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S u m m a r y  

CD8 + T lymphocytes have been reported to play a major role in the protective immune response 
against acute infection with Toxoplasma gondii. In order to further assess the role of CD8 + cells 
in resistance against this protozoan we examined the ability of B2m-deficient mice, which fail 
to express MHC class I molecules and peripheral CD8 + lymphocytes, to survive tachyzoite 
challenge following vaccination with an attenuated parasite mutant. Surprisingly, vaccination 
of B2m-deficient mice induced strong resistance to lethal challenge, with >50% surviving beyond 
3 months. Vaccinated ~2m-deficient mice, but not control heterozygotes, showed a five- to six- 
fold expansion in spleen cell number and "~40% of the splenocytes were found to express the 
NK markers NKI.1 and asialo GMI. Spleen cells from the vaccinated/~2m-deficient animals failed 
to kill either infected host cells or the NK target YAC-1. However, high levels of IFN-3~ were 
secreted when the cells were cultured in vitro with soluble T. gondii lysate, and this response 
was abolished by NKI.1 § but not CD4 + and CD8 § lymphocyte depletion, implicating the 
NKI.1 + population as the major source of IFN-% More importantly, vaccine-induced immunity 
in fl2m-deficient mice was completely abrogated by in vivo administration of antibody to NKI.1, 
asialo GM1, or IFN-% Together, the data suggest that in class I-deficient mice vaccinated against 
T. gondii, the absence of CD8 + effector cells is compensated for by the emergence of a population 
of NKI.1 + and asialo GM1 + cells which lack cytolytic activity, and that the protective action 
of these cells against the parasite is attributable to IFN-3, production. The induction of this 
novel NK population may provide an approach for controlling opportunistic infections in immuno- 
compromised hosts. 

I nfection with the intracellular protozoan Toxoplasma gondii 
is characterized by an acute proliferative stage, during which 

infective tachyzoites invade and replicate within a wide va- 
riety of host cells, and a chronic slow growing phase con- 
sisting of parasite encystment within tissues of the brain and 
muscle. Although infection is usually innocuous, in im- 
munocompromised hosts encysted parasites can reactivate, 
leading to uncontrolled tachyzoite proliferation, tissue damage, 
and encephalitis, which in some cases leads to host death (1). 

Control of both acute and chronic infection is largely de- 
pendent upon the cytokine IFN-% Thus, neutralization of 
endogenous IFN-3' by in vivo administration ofmAb renders 
mice susceptible to primary infection with the normally aviru- 
lent T. gondii strain ME49 (2) and ablates protective immu- 
nity induced by vaccination with the attenuated mutant ts-4 
(3). Prevention of toxoplasma encephalitis is also dependent 
upon the activity of IFN-% since treatment of chronically 
infected mice with anti-IFN-3~ mAb leads to reactivation of 

acute infection (4, 5), and administration of recombinant 
IFN-7 reduces both tachyzoite numbers and inflammation 
in these animals (6). 

While both CD4 + and CD8 + T lymphocytes from im- 
mune mice secrete large amounts of IFN-7 in vitro in re- 
sponse to tachyzoites (7), CD8 + cells are likely to be the 
major source o f t  cell-derived IFN-y in vivo. Thus, immune 
CD8 + cells transfer resistance to naive recipients more 
efficiently than CD4 + cells (8), and this effect is abrogated 
by simultaneous treatment with anti-IFN-3r mAb (9). Simi- 
larly, vaccine-induced immunity is abrogated by CD8 + cell 
depletion, and while CD4 + depletion during vaccination 
results in failure to generate protection, it has no effect on 
resistance to challenge infection once immunity is established 
(3). On the basis of this evidence, it has been argued that 
CD8 + cells are the major effectors of the IFN-3~-dependent 
protective response and that their generation is dependent 
upon CD4 + helper function (7, 8). 

