
Original Article

Time Series Analysis of Incidence Data of Influenza in Japan
Ayako Sumi1, Ken-ichi Kamo2, Norio Ohtomo3, Keiji Mise4, and Nobumichi Kobayashi1

1Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
2Department of Liberal Arts and Sciences, Sapporo Medical University, Sapporo, Japan
3Natural Energy Research Center Co. Ltd., Sapporo, Japan
4Center for Medical Education, Department of Admissions, Sapporo Medical University, Sapporo, Japan

Received September 29, 2009; accepted July 8, 2010; released online November 13, 2010

ABSTRACT

Background: Much effort has been expended on interpreting the mechanism of influenza epidemics, so as to better
predict them. In addition to the obvious annual cycle of influenza epidemics, longer-term incidence patterns are
present. These so-called interepidemic periods have long been a focus of epidemiology. However, there has been less
investigation of the interepidemic period of influenza epidemics. In the present study, we used spectral analysis of
influenza morbidity records to indentify the interepidemic period of influenza epidemics in Japan.
Methods: We used time series data of the monthly incidence of influenza in Japan from January 1948 through
December 1998. To evaluate the incidence data, we conducted maximum entropy method (MEM) spectral analysis,
which is useful in investigating the periodicities of shorter time series, such as that of the incidence data used in the
present study. We also conducted a segment time series analysis and obtained a 3-dimensional spectral array.
Results: Based on the results of power spectral density (PSD) obtained from MEM spectral analysis, we identified 3
periodic modes as the interepidemic periods of the incidence data. Segment time series analysis revealed that the
amount of amplitude of the interepidemic periods increased during the occurrence of influenza pandemics and
decreased when vaccine programs were introduced.
Conclusions: The findings suggest that the temporal behavior of the interepidemic periods of influenza epidemics
is correlated with the magnitude of cross-reactive immune responses.
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INTRODUCTION

Influenza is an acute contagious disease caused by a virus.
Three influenza pandemics have occurred during the 20th
century (in 1918, 1957, and 1968),1 each of which resulted in
more than a million deaths over a short period of time.
Recently, the ongoing worldwide spread of the H1N1
influenza virus has increased concerns of a new human
influenza. Accordingly, much effort to prevent influenza has
been expended on infectious disease surveillance, vacci-
nations, and various theoretical and experimental research.1

Of these, there has been great interest in developing
approaches to elucidate the structure of temporal variations
in influenza epidemics, using mortality and morbidity records
of the disease.2–5

Time series analysis has been widely used in epidemiology
to predict epidemics of infectious diseases, including
influenza.6–13 Since 1970, the World Health Organization
has requested influenza mortality data from selected

representative nations, in order to produce estimates of the
worldwide impact of the disease, and attempts have been
made to estimate excess mortality, which is useful as an early
quantitative index of an influenza epidemic.6 Choi and
Thacker7 demonstrated that time series analysis was useful
in estimating excess mortality during 8 influenza epidemics
occurring in the United States from 1967 to 1978.
Recently, there has been considerable interest in inter-

preting the mechanism of influenza epidemics.10–17 Because
influenza shows annual cycles in prevalence, it is reasonable
to investigate seasonal forcing, ie, the extent to which external
force can amplify the oscillation of annual cycles. Urashima
et al12 explained oscillation in the number of influenza cases
in Tokyo in terms of climate, namely, temperature, humidity,
and other factors. Aside from the obvious annual cycle of
influenza epidemics, mortality records reveal longer-term
incidence patterns, as are observed in common childhood
diseases such as measles.18–20 This longer-term period, which
is referred to as the interepidemic period, has long been a
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focus in epidemiology.21 The interepidemic period represents
the amount of time required to accumulate a cohort of
susceptible individuals that is sufficiently large to allow
pathogens of infectious diseases to efficiently spread over a
community once the pathogen is introduced from outside the
community. For measles, Anderson et al18 used time series
analysis of incidence data in England and Wales to reveal a
biennial cycle in the interepidemic period and to show that
vaccination programs alter this interepidemic period. Aron
and Schwartz22 interpreted the biennial cycle for measles
epidemics as the effect of seasonal variation in contact
rate among school-aged children, based on the results of
the Susceptible/Exposed/Infective/Recovered (SEIR) model,
which is a well-known mathematical model of infectious
disease epidemics.20–22

