by the spring festival transportation in China. In Goh et al. [3], the authors discuss
the rigidity of the outer shell predicted by a protein intrinsic disorder model with this uncovering
COVID-19 infectivity. In Grifoni et al. [4], a bioinformatics approach that can predict candidate targets
for immune responses to SARS-CoV-2 was presented. In He [5], the author discusses what could still be
done to control COVID-19 outbreaks in addition to the usual measures of isolation and contact tracing
that most countries are imposing. In Huang et al. [6], a spatial-temporal distribution of COVID-19 in
China and its prediction were described. In Ibrahim et al. [7], the authors describe the prediction of the
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COVID-19 spike-host cell receptor GRP78 binding site. In Ivanov [8], an approach for predicting the
impact of epidemic outbreaks on global supply chains with a simulation-based analysis was presented.
In Li et al. [9], the authors described the propagation analysis and prediction of the real COVID-19
time series. In Li et al. [10], the authors describe a forecasting method for the COVID-19 outbreak in
China with good results. In Liu et al. [11], the authors report the understanding of unreported cases in
the COVID-19 epidemic outbreak in Wuhan, China, and the importance of appropriate public health
interventions. In Roda et al. [12], the authors discussed in detail why it is difficult to accurately predict
the COVID-19 epidemic. In Roosa et al. [13], the authors described real-time forecasts of the COVID-19
epidemic in China from February 5, 2020 to February 24, 2020 with good results. In Ton et al. [14],
the authors describe the rapid identification of potential inhibitors of SARS-CoV-2 main protease
by deep model docking of 1.3 billion compounds. In Wang et al. [15], the authors describe a novel
phase-adjusted estimation approach of the number of Coronavirus Disease cases in Wuhan, China.
In all this previous related work, we can notice that to date, only simple monolithic neural networks or
deep neural models have been used for prediction. However, in this work, we are proposing a new
hybrid prediction model that combines ensemble architectures of neural networks with fuzzy logic for
response integration, which has not been proposed before. We believe that our model will fill a current
gap in existing research, which is the lack of use of multiple ensembles of neural networks in the
prediction of complex time series, like the Coronavirus data. In addition, the basic modules are based
on nonlinear autoregressive neural networks and function fitting networks. The main idea is that by
combining several neural predictors with fuzzy logic, we are able to manage the uncertainty of the
individual networks, and the total prediction can have lower uncertainty. This is the main contribution
of the paper, the proposed model with ensembles of neural networks and a fuzzy aggregator for
combining the predictions of the modules to obtain an improved prediction. The fuzzy aggregator is
designed in such a way as to reduce the prediction error by using the information of the individual
errors of the neural predictions. The simulation results of the proposed hybrid model are very good
when compared with other approaches. In summary, the new prediction model is the main contribution
of the paper. However, the resulted predictions are also very important for the Government in making
the appropriate decisions to optimally manage the health care system, as in the case of Mexico, but
believe that it could be used in other countries as well.

The paper is organized as follows. Section 2 describes the basic concepts about nonlinear
autoregressive neural networks. Section 3 outlines the fundamental definitions of function fitting
neural networks. Section 4 describes the proposed hybrid method combining ensemble architectures
of neural networks with fuzzy logic for response integration. Section 5 shows the knowledge
representation for the fuzzy system for response integration. Section 6 shows the simulation results,
and finally, Section 7 offers the conclusion.

2. Nonlinear Autoregressive Neural Networks

The NAR (nonlinear autoregressive) neural network uses past values of the time series to estimate
predicted future values. The NAR neural network model consists of one input layer, one or more hidden
layers, and one output layer. NAR is a dynamic and recurrent network with feedback connections [16].
NAR is used in one-step-ahead or multi-step-ahead time-series forecasting. The NAR model expressed
mathematically is presented in the following Equation (1):

y(t) = F(y(t− 1), y(t− 2), . . . , y(t− d)) (1)

where y(t) is the value of the considered time series y at time t, and d is the time delay and F denotes
the transfer function [17]. In this case, two NAR networks are used in the ensemble, one with
Levenberg–Marquardt and the other with Bayesian regularization training algorithms.