1465 The Journal of Experimental Medicine �9 Volume 178 November 1993 1465-1472 



In order to further define the role of CD8 + T lympho- 
cytes in immunity to Toxoplasma, we examined the response 
of MHC class I-deficient mice following vaccination with 
the attenuated T. gondii mutant ts-4. These animals were con- 
structed by targeted disruption of the gene encoding the 82 
microglobulin (/$zm) subunit of the class I molecule (10), As 
a result, the peripheral CD8 + compartment fails to develop 
(11) and the mice fail to display normal resistance to infection 
with Trypanosoma cruzi (12), Mycobacterium tuberculosis (13) 
and certain viruses (14). As described below, ~2m-deficient 
mice unexpectedly were found to develop high levels of pro- 
tective immunity to T. gondii following vaccination. This re- 
sistance was associated with a massive parasite-induced ex- 
pansion of a splenocyte population expressing NKI.1 and asialo 
GMt (ASGMt), 1 phenotypic markers characteristic of NK 
cells. The latter population, while producing IFN-~/in re- 
sponse to parasite Ag, was unable to mediate lysis of either 
T. gondii-infected host cells or conventional NK targets, and 
thus appears to be functionally unique. The appearance of 
these cells in CD8 + deficient animals suggests that they 
could be induced as alternative effectors of parasite immu- 
nity in immunodeficient hosts. 

Materials and Methods 

Mice and Parasites. Chimeric mice homozygous ( - / - )  for the 
disrupted/~2m gene were derived from (129 x B6)F2 founder 
stock as described (10). Animals used in this study were from the 
fifth backcross generation. Control animals heterozygous for the 
inactive ~zm gene (+/ - )  were obtained by crossing - / -  mice 
with C57B1/6 animals purchased from The Jackson Laboratory (Bar 
Harbor, ME). Animals were bred and maintained under specific 
pathogen-free conditions. The KH and ts-4 strains of T. gondii were 
maintained by weekly passage in vitro on human fibroblasts at 37~ 
and 34~ respectively. 

T. gondii Ag Preparation. Soluble T. gondii Ag was prepared as 
described in detail elsewhere (15). Briefly, RH tacbyzoites harvested 
from the peritoneal cavity of Swiss-Webster mice were sonicated 
in the presence of protease inhibitors, centrifuged at 10,000g, dia- 
lyzed into PBS, filtered through a 0.2-#m membrane (Costar Corp., 
Cambridge, MA), and stored in aliquots at -80~ until use. 

Antibodies. The following directly conjugated mAbs (obtained 
from PharMingen, San Diego, CA) were used for flow cytometric 
analyses: HTC labeled AF6-88.5 (anti-H-2Kb), HTC labeled 
AMS-32.1 (anti-IAa), FITC labeled 145-2Cll (anti-CD3-~), PE la- 
beled 500A2 (anti-CD3-e), HTC labeled RM4-5 (anti-CD4), PE 
labeled RM4-5, FITC labeled 53-5.8 (anti-CDS), PE labeled H57- 
597 (anti-ot~ TCR), PE labeled GL3 (anti-~//$ TCK), PE labeled 
30-H12 (anti-Tbyl.2), HTC labeled PK136 (anti-NKl.1) (16), and 
PE labeled 5E6 (reactive with a subpopulation of NK cells) (17). 
Biotinylated mAb 30Fl1.1 (anti-CD45) and 145-2Cll were pur- 
chased from PharMingen. Anti-ASGM1 mAb (18) was kindly 
provided by Dr. T. Higgins (University of Pennsylvania) and bi- 
otin labeled as described (19). The antibodies were used at dilu- 
tions predetermined to give optimal staining by flow cytometric 
analysis. 

For in vivo cell depletions mAb XMG1.2 (anti-IFN-3,), PK136, 
GK1.5 (anti-CD4), and GLl13 (anti-/3-galactosidase), rabbit an- 
tiserum specific for ASGM1 (Wako Chemicals, Richmond, VA), 

1 Abbreviation used in this paper: ASGM1, asialo GMI. 

and normal rabbit serum were used. The Ab were partially purified 
by precipitation from ascites fluid with 40% ammonium sulfate, 
and sterilized by filtration through a 0.2-pm membrane (Costar 
Corp.) prior to use. In vitro depletions employed hybridoma cul- 
ture supernatants ofmAb RL172.4 (anti-CD4), 3-155 (anti-CD8), 
and SW3A4 (anti-NKl.1). 