With respect to influenza, Clegg23 investigated the
interepidemic period by using disease mortality records in
Scotland. However, in the mortality records of influenza,
precise temporal incidence patterns can be masked by the
statistically noisy process of inferring flu incidence from
pneumonia and influenza deaths.24 Thus, there is a need for
a more detailed investigation of the interepidemic period
in influenza morbidity data. As Cliff et al25 point out, “in
epidemiology, long-term morbidity series are of interest where
there is a need to establish historical trends in disease
incidence.” In addition, the previously accepted model of the
epidemic behavior of influenza, in which a new influenza A
subtype or “pandemic strain” would appear at a 10- to 14-year
interval, is no longer tenable.1

Regarding influenza epidemics in Japan, studies have used
influenza morbidity data to investigate the temporal features
of the epidemics with respect to prediction analysis,9 corre-
lation of the epidemics with weather conditions,12,26

and geographic movement of the epidemics27; however,
the interepidemic period in morbidity data has not been
investigated in detail. In Japan, monthly morbidity records
of influenza were collected during 1948–1998, which
encompasses the pandemics of 1957, 1968, and 1977. Using
time series analysis of these long-term data, we investigated
the interepidemic period in influenza morbidity records.

METHODS

Data source
In Japan, the system of influenza reporting detailed in the
Communicable Disease Prevention Law was used during
1948–1998. The law required physicians to report all cases
of clinically diagnosed influenza to a nearby health center
within 24 hours. The health centers transferred these reports
to the local governments and to the Ministry of Health
and Welfare. Influenza morbidity data were regularly reported
to the Secretariat of the Ministry of Health and Welfare and
published in an annual periodical, Statistics on Communicable
Diseases, during 1948–1998.28 Since 1999, the Infectious

Diseases Control Law has been in force, and influenza
epidemics are now monitored and reported under a new
system.
In the present study, we used time series data on influenza

morbidity reported in Statistics on Communicable Diseases in
Japan during 1948–1998.28 The time series data represent the
monthly number of reported influenza cases per 100 000
population from January 1948 through December 1998 (612
data points). This incidence data is unique in Japan in that it
encompasses the pandemics of 1957, 1968, and 1977.

Data analysis
The present study uses spectral analysis based on the
maximum entropy method (MEM) in the frequency domain
and a nonlinear least squares method (LSM) in the time
domain. The present procedure comprised 3 steps (I–III). In
step I, we preprocessed the incidence data to permit detection
of the interepidemic period of the data in step II and to
investigate the temporal behavior of the interepidemic period
of the data in step III.
Step I: Preparing time series data for analysis
The preprocessing of the incidence data was conducted using
the following 3 procedures:
(1) Equal sampling time intervals were chosen, missing

data were compensated for, outliers were corrected, and
logarithmic transformation was performed, if necessary.
(2) To determine the long-term trend of the incidence

data, we performed MEM spectral analysis, which is a type
of time series analysis in the epidemiology of infectious
diseases.6,29,30 The spectral analysis produces a power spectral
density (PSD), from which we can obtain power represent-
ing the amount of amplitude of the incidence data at each
frequency31 (note the reciprocal relationship between the
scales for frequency and period). A large magnitude for
power at a frequency of 0.25 (1/year), for example, would
indicate that a large portion of the amount of amplitude of
the incidence data is expressed as a wave that repeats itself
every 4 years. MEM spectral analysis is useful to investigate
periodicities of short time series, such as the infectious disease
surveillance data used in the present study.32–36 The
formulation of MEM-PSD is described in Appendix.
(3) The long-term trend was calculated using the least

squares fitting (LSF) method with the period obtained from
the MEM-PSD. This trend was then removed by subtracting
the LSF curve from the data, thereby yielding the residual
time series data. The formulation of the LSF curve is
described in Appendix.
Step II: Assignment of interepidemic periods of influenza
epidemics
MEM spectral analysis of the residual time series data was
used to identify interepidemic periods.
Step III: Segment time series analysis
To further investigate the interepidemic period of influenza
epidemics, we performed segment time series analysis, which
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has been widely used in fields such as medical and biolog-
ical science, as well as in the physical sciences and
engineering.19,32,37–39