In Figure 1, the NAR neural network architecture is illustrated in more detail.
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Figure 1. The general architecture of the NAR neural network.

3. Function Fitting Neural Network

The FITNET (function fitting neural network) is another commonly used Multi-Layer Perceptron
(MLP) or a class of feedforward artificial neural network (ANN) that contains one hidden layer.
A feed-forward network with one hidden layer and enough neurons in the hidden layers can fit
any finite input-output mapping problem. The FITNET model uses the process of training a neural
network on a set of inputs in order to produce an associate set of target outputs. The FITNET is used
for curve-fitting and regression. In Figure 2, Xn is the input neuron, Wi j and Wkj are the weights, n
represents the neuron numbers, and Y is the neuron output [18–20].

In Figure 2, the general architecture of an artificial neural network (ANN) is shown.
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The learning or training algorithm used in FITNET is the well-known Levenberg–Marquardt
training method and the reason for this is because it is very fast for time-series data.

Neural networks, such as the NAR and the FITNET, and Fuzzy Systems, are commonly used for
time-series forecasting. In fact, fuzzy systems, NAR and FITNET have been used in many areas. For
example, a model was constructed for both snow-free and snowy areas to forecast monthly and daily
albedo [21], wheel-wear prediction models based on NAR demonstrated being useful in predicting



Healthcare 2020, 8, 181 4 of 13

dynamic changes of wheel diameters [22], and FITNET was used for atomic coordinate prediction of
carbon nanotubes [23]. On the other hand, neuro-fuzzy systems were used for prediction quality of a
rubber curing process [24] and cardiovascular disease risk level prediction [25]. However, here the
Fuzzy integrator, the NAR, and FITNET neural networks are used to help predict 10 days ahead of
12 states in Mexico and the total of the country using the confirmed and death cases of the COVID-19
using one-hidden layer. The Levenberg–Marquardt backpropagation (trainlm) is used as the training
algorithm, the purelin as the transfer function and three feedback delays. The number of epochs is 500,
10 neurons in the hidden layer, and the earning rate is 0.01. The Mexican dataset was obtained from
Mexico’s Government website [26].

4. Proposed Method

In Figure 3, the main architecture of the ensemble neural network model is shown. We have
a dataset from COVID-19 confirmed and death cases, which consists of 12 states in Mexico and the
total data of the country. In modules 1 and 2 of the ensemble, we use the NAR neural network using
different parameters, and in module 3 we use the FITNET neural network to train and learn from the
given information. The mean square error (MSE) of the training and actual data is normalized using
Equation (2):

MSE =
1
N

∑
i

(Pi −Mi)
2

PM
(2)

P =
1
N

∑
i

Pi (3)

M =
1
N

∑
i

Mi (4)

where N = the size of the training data, xi = the actual values, and yi = the trained data obtained of
the sample i [27].Healthcare 2020, 8, x 5 of 14 
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Then the normalized mean square errors are used in the fuzzy integrator of Figure 4 to produce
the weights w1, w2, w3 and then by using the expression in Equation (5) we combine the predictions to
obtain the total prediction PT:

PT =
w1p1 + w2p2 + w3p3

w1 + w2 + w3
(5)

where w1 = weight of module 1, w2 = the weight of module 2, w3 = the weight of module 3, p1 = the
predicted value of module 1, p2 = the predicted value of module 2, and p3 = the predicted value of
module 3.
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Regarding the general architecture of Figure 3, the main reasoning behind this is the following.
We have one ensemble for each state in Mexico (in the Figure, this is from 1 to N). Then each ensemble
has three modules, which consists of the simple neural networks (NAR and FITNET). The reason
for using three modules in each ensemble is that in previous work, this architecture has provided
good results. Then each ensemble has its own fuzzy aggregator to produce the final prediction of
the ensemble.