Vaccination and Challenge. Mice were vaccinated by biweekly 
intraperitoneal injections of 2 x 104, 2 x 105, and 2 x 105 ts-4 
tachyzoites, then challenged 2 wk later by subcutaneous injection 
of 2000 virulent RH strain tachyzoites. 

In Vivo Cell Depletion. To assess the role of NK cells and IFN-y 
in resistance, some groups of mice were depleted of NKI.1 + cells 
or IFN-3, by twice weekly injections of 2 mg of mAb PK136 (16) 
or XMG 1.2 i.p. beginning 3 d prior to challenge. Control mAb 
(GLl13) was administered under similar conditions. ASGM/~ cells 
were depleted by twice weekly injection of 50 ~1 i.p. of rabbit an- 
tiserum specific for ASGM1. Similarly prepared normal rabbit 
serum was administered to mice under identical conditions. Efficacy 
of cell depletions, determined by flow cytometric analysis, was 
90-95%. 

In Vitro Cell Depletion. Splenocytes were depleted of specific 
cell populations using mAb and rabbit serum as a source of com- 
plement (Accurate Chemical and Scientific Corp., Westbury, NY). 
Cells (1.5 x 10 s) were incubated in 2.5 ml mAb-containing cul- 
ture supematant (45 min, 0~ washed, incubated (45 min, 37~ 
in 5 ml of a 1:10 dilution of rabbit serum as a source of comple- 
ment (Accurate Chemical and Scientific Corp.), washed, and the 
Ab + complement treatment was repeated. Specificity of deple- 
tions was confirmed by flow cytometry. 

Flow Cytometric Analysis. Spleen cells were first treated with 
ammonium chloride/potasium bicarbonate lysis buffer (B and B 
Research Laboratories, Inc., Fiskeville, ILl) to remove red cells. 
Samples containing 106 cells were incubated with Ab (diluted in 
50 #1 HBSS supplemented with 1% FCS and 0.1% sodium azide) 
for 30 min at 0~ and then washed. Staining was performed in 
the presence of saturating levels of unlabeled Fc receptor specific 
antibody (2.4G2) to block nonspecific Fc receptor binding. In the 
case of biotin-labeled mAb, after Ab staining cells were washed 
and incubated (30 min, 0~ in avidin conjugated to PE (Phar- 
Mingen; 50 #1 of a dilution predetermined to be optimal). Cells 
were washed and analyzed on an EPICS 753 flow cytometer (Coulter 
Corporation, Hialeah, FL) for 1- and 2-color analyses (10,000 cells 
per sample). Dead cells were excluded by propidium iodide gating. 

Measurement of In Vitro IFN- 7 Response. Splenocytes and spleno- 
cyte subpopulations from ts-4 vaccinated mice (5 x 106/well or 
3 x 10S/weU, as indicated) were cultured for 72 h in the pres- 
ence of soluble T. gondii Ag (50-100/~g/ml) and IFN-3~ was mea- 
sured in a two-site capture ELISA using immobilized mAb HB170 
(anti-IFN-3r), rabbit polyclonal anti-mouse IFN-% and peroxidase- 
conjugated donkey anti-rabbit Ig (Jackson ImmunoResearch Labora- 
tories, Inc., West Grove, PA). 

Cytolytic Assays. Splenocytes from nonvaccinated, ts-4 vacci- 
nated, and poly I:C injected mice were tested for the ability to 
kill the NK sensitive target YAC-1 in a SlCr release assay. To in- 
duce NK cell activity, 50 #g poly I:C (Sigma Chemical Co., St. 
Louis, MO) was administered intraperitoneally to nonvacdnated 
mice 24 h before assay. S1Cr-labeled YAC-1 targets (104/weU) were 
incubated with splenocytes, and chromium released into the super- 
natant was measured after 5 h using a supernatant harvesting press 
(Skatron, Lier, Norway). 