RESULTS

Temporal variation in influenza incidence data
Monthly incidence data on influenza in Japan during the period
from January 1948 through December 1998 are plotted in
Figure 1a. The major peak in 1957 represents the country’s

first exposure to the H2N2 subtype, which caused the 1957
Asian flu pandemic. The quite extensive outbreaks in 1962 and
1965 were due to H2N2 variants that arose from antigenic
drift. The next major peaks correspond with the 1968/1969
pandemic of Hong Kong flu, a new subtype (H3N2). The
sporadic winter outbreaks during the 1970s were due to
successive H3N2 variants, again arising from antigenic drift. In
1977, the H1N1 subtype re-emerged, after being totally absent
since the 1950s, and caused the Russian flu. Peak incidence has
been lower since the Russian flu; however, a closer view of the

Figure 1. Monthly incidence data for influenza in Japan (1948 to 1998). a. the original data, a′. histogram of the original
data, b. enlargement of the original data during 1980–1998, c. log-transformation of the original data (solid line)
and the optimum least squares fitting (LSF) curve (dashed line), c′. Maximum entropy method power spectral
density of the log-transformed data in the low frequency range (f < 0.2), d. residual data obtained by subtracting
the LSF curve from the log-transformed data, and d′. histogram of the residual data.
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incidence data from 1980 to 1998 (Figure 1b) indicates that an
annual cycle still exists, with a large peak in winter months. In
Figure 1b, the 1980 outbreak involved a mixture of H3N2 and
H1N1. Since then, mixed epidemics have been frequent during
the 1980s and 1990s, and strains of the less virulent type B
have been prominent. In addition, it is important to note that
a special program to promote influenza vaccination among
school children was started in 1962, and mass vaccination of
school children was conducted from 1976 to 1994 under the
Preventive Vaccination Law. Since 1994, influenza vaccination
has been voluntary.40

Preparing the incidence data for analysis
We take the incidence data x(t) (t: time) to represent discrete
values at t = kΔt (k = 1, 2, 3,+ , N) where Δt is the time
interval and N is the length of the time series (in the present
study, Δt = 1 month and N = 612).

Figure 1a′ shows the frequency histogram for the incidence
data. This histogram differs from the normal distribution
required for conventional spectral analysis. Then, we per-
formed logarithmic transformation of the incidence data
(Figure 1a), which had 122 zero values. Some of these zero
values were rounded zeros (ie, with a magnitude less than
half of the unit employed); others were absolute zeros (ie,
magnitude zero). To logarithmically transform incidence data
with zero values, we added small, positive, random noise from
a uniform (0, 0.1) distribution to the original incidence data
(Figure 1a).41 Next, we multiplied a constant belonging (0, 1)
to the time series data obtained in the first procedure. This
constant is set so that the mean value of the time series data is
equal to that of the original incidence data. We confirmed that
there was no significant difference between the standard
deviation of the original incidence data and that of the
time series data obtained in the second procedure. Thus, we
ensured that there would be no significant difference between
the original incidence data and the adjusted time series data.
Then, for the time series data thus obtained, we conducted the
logarithmic transformation. In the log-transformed data shown
in Figure 1c, the spikiness of the incidence observed in the
original data is reduced and a long-term decreasing trend is
evident.

In order to remove the long-term trend in the log-
transformed data in Figure 1c, MEM-PSD, P( f ) ( f :
frequency), for the log-transformed data was calculated. The
PSD ( f ≤ 0.2) is displayed in Figure 1c′ (unit of f : 1/year).
The longest period appears as a prominent peak at the
position of the 66.7-year period. Using this 66.7-year period,
we modeled the long-term trend in influenza epidemics by
calculating the least squares fitting (LSF) curve for all the log-
transformed data (Figure 1c). The formulation of the LSF
curve is described in the Appendix. The LSF curve obtained
(Figure 1c) accurately expressed the long-term trend in the
log-transformed data. The LSF curve peaked in 1962, when
the special influenza vaccination program began.