The structure of the fuzzy integrator system is shown in Figure 4, which is formed by the inputs
before fuzzification, the fuzzy inference system (integrator), and the fuzzy outputs after defuzzification.
The inputs e1, e2, and e3 consist of the normalized mean square errors of the three neural networks that
have been used to predict. In this case, e1 is the MSE of module 1, e2 is the NMSE of module 2, and e3 is
the NMSE of module 3. The fuzzy inference system consists of three fuzzy rules, and the three outputs
are w1, w2, and w3, which are obtained with the weighted mean in the defuzzification process. The
main idea of this fuzzy system is to model the process of assigning the weights to the predictions of the
modules according to the individual errors of the modules obtained with Equation (1). So basically, for
example, if the error of module 1 is low and the errors of the other modules are high, then we assign a
high weight to module 1 and low weights to the other ones. The advantage of using a fuzzy approach
here with linguistic variables is that the process of assigning the weight has a level of uncertainty,
which is modeled with the membership functions and fuzzy reasoning.

Figure 5 illustrates the fuzzy inputs of the membership functions of e1, e2, and e3 which is the
NMSE of the neural networks in module 1, module 2, and module 3, respectively. The fuzzy values
that are considered are low, medium, and large. The inputs e1, e2, and e3 have been normalized in the
range between 0 and 1.Healthcare 2020, 8, x 6 of 14 
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Figure 6 illustrates the fuzzy outputs membership functions of w1, w2, and w3, which are the
weighted mean errors of e1, e2, and e3, respectively. The fuzzy values that are considered are low,
medium, and high. The outputs w1, w2, and w3 have been normalized in a range between 0 and 1.
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The decision to use Gaussian membership functions was done after experimenting with Triangular,
Trapezoidal, and Gaussian functions, in which better results were achieved with Gaussians. The results
were better in terms of the smoothness of the output prediction results, as well as in terms of accuracy.
In the paper, we only report the final design of the Gaussian membership functions that we obtained.

The fuzzy system contains three fuzzy rules, which are the following:

1. If (e1 is small) and (e2 is medium) and (e3 is large), then (w1 is high) (w2 is medium) (w3 is small).
2. If (e1 is large) and (e2 is small) and (e3 is medium), then (w1 is small) (w2 is high) (w3 is medium).
3. If (e1 is medium) and (e2 is large) and (e3 is small), then (w1 is medium) (w2 is small) (w3 is high).

These fuzzy rules express the knowledge of how to combine predictions based on their
corresponding errors. Basically, the rules are assigning the weights (outputs) used in performing the
average based on the fuzzy values of the errors in the modules. The reason for preferring Mamdani
over Sugeno modeling is because a Mamdani fuzzy model is more interpretable in terms of the fuzzy
rules (completely linguistic), and also is easier to design. The advantage of using fuzzy logic here
is that we are able to handle the uncertainty in making a combined prediction, which is similar to
combining the opinions of three experts.

5. Knowledge Representation of the Fuzzy System

In this Section, we show the knowledge representation of the fuzzy system with Gaussian
membership functions. The membership values for the Gaussian membership function are defined in
the following Equation (6): The membership value µ(x) is the degree to which a given input x belongs
to that membership function 0 ≤ µ(x) ≤ 1:

µ(x) = e−
(c−x)2

2σ2 (6)

where c = the center, and the variance σ are the design parameters.
The Equations (7)–(9) show the membership functions used for the inputs e1, e2, and e3.

Low(; 0.15, 0) = e−
(x−0)2

2∗0.152 (7)
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Medium(x; 0.15, 0.5) = e−
(x−0.5)2

2∗0.152 (8)

Large(x; 0.15, 1) = e−
(x−1)2

2∗0.152 (9)

The Equations (10)–(12) show the membership functions used for the outputs w1, w2, and w3.

Low(x; 0.15, 0) = e−
(x−0)2

2∗0.152 (10)

Medium(x; 0.15, 0.5) = e−
(x−0.5)2

2∗0.152 (11)

High(x; 0.15, 1) = e−
(x−1)2

2∗0.152 (12)

The particular parameter values for the membership functions were defined considering the
three possible fuzzy values, which are Low, Medium, and High, assigned and adjusted in a manual
way [28–32].