Lytic activity of splenocytes for T. gondii-infected target bone 
marrow macrophages was measured in a 5~Cr release assay as pre- 
viously described (20). Briefly, target macrophages were cultured 
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Figu~ 1. Survival of vaccinated •zm-ddicient 
( - / - )  and nonde~cient (+/-) mice following T. 
gondii challenge. A, +/-  mice; B, - / -  mice. 
Closed circles, nonvacciuated animals; open circles, 
ts-4 vaccinated; open squares, ts-4 vaccinated and 
treated with anti-IFN-3, mAb. See Materials and 
Methods for details. 5-8 animals were used per 
group. Essentially identical results were obtained 
in three independent experiments. 

for 5-7 d in L cell media, infected with ts-4, and then 18 h later 
washed, labeled with SlCr, and incubated with effectors for 5 h. 
Effector splenocytes were obtained from vaccinated mice and used 
immediately, or cultured for 7 d with ts-4 (7.5:1 ratio of spleen 
cells to tachyzoites) before assay. For both types of cytolytic assays 
the results are expressed as the mean .+ standard deviation of the 
percent release values from individual mice (three to four per group). 

Results 

fl2m-deficient Mice Develop High Levels of Resistance to T. 
gondii challenge. Both nondeficient + / -  and deficient - / -  
mice (heterozygous and homozygous, respectively, for the 
defective/32m gene) succumbed within 14 d when inocu- 
lated with the virulent T. gondii strain RH without prior 
vaccination (Fig. 1). As previously shown for other mouse 
strains (3, 8, 21), + / -  animals when vaccinated with 
tachyzoites of the temperature-sensitive mutant ts-4 showed 
complete resistance to challenge with RH (Fig. 1 A). Unex- 
pectedly,/32m-deficient - / -  mice also displayed a high de- 
gree of resistance following T. gondii vaccination, with 55 % 
of the animals surviving for at least 60 d after challenge (Fig. 
1 B). Resistance in both mouse strains was dependent upon 
IFN-% since treatment of mice with antibody to this cytokine 
completely abrogated immunity (Fig. 1, A and B). Adminis- 
tration of a rat IgG mAb of irrelevant specificity (/3-galac- 
tosidase) had no effect on the ability of either stain to resist 
challenge infection (data not shown). 

Vaccination of j82m-def~ient Mice Induces Ex~nsion of NKl.1 + 
Cells. In order to investigate the mechanism by which 
B2m-deficient mice resist RH challenge, we examined the 
splenocyte populations from vaccinated and nonvaccinated 
animals. A dramatic fve- to six-fold increase in spleen cell 
number was observed in ts-4 immunized - / -  animals. In 
contrast, no significant increase in splenocytes was seen in 
vaccinated + / -  or nonvaccinated - / -  mice. As expected, 
flow cytometric analysis revealed only low levels of class I 
(H-2K b) and CD8 expression in spleen cells from - / -  
animals (Table 1). In addition, no CD8 + lymphocytes were 
detected in the peritoneum (data not shown), a site where 
these cells have recently been detected in fl2m-negative mice 
injected with tumor cells (22). Instead, we found a striking 
increase (from 5 to 39%; Table 1 and Fig. 2) in the percent 
of splenocytes expressing the NK marker NKI.1 in vacci- 
nated - / -  animals. In contrast, only a minor increase in 
NKI.1 + cells (3-7%) was induced by vaccination of + / -  
animals. The level of CD4 § lymphocytes was 10-15% lower 
in vaccinated fl2m-deficient than in nonvaccinated - / -  and 
vaccinated + / -  mice, this decrease most probably reflecting 
the increased percent of NKI.1 § cells. 

Fig. 2 D shows the population of anti-NKl.1 staining spleen 
cells in vaccinated/32m-negative mice selected for analysis of 
other surface markers by dual fluorescence. Since there was 
overlap between positive and negative staining cells, only the 
brightest 20% of total splenocytes was examined in order 

Table 1. Spleen Cell Composition in Vaccinated and Nonvaccinated - / -  and + / -  Mice* 

% Positive 

H-2K b CD4 CD8 NK1.1 

- / -  vaccinated 6.5 + 1.5t 14.1 + 3.0 1.8 _+ 0.9 39.4 _+ 9.3 
+ / -  vaccinated 98.2 _+ 1.0 24.3 _+ 1.1 16.2 _+ 0.9 7.3 _+ 1.6 