We then removed the LSF curve from the log-transformed
data (Figure 1c) and the residual time series data were
obtained, as shown in Figure 1d. The frequency histogram for
these residual data is shown in Figure 1d′; it approximates
the normal distribution required for conventional spectral
analysis. Normality of distribution was assessed using the
χ2 fitting test, and the null hypothesis was not rejected
(P = 0.79).

Identification of interepidemic periods of influenza
epidemics
To identify interepidemic periods in the incidence data, we
conducted MEM spectral analysis. MEM-PSD was calculated
for the residual data in Figure 1d, and the semi-log plot of the
PSD ( f ≤ 1.2) is shown in Figure 2. The most prominent
spectral peak is at f = 1.0 (= f1), which corresponds to a 1-year
period, ie, the seasonal cycle of influenza epidemics in Japan.
Ten peak spectral frequency modes were selected and are
shown in the Table, with corresponding periods and powers.
The 4.0-, 3.1-, and 2.4-year spectral peaks have relatively
large powers, which indicates that they are the interepidemic
periods of influenza epidemics in Japan.

Segment time series analysis
In the segment time series analysis, time series data were
divided into multiple segments, and MEM-PSD was
calculated for each segment. In this study, the residual data
(Figure 1d) were divided into a subseries of 83: each segm-
ent had a time range of 120 months (10 years), which
encompasses the longest dominant period, 9.2 years, for all
the residual data, as shown in the Table; there is a 6-month
delay at the beginning of the range. The PSDs thus obtained
are shown as a 3-dimensional spectral array in Figure 3, in
which frequency is represented on the horizontal axis and time
on the perpendicular axis, running from bottom to top.
In this 3-dimensional spectral array, spectral lines at

frequency f = 1.0 (= f1) corresponding to a 1-year period are
visible as a fine array over the entire time range. This indicates
that the influenza epidemics had a periodicity of 1 year. A
notable feature in Figure 3 is that the spectral lines of f<1,
which denotes a frequency lower than f1, vary in intensity.
That is, the spectral lines of f<1 are clearly visible before 1963
and almost disappear during the period 1963–1971. They
become again visible during 1971–1976, and, thereafter,
become extremely weak. This is because the amount of
amplitude of the interepidemic periods at frequency range f<1
changes over time, in contrast to f1.
To investigate the temporal behavior of the spectral lines at

f<1, we calculated the power of f<1 modes in each segment, a
value that was labeled Q<1. This is a measure of the amount of
amplitude in residual data expressed by periodic modes longer
than 1 year. We obtained Q<1 by integrating the PSD over the
frequency range 0.05 to 0.8 (which corresponds to 1.25 to 20
years). The results are shown in Figure 4. The curve for Q<1
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declines sharply in 1962 and 1977, and increases steeply in
1958 and 1969. These decreases in Q<1 in 1962 and 1977
occurred when vaccination programs were introduced in 1962
and 1976. The increases in Q<1 in 1958 and 1969 occurred
after pandemics in 1957 and 1968. Thus, it appears that Q<1,
ie, the amount of amplitude of interepidemic periods,
increased during influenza pandemics and decreased at the
start of vaccine programs.

DISCUSSION

A significant result of the present study of influenza epidemics
in Japan is that MEM spectral analysis enabled us to identify
multiple periodicities in the interepidemic period of the
disease epidemics (4.0-, 3.1-, and 2.4-year periods). This
finding deserves special attention in light of the link between
the temporal pattern of epidemics and the evolution of the
influenza virus. Of the 3 types of influenza virus (A, B, and
C), type A is epidemiologically the most important in humans,
since influenza A virus undergoes 2 types of change, known

Table. Characteristics of the 9 dominant spectral peaks
shown in Figure 2

Frequency (1/year) Period (years) Power

0.11 9.2 0.06
0.12 8.1 0.09
0.25 4.0 0.16
0.32 3.1 0.12
0.34 2.9 0.07
0.42 2.4 0.16
0.45 2.2 0.06
0.84 1.2 0.07
0.89 1.1 0.10
1.00 1.0 4.28

Figure 2. Maximum entropy method power spectral density (MEM-PSD) of the residual data in the low frequency range (f < 1.2).