6. Simulation Results

Figure 7 shows the comparison of results of Confirmed Cases Prediction in Mexico using different
neural network models; two of them are a monolithic model, FITNET, and NAR versus the Modular
Neural Network, which uses a fuzzy logic integrator. Table 1 shows a comparison of the predicted
values for confirmed cases of COVID-19 in 10 days ahead for Mexico (whole Country).Healthcare 2020, 8, x 8 of 14 
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Table 1. Comparison of predicted values for confirmed cases of Covid-19.

Predicted Day Real Data FITNET NAR MNNF

1 14,230 13,988 13,988 14,035
2 15,246 15,148 15,291 15,226
3 16,252 16,216 16,298 16,226
4 17,301 17,279 17,301 17,241
5 17,783 18,391 18,386 18,333
6 18,205 18,862 18,745 18,597
7 18,850 20,045 19,678 19,391
8 19,172 21,302 20,783 20,221
9 19,220 22,637 21,953 21,053
10 19,224 24,053 23,228 21,900

Figure 8 shows the comparison of the % Root Mean Squared Error (RMSE) in confirmed cases for
the different models of ANN for the 12 states and the country of Mexico where the states are indicated
as follows: 1 is Baja California, 2 Ciudad de Mexico, 3 Coahuila, 4 Estado de Mexico 5 Jalisco, 6 Nuevo
Leon, 7 Puebla, 8 Quintana Roo, 9 Sinaloa, 10 Tabasco, 11 Veracruz, 12 Yucatan and 13 the Country of
Mexico. In Figure 8, we can note that the proposed Modular Neural Network with Fuzzy MNNF has
lower errors. Table 2 shows the relative errors of prediction for the states and the whole country.Healthcare 2020, 8, x 9 of 14 
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Table 2. Example of % RMSE for the different models for the confirmed cases.

Baja
California

Cd. de
Mexico

Estado de
Mex Jalisco Nuevo

Leon
Quintana

Roo Sinaloa Mexico
Country

MNNF
MSE 2529.072 1,263,297.767 41,570.1111 1055.7705 131.8613 7513.0870 74.2234 2,415,010.109

RMSE 50.2898 1123.9651 203.8874 32.4926 11.4830 86.6780 8.6153 1554.0302
%RMSE MNNF 0.0322 0.2157 0.0651 0.0936 0.0343 0.1099 0.0099 0.0808

FITNET
MSE: 1158.3682 1,373,761.46 235,501.924 1122.0012 198.0156 8178.0354 3994.9508 8,280,063.46

RMSE: 34.0348 1172.0757 485.2854 33.4962 14.0718 90.4324 63.2056 2877.5099
%RMSE FITNET 0.0218 0.22500 0.1550 0.0965 0.0421 0.1147 0.07307008 0.14968321

NAR
MSE 1463.8333 1,318,844.292 49,312.6242 706.70452 117.464185 15,407.8063 6370.45123 5,416,634.47

RMSE 38.2600 1148.4094 222.0644 26.5839147 10.8380895 124.128185 79.8151065 2327.36642
%RMSE NAR 0.0245 0.22046 0.0709 0.0766 0.0324 0.1575 0.0922 0.1210
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Figure 9 shows the comparison of results of Death Cases Prediction in Mexico using different
neural network models, two of them a monolithic model, FITNET, and NAR versus the Modular
Neural Network, which uses a fuzzy logic integrator. Table 3 shows a comparison of the predicted
values for death cases of Covid-19 in 10 days ahead for Mexico (the whole country). Table 4 shows
relative errors of prediction of death cases for the states and the whole country.Healthcare 2020, 8, x 10 of 14 
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Table 3. Predicted death cases in 10 days for Mexico.

Predicted Day Real Data FITNET NAR MNNF

1 1251 1256.14422 1255.71983 1256.63828
2 1347 1339.80171 1339.88456 1340.6627
3 1438 1445.1368 1442.91771 1444.02958
4 1531 1533.02409 1532.79844 1533.68764
5 1625 1628.71662 1627.20689 1628.18016
6 1717 1724.59421 1722.99607 1723.98249
7 1788 1829.92399 1824.7057 1827.52789
8 1837 1941.17027 1930.41912 1935.97883
9 1856 2058.54869 2040.3259 2049.49095
10 1859 2182.306 2154.63482 2168.29111

Table 4. Example of % RMSE for the different models for death cases.