- / -  nonvaccinated 2.0 _+ 0.1 29.5 ,+ 2.3 1.5 + 0.8 5.1 ,+ 1.0 
+ / -  nonvaccinated 96.3 _+ 2.1 16.1 ,+ 3.1 8.4 ,+ 1.1 3.3 -+ 0.7 

* Splenocytes were stained with FITC conjugated mAb specific for the indicated markers. See Materials and Methods for details. 
t Mean _+ SD of individual mice (3-7 per group). Similar results were obtained in 5 independent experiments. 
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Figure 2. NKI.1 expression by vaccinated +/- and - / -  mice. Spleno- 
cytes from +/-  mice (A and B) and - / -  (C and D) animals were stained 
with a fluoresceinated irrelevant mouse IgG (anti-IA d) (/1 and C) or anti- 
NKI.1 (B and D). 

to ensure exclusion of NKI.1 - cells. In this cell staining ex- 
periment, as in the others shown, saturating levels of unla- 
beled mAb 2.4G2 were included to block nonspecific Fc 
receptor binding. Cells stained with FITC-labeled NKI.1 + 
alone showed no PE fluorescence (Fig. 3 A) but virtually all 
of the NKI.1 + cells expressed ASGM1 (Fig. 3 B). In con- 
trast, minimal staining was detected with mAb specific for 
Thyl.2 (5%; Fig. 3 C), CD4 (2%; Fig. 3 D), and o~B TCR 
(3%; Fig. 3 F). However, a small amount of staining (12%; 
Fig. 3 H) was detected using 5E6, a mAb detecting a marker 
associated with a subpopulation of NK cells (17). In addi- 
tion, a minor population of NKI.1 + cells was found to ex- 
press CD3 (14%; Fig. 3 E) and 'y6 TCR (14%; Fig. 3 G). 
The similar proportion of NKI.1 + cells expressing the latter 
markers suggested they were produced by the same subpopu- 
lation of cells, and indeed 3-color cytometric analysis using 
mAb to NKI.1, CD3, and "y8 TCR confirmed this to be 
the case (data not shown). 

Cytotoxic Activity ofT. gondii-induced NKI.I  + Cells. The 
large increase in NKI.1 + cells was unexpected because it has 
recently been shown that ~zm-deficient mice are defective 
in NK cell lytic activity (23, 24). We similarly found that 
poly I:C treatment of nonvaccinated - / -  mice resulted in 
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Figure 4. NK cells induced by ts-4 vaccination of ~2m-deficient mice 
have defective cytolytic activity against YAC-1 targets. Splenocytes from 
nonvaccinated, ts-4 vaccinated, and poly I:C injected +/-  (A) and - / -  
(B) mice were tested for the ability to kill the NK sensitive target YAC-1. 
The results show mean _+ SEM (four mice per group) and are representa- 
tive of those obtained in four additional experiments. 

a much smaller enhancement of cytolytic function relative 
to that stimulated in + / -  mice (Fig. 4). Moreover, spleno- 
cytes from T. gondii vaccinated class I-deficient mice, although 
composed of up to 40% NKI.1 § cells, were unable to lyse 
YAC-1 targets (Fig. 4 B). 