Figure 3. Three-dimensional spectral array of the residual
data. PSD, power spectral density.
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as antigenic shift and antigenic drift. Antigenic shift gives
rise to a novel subtype that can result in severe pandemics,
eg, the Spanish flu of 1918 and the Hong Kong flu of 1968.
Between pandemics, a succession of strains of the same
subtype arise by antigenic drift and, with passing time,
partial immunity—referred to as cross-reactive immunity—is
conferred upon a host already infected by another strain of
the same subtype. Plotkin et al42 reported that the average
duration of cross-reactive immunity in influenza A virus
varies between 2 and 5 years. Thus, the 4.0-, 3.1-, and
2.4-year interepidemic periods of influenza epidemics in the
present study might correspond to the average duration of
cross-reactive immunity.

In addition, the present results in conjunction with those
of Plotkin et al42 suggest that the temporal behavior of Q<1

is correlated with the magnitude of cross-reactive immune
response, ie, the increases in the magnitude of Q<1 in 1958
and 1969 might represent cross-reactive immune responses
stimulated by the emergence of novel subtypes in 1957
(H2N2) and 1968 (H3N2), respectively. The decreases in Q<1

in 1962 and 1977 (Figure 4) might have resulted from declines
in the magnitude of cross-reactive immune response, because
the introduction of vaccine programs (in 1962 and 1976)
played an important role in strain-specific immune response.

A campaign against vaccination began in the late 1980s
due to concerns regarding the effectiveness of the Japanese
vaccine program.40 In contrast to reports alleging that the
influenza vaccine had little or no effectiveness, some studies
indicated that the influenza vaccine was indeed effective in
Japan.43–45 Sugiura et al43 conducted a randomized, controlled
study of high school students during the 1968–1969 flu season
and found that vaccine effectiveness against serologically
confirmed infection was 80% (P < 0.001) for A (H3) and 43%
(P < 0.01) for B. Based on reports of the effectiveness of

the influenza vaccine in Japan,43–45 it is possible that the
introduction of the influenza vaccine program had an effect on
the interepidemic periods of the disease epidemics, as was the
case with measles,18,19 and resulted in decreases in Q<1 in
1962 and 1977.
Many studies have used conventional time series

analysis—including moving averages, multiple regression
analysis, and an autoregressive (AR) model—to investigate
the periodic structure of incidence data for infectious
diseases.6–13 Quénel and Dab11 modeled the weekly
incidences of influenza in France by using the seasonal
autoregressive-integrated moving average (SARIMA) model
and developed epidemic criteria. Kakehashi et al9 decomposed
part of the incidence data used in the present study (Figure 1a)
into a seasonal component, a quadratic trend, and an AR
process. Such conventional time series analysis is useful in
obtaining a model that fits well to time series data; however,
this method has limitations in interpreting multiple periodic
structures in time series data.32 Thus, in previous work,9 the
interepidemic period of influenza epidemics in Japan was
defined as an interval between major epidemics of the disease,
similar to the seasonal cycle. In the present study, however,
MEM spectral analysis enabled us to identify multiple
periodicities for the interepidemic period of influenza
epidemics (4.0-, 3.1-, and 2.4-year periods).
Recently, wavelet transform analysis has been used in

time series analysis of incidence data for infectious diseases46;
however, it sacrifices accuracy of frequency resolution for
more precise time resolution.47 In addition, wavelet transform
analysis requires a long time series.46 In contrast, the present
method based on MEM spectral analysis enabled us to
identify periodicities in shorter time series with a high degree
of frequency resolution.32,48 In particular, the 3-dimensional
spectral array obtained from segment time series analysis

Figure 4. Temporal variation in the power of f<1 modes (Q<1).
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of short-term data revealed that periodic structures of the
interepidemic period experience temporal change.