Baja
California

Ciudad de
Mex

Estado de
Mexico Jalisco Nuevo

Leon
Quintana

Roo Sinaloa Mexico
Country

MNNF
MSE: 1119.3858 202.0965 2578.2210 24.9536 2.6856 254.1817 168.0517 28,901.5512

RMSE: 33.4572 14.21606 50.7761 4.9953 1.63879 15.9430 12.9634 170.0045
% RMSE 0.1520 0.0421 0.2124 0.1784 0.1092 0.1374 0.0932 0.0914
FITNET

MSE: 948.1897 35.1181 2342.7949 17.8936 9.8660 377.9779 283.5697 31,643.8956
RMSE: 30.7926 5.9260 48.4024 4.2300 3.1410 19.4416 16.8395 177.8873

%RMSE 0.1399 0.0175 0.2025 0.1510 0.2094 0.1676 0.1211 0.0956
NAR
MSE: 780.6350 294.4490 3664.4998 29.1810 1.2292 146.1051 159.1990 26,297.2756

RMSE: 27.9398 17.1595 60.5351 5.4019 1.1087 12.0873 12.61744 162.1643
%RMSE 0.1269 0.0509 0.2532 0.1929 0.0739 0.1042 0.0907 0.0872

Figure 10 shows the comparison of % RMSE in death cases for the different models of NN for
the 12 states and the Country of Mexico where: 1 is Baja California, 2 Ciudad de Mexico, 3 Coahuila,
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4 Estado de Mexico 5 Jalisco, 6 Nuevo Leon, 7 Puebla, 8 Quintana Roo, 9 Sinaloa, 10 Tabasco, 11 Veracruz,
12 Yucatan, and 13 the Country of Mexico.
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Finally, we show in Figure 11 an example of the prediction in one particular state of Mexico
(Sinaloa). We are predicting 10 days ahead (data not previously seen by the model), and in Figure 11
we show the results of the proposed MNNF model when compared to the NAR and FIT models. We
can clearly appreciate how the proposed MNNF model is following very closely the real data and the
other models after day 5, where they drift apart and loose prediction value. Our explanation of this
behavior is that the proposed MNNF is using fuzzy logic for aggregating the results of the modules,
and in some way, the uncertainty in making a prediction is being managed appropriately.
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7. Conclusions

In this paper, a new approach with multiple ensemble neural network models and fuzzy response
aggregation for the COVID-19 time series was proposed. Ensemble neural networks were used to
produce several predictions under different conditions. Fuzzy logic was then used to aggregate the
responses of several predictor modules, in this way, improving the final prediction by combining, in a
proper way, the outputs of the modules. Fuzzy logic helps in handling the uncertainty in the process of
making a final decision about the prediction. The complete model was tested for the case of predicting
the COVID-19 time series in Mexico, at the level of the states and the whole country. Simulation results
of the multiple ensemble neural network models with fuzzy response integration show very good
predicted values in the validation data set. In fact, the prediction errors of the multiple ensemble neural
networks were significantly lower than using monolithic neural networks, in this way clearly showing
the advantages of the proposed approach. We have to say that the proposed model can be viewed
as a general prediction model because it can be applied in other time periods of the COVID-19 time
series. For example, in the case of Mexico, right now the time series show an increasing trend, which is
presented in this paper, but eventually, there is be a turning point, and the series will decrease, but the
model will not have any problem. This is because once we have new data with a decreasing trend, we
will train the simple neural networks again and use the same architecture of multiple ensembles and
fuzzy aggregators to produce the new predictions in a decreasing fashion.

As future work, we plan to apply the same type of model to other COVID-19 data sets from other
countries. In addition, we can also consider other time-series prediction problems, like in finance or
economics. Also, regarding the model, we can optimize the structure of the neural networks using
meta-heuristics, and we can use type-2 fuzzy logic in the response integration, expecting that results
should improve, like in related works [33,34]. Finally, we envision improving the work in this paper by
using adaptive fuzzy and neural network techniques, like in [35,36], or applying the proposed models
in other kinds of applications [37,38].
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