The ability of splenocytes from vaccinated mice to kill 
tachyzoite-infected host cells was also assessed. As shown pre- 
viously (20, 25), vaccination of normal ( + / - )  animals gener- 
ated splenic effector cells capable of lysing parasite-infected 
bone marrow macrophages (Fig. 5 A). A low but significant 
level of killing (10% specific StCr-release; p <0.05) was de- 
tected using restimulated + / -  effectors and infected - / -  
targets (Fig. 5 A). The latter could possibly be mediated by 
a low level of functionally conformed cell surface class I heavy 
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Figure 3. Surface markers assodated 
with parasite-induced NKI.1 + cells in 
B2m-deficient mice. Spleen cells from 
vaccinated - / -  mice were double 
stained with FITC conjugated anti- 
NKI.1 and PE labeled mAb. The re- 
suits show PE fluorescence displayed by 
NKI.1 + cells stained double stained 
with: A, nothing; B, PE-anti-ASGM1; 
C, PE-anti-Thyl.2; D, PE-anti-CD4; 
E, PE-anti-CD3; F, PE-anti-cxB TCR; 
G, PE-anti-"/6 TCR; H, PE-anti-5E6. 
These results show an analysis from 
three pooled spleens. Essentially iden- 
tical results were obtained in three in- 
dependent experiments. 
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Figure 5. Cytolytic activity of spleno- 
cyte effectors for T. gondii-infected cells. 
Spleen cells from ts-4 vaccinated mice 
were either cultured for 7 d with ts-4 
prior to assay (A and B), or used im- 
mediately in the CTL assay (C and D). 
A and C show CTL activity of + / -  
effectors; B and D show CTL activity 
of - / -  effector cells. Bone marrow de- 
rived macrophage target cells were 
either not infected or infected with 
ts-4 as indicated prior to SlCr-hbeling. 
The resuks show mean + SEM (3-4 
mice per group). Similar results were 
obtained in three independent ex- 
periments. 

chain expressed by flzm-deficient animals (26), or alterna- 
tively by exogenous Bum supplied by the serum in the cul- 
ture medium. In contrast, neither ts-4 restimulated (Fig. 5 
B) nor freshly isolated splenocytes (Fig. 5 D) from - / -  
animals lysed to a significant degree infected targets of either 
strain. Taken together, the results in Figs. 5 and 6 show that 
the parasite-induced NKI.1 + cells in 152m-deficient mice have 
no detectable lytic activity against either T. gondii-infected 
targets or the classic NK target YAC-1. 

NKI.I + Cells Induced in ~2m-deficient Mice Produce IFN-T 
in Response to T. gondii Ag. NK cells are a major source of 
IFN-3' (27) and T. gondii has recently been shown to trigger 
in vitro production of this cytokine by splenic NK cells from 
SCID mice (28). Therefore, we assessed the ability of vacdne- 
induced NKI.1 § cells to produce IFN-q/in response to the 
parasite. Nondepleted splenocytes from B2m-deficient and 
nondeficient animals when stimulated with soluble T. gondii 
Ag produced 30 and 53 ng/ml of the cytokine, respectively 
(Table 2), while unstimulated cells synthesized less than 2 
ng/ml (data not shown). Depletion of CD4 + and CD8 + 

lymphocytes, but not NKI.1 + cells, from vaccinated non- 
deficient animals diminated the parasite-induced IFN-3' 
response. In contrast, in vaccinated class I-deficient mice deple- 
tion of NKI.1 + cells, but not T cells, abolished T. gondii- 
stimulated IFN-~/production (Table 2). Similarly, after in 
vivo NK cell depletion, splenocytes synthesized only low levels 
of IFN-'y (7 ng/ml) foUowing in vitro stimulation with para- 
site extract, and this response was abolished by lysis of T cells 
prior to culture (Table 2). In addition, removal of CD3 + 
7/~TCR + cells in the NKI.1 + population by cell sorting did 
not alter the ability of the remaining ceUs to secrete IFN-3' 
in response to parasite Ag (data not shown). 

Vaccine-induced Protection in ~2m-deficient Mice is Dependent 
Upon NKI.1 + and ASGMf" Cells. Since the vaccine- 
induced NKI.1 + cells produce IFN-qr in vitro in response 
to T. gondii triggering (Table 2), and the protective response 
in class I-deficient animals is dependent upon this cytokine 
(Fig. 1 B), we assessed the effects of in vivo depletion of NK 
cells on the resistance of these mice to challenge infection. 
While administration of anti-NKl.1 mAb or rabbit anti- 
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Figure 6. Treatment of vaccinated/3zm-ddicient 
mice with anti-NK antibodies abrogates protective im- 
munity to challenge infection. A, + / -  mice; B, - / -  
mice. In A, animals were either not vaccinated (open 
circles), vacdnated, vaccinated and treated with 
anti-NKl.1 mAb, or vaccinated and treated with anti- 
ASGMI antibodies. Since none of the mice in the 
latter 3 groups succumbed to challenge they are rep- 
resented with one line (closed circles). In panel K animals 
were either not vaccinated (open circles), vaccinated 
(closed circles), vaccinated and t~ated with anti-NKl.1 
mAb (open triangles), vaccinated and treated with anti- 
ASGM-1 (closed squares), or vaccinated and treated with 
normal rabbit serum (open squares). 4-6 mice were used 
per group. The results shown are representative of those 
observed in 2 experiments. 