In general, biological phenomena are both nonstationary
and nonlinear and transit from one state to another in a
complicated manner. It can be said that the periodic structures
of epidemics of infectious diseases, including influenza,
change over time, based on the results obtained in the
present study. To interpret temporal patterns in epidemics
of infectious diseases, several mathematical models have
been constructed using the theory of population dynamics of
infectious diseases.24,49–51 These models have become
invaluable management tools for epidemiologists who seek
to interpret the mechanisms of epidemics. For influenza, work
on mathematical models based on the theory of population
dynamics has paralleled recent developments in molecular
biology and computation, resulting in remarkable phy-
logenetic reconstructions of the evolution of the influenza
virus.42 The link between population dynamics and viral
evolution is central to the design of vaccines for influenza,
although this connection is not well understood,52 perhaps
because the conventional time series analyses used in studies
of population dynamics deals exclusively with overall
incidence data,7–13 which are subject to temporal variation.
It is preferable to deal with shorter time series segments in
segment time series analysis, as in the present study.

Regarding the logarithmic transformation of incidence data
with a value of zero, we added small, positive, random noise
with a uniform (0, 0.1) distribution to the original incidence
data, as shown in Figure 1a.41 We also tried 2 alternative
methods: (1) the addition of constants of 10−4%, 10−3%, and
10−2% relative to the largest values in the original incidence
data (0.001, 0.01, and 0.1, respectively) and (2) the method
used by Kakehashi et al,9 who analyzed part of the original
incidence data analyzed in the present study (Figure 1a).
As compared with the use of positive, random noise, these
alternative methods yielded the same 4.0-, 3.1-, and 2.4-year
periodic modes and the same temporal pattern of Q<1 shown in
Figure 4. In addition, the frequency histogram for the data
used in the present study more closely approximated the
normal distribution required for conventional spectral analysis
than did the distributions obtained using the 2 alternative
methods. As a result, in the present study, we used the
incidence data with small, positive, random noise.

In conclusion, our analysis of influenza epidemics in Japan
indicates that there were multiple periodic modes (4.0, 3.1,
and 2.4 years) for the interepidemic period in incidence data
and that the periodic structure of the interepidemic period
changes over time. We hypothesize that the temporal behavior
of interepidemic periods of influenza epidemics correlates
with the magnitude of cross-reactive immune response. Thus,
effective long-term influenza control programs in Japan will
require continued investigation of the interepidemic periods of
disease epidemics, as well as careful examination of viral
strains.

APPENDIX

MEM-PSD
The MEM-PSD for analysis of time series data, with an equal
sampling interval Δt (1 month in the present study), can be
calculated as

pðfÞ ¼ PmΔt

1þ
Xm

k¼�m

�m;k exp½�i2�fkΔt�
�����

�����

2
; (A.1)

where Pm is the output power of a prediction-error filter of
order m and γm,k is the corresponding filter coefficient, m = 0,
1, 2,+ , M (M is the optimum filter order). The method for
determining M is described in §5.1 in reference 36. Pm and
γm,k are determined by solving the Yule-Walker equations with
the use of Burg’s procedure.

LSF calculation
LSF calculations are performed by using a suitable function

xðtÞ ¼ a0 þ
XNp

n¼1

fan sinð2�fntÞ þ bn cosð2�fntÞg; (A.2)

which is calculated using the least squares method (LSM) for
x(t) with unknown parameters fn, a0, an, and bn (n = 1, 2,+ ,
Np), where fn (= 1/Tn, Tn: its period) is the frequency of
the nth periodic component, a0 is a constant representing the
average value of the time series, an and bn are the amounts of
amplitude of the nth periodic component, and Np is the total
number of components. The periodic function (eq A.2) can
be determined using nonlinear LSM. Linearization of this
nonlinearity is achieved by using the periods Tn estimated by
MEM spectral analysis.
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