Table  2. Source of lFN-)" in T. gondii Ag-stimulated Splenocytes 
From Vaccinated Mice* 

Mouse strain Treatment IFN-3~ 

+ / -  

- / -  

- / -  

ng/ml 
Nondepeleted 48.4 + 2.1 

T cell depleted 1.7 _+ 0.6 
NK cell depleted 47.2 _+ 2.0 

Nondepleted 30.2 _+ 3.2 
T cell depeleted 22.1 _+ 2.3 
NK cell depleted 2.3 _+ 0.1 

NK cell depleted in vivo 6.7 _+ 0.2 
NK cell depleted in vivo, 
T cell depleted in vitro 0.8 -+ 0.6 

* Indicated cell populations were treated with anti-CD4 + anti-CD8 
mAb (T cell depletion) and anti-NKl.1 mAb (NK cell depletion) + rabbit 
complement and then 5 x 106 cells were cultured in vitro with 100 
/zg/ral soluble T. gondii Ag for 72 h before measuring IFN-% See Materials 
and Methods for details. This experiment is representative of 3 performed. 

ASGM1 antibodies failed to alter the ability of vaccinated 
+ / -  mice to resist challenge infection (Fig. 6 A), the same 
antibody treatments were found to completely abrogate 
vaccine-induced immunity in 32m-deficient animals (Fig. 6 
B). As expected, CD8 § depletion did not alter the ability 
of the class I-deficient mice to resist challenge (data not shown). 

Discuss ion 

Immunity to T. gondii is dependent upon IFN-3' and, in 
immunologically intact mice, CD8 + lymphocytes appear to 
be major producers of this cytokine. The results presented 
in this paper demonstrate that in the absence of CD8 + cells, 
a previously uncharacterized population of effector cells emerge 
in response to T. gondii vaccination. These cells express NKI.1 
and ASGM1, markers associated with NK cells, and their 
elimination by in vivo anti-NKl.1 or anti-ASGM1 Ab treat- 
ment ablates immunity to challenge infection. The parasite- 
induced NKI.1 § cells, while failing to lyse either the NK 
target YAC-1 or T. gondii-infected bone marrow macrophages, 
release high levels of IFN-3' when cultured with tachyzoite 
Ag. The production of this cytokine by the NKI.1 + popu- 
lation is likely to account for their protective effect since deple- 
tion of IFN-3, in vivo abrogates immunity in the CD8 +- 
deficient mice. 

Our finding that vaccinated class I-deficient mice resist 
T. gondii challenge contrasts with previously reported experi- 
ments demonstrating an inability of these animals to survive 
infection with Trypanosoma cruzi (12), Mycobacterium tubercu- 
losis (13), and a virulent influenza strain (14). However, ~2m- 
negative mice are able to dear infections with other influenza 
strains (14, 29) as well as vaccinia and Sendai virus (30, 31). 
Indeed, while not as striking as the response to T. gondii, 

vaccinia-infected 32m-negative mice have greater numbers of 
spleen cells than do normal heterozygotes, and part of this 
increase is due to non-B, non-T cells (30). Therefore, it is 
possible that control of these infections is attributable to the 
induction of a protective NKI.1 + cell population similar to 
that described here. 

Recent reports have suggested that class I molecules play 
a role in driving differentiation of NK cells, as evidenced by 
decreased cytolytic activity of poly I:C induced NK cells from 
B2m-deficient mice (23, 24). We also found that poly I:C 
treatment of nonvaccinated - / -  mice resulted in a much 
smaller enhancement of cytolytic function relative to that 
stimulated in + / -  mice. Furthermore, NKI.1 + cells from 
vaccinated mice fail to exhibit cytolytic activity, although 
they secrete IFN-3, in response to parasite Ag. These observa- 
tions demonstrate that target cell killing and cytokine (IFN-30 
production are independent and dissociable activities of 
NKI.1 + and ASGMI+ cells, and that intact class I dimers 
per se, while important for generation of cytolytic NK ac- 
tivity (32), do not appear to be required for differentiation 
of cytokine-secreting cells of this phenotype. We do not know 
at present if the parasite-induced NKI.1 + cells are derived 
from an independent lineage relative to cytolytic NK cells, 
or whether the cytolytic mechanism of these cells is inopera- 
tional by virtue of the fact that they are generated in the ab- 
sence of class I molecules. 

The results presented here suggest that in the immune 
system of class I-deficient animals loss of IFN-'r-producing 
CD8 + lymphocytes is compensated for by production of an 
unconventional effector cell population capable of producing 
the same cytokine. The production of novel effector cells in 
response to immunodeficiency has also been observed in 
B2m-negative mice infected with Sendai virus (31). Such 
mice clear the virus, albeit with delayed kinetics relative to 
normal mice, and although CD8 + CTL activity is respon- 
sible for virus elimination in class I-expressing animals, in 
the immunodeficient mice clearance is attributable to the ap- 
pearance of CD4 + CTL. Similarly, infection of ~2m- 
negative animals with murine lymphocytic choriomeningitis 
virus induces splenic CD4 + CTL activity (33). However, it 
is unlikely that CD4 + cytolysis plays a major role in the pro- 
tective response of class I-deficient mice infected with T. gondii 
because virtually no CD4 + cells were detected in the pro- 
tective NKI.1 + population, and no cytolytic activity was de- 
tected against parasite-infected cells using splenocyte effectors 
from vaccinated B2m-negative mice. In addition, immunity 
was completely eliminated by IFN-qr depletion, implicating 
this cytokine as the major mediator of immunity rather than 
cell-mediated cytolytic activity. Nevertheless, since IL-2 in- 
duces NK cell proliferation (34), conventional CD4 + lym- 
phocytes could play a helper role in the induction and ac- 
tivity of these cells; this possibility is currently being examined. 

Depletion of NKI.1 + cells in ts-4 vaccinated + / -  mice 
had no effect on resistance to T. gondii, indicating that such 
cells probably do not play a major role during the effector 
phase of immunity in these animals. However, NK cell lytic 
activity has been detected in other experimental models used 
to study T. gondii (35-37) and it is possible that in these cases, 
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as with the class I-deficient mice, NKI.1 + cells provide a 
source of protective IFN-'y. In addition, parasite induction 
of NKI.1 + cells at initial stages of infection may result in 
early T cell-independent IFN-y production, which could in 
turn drive immunity to the predominant Thl type of CD4 + 
response characteristic of T. gondii infection (3). 

The results of the present study provide a dramatic demon- 
stration of in vivo induction of IFN-3' producing NKI.1 + 
cells in response to microbial stimulation. In addition, our 
findings unequivocally establish that such cells confer strong 
resistance to challenge with a normally lethal pathogen. Re- 
cently, we have shown in an in vitro system that spleen cells 
and bone marrow derived NK cells from SCID mice pro- 
duce IFN-3~ when cultured with live T. gondii parasites or 
tachyzoite extract (28). This response, like that induced by 
the intracellular bacterium Listeria monocytogenes (38, 39), is 

dependent upon TNF-ot and IL-12 released by macrophages 
after microbial stimulation (40, 41). Preliminary evidence in- 
dicates that the NKI.1 + cells induced in vaccinated ~zm- 
negative mice are triggered to produce IFN-3' by a similar 
accessory cell dependent pathway. 

In addition to demonstrating in vivo induction of protec- 
tive NKI.1 + cells in response to microbial infection, the 
results of this study provide a major example of redundancy 
and adaptability in the murine immune system. Furthermore, 
the ability of a defective host immune system to utilize alter- 
nate pathways to produce protective IFN-3' has important 
clinical implications. Thus, in the case of toxoplasmosis and 
other opportunistic infections, this property could potentially 
be exploited to induce T independent resistance in immuno- 
compromised hosts. 
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