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The Ras/Raf/ERK pathway is one of the most frequently dysregulated signaling path-
ways in various cancers. In some such cancers, Ras and Raf are hotspots for muta-
tions, which cause continuous activation of this pathway. However, in some other 
cancers, it is known that negative regulators of the Ras/Raf/ERK pathway are respon-
sible for uncontrolled activation. The Sprouty/Spred family is broadly recognized as 
important negative regulators of the Ras/Raf/ERK pathway, and its expression is 
downregulated in many malignancies, leading to hyperactivation of the Ras/Raf/ERK 
pathway. After the discovery of this family, intensive research investigated the mech-
anism by which it suppresses the Ras/Raf/ERK pathway and its roles in developmen-
tal and pathophysiological processes. In this review, we discuss the complicated roles 
of the Sprouty/Spred family in tumor initiation, promotion, and progression and its 
future therapeutic potential.
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1  | INTRODUC TION

The Sprouty/Spred family functions as crucial negative regulators 
of Ras/Raf/ERK signaling and is evolutionarily conserved from 
Drosophila to mammals.1-4 Drosophila sprouty was discovered as an 
antagonist of FGF signaling in 1998.1,2 In mammals, there are four 
Sprouty homologs (Sprouty1-4). Later, Sproutys were shown to 
suppress ERK activation induced by various growth factors, such as 
FGF, platelet-derived growth factor, VEGF-A, nerve growth factor, 
and GDNF in a cell type- and growth factor-specific manner. To sup-
press the Ras/Raf/ERK pathway, Sprouty proteins contain several 
conserved amino acid sequences, such as the c-Cbl-binding domain 
at the N-terminus, which includes a conserved tyrosine residue, the 
serine-rich motif, and the CRD at the C-terminus.

In 2001, Spred1 and Spred2 were first described as Sprouty-
related proteins by Yoshimura's group, who revealed that both 
Spred1 and Spred2 function as negative regulators of the Ras/Raf/
ERK pathway through binding to Ras and suppression of Raf ac-
tivation.3,4 These Spred proteins have 3 domains of EVH-1 in the  
N-terminus, KBD, and Sprouty-related CRD in the C-terminus. 
Spred3, which lacks a functional KBD, was also cloned by the same 
group. Spreds are expressed in various organs such as lung, heart, 
kidney, brain, testis, thymus, uterus, and ovary, but the expression 
pattern differs among Spreds. Germline loss-of-function mutations 
in Spred1 causes Legius syndrome, which shows a similar phenotype 
to NF1 with café-au-lait spots and axillary freckling, but without 
cutaneous neurofibromas, or any detectable NF1 mutation.5 After 
this report, it was shown that Spred1 binds to neurofibromin (en-
coded by NF1) by its EVH-1 domain and recruits neurofibromin to 
the plasma membrane, which explains the overlapping features of 
the two human diseases.6 Spreds are also known to regulate inflam-
matory signaling in various organs. Spred1 negatively modulates air-
way eosinophilia and hyperresponsiveness without affecting T-cell 
differentiation and inhibits interleukin-5-induced ERK activation.4 
Spred2 deficiency increases the severity of lipopolysaccharide-
induced acute lung inflammation7 and liver injury8 in mice, whereas 
Spred2−/− mice showed resistance to DSS-induced acute colitis.9

The Ras/Raf/ERK pathway is dysregulated by many factors in 
most cancers. There are numerous negative regulators for fine-
tuning of the Ras/Raf/ERK pathway, including Ras GTPase-activating 
proteins, MAPK phosphatases, and the Sprouty/Spred family.2 As 
the Sprouty/Spred family is one of the most important suppressors 
in the Ras/Raf/ERK pathway, many researchers have intensively in-
vestigated the roles of Sproutys and Spreds as tumor suppressors 
during tumorigenesis and metastasis. In this review, we discuss the 
elucidated roles of the Sprouty/Spred family in cancer.

2  | MODE OF AC TION OF SPROUT Y/
SPRED IN REGUL ATION OF THE R A S/R AF/
ERK PATHWAY

Many studies have revealed a variety of binding partners of the 
Sprouty/Spred family, including Grb2, SHP-2, c-Cbl, Raf, FRS2, and 
neurofibromin,1-4 and the complicated mechanisms by which the 
Sprouty/Spred family inhibits the Ras/Raf/ERK pathway and tu-
morigenesis, but promotes tumorigenesis in certain types of cancer. 
The inhibitory mechanisms of the pathway appear to differ between 
Sproutys and Spreds (Figures 1 and 2). Sprouty2 is localized in or-
ganelles in a steady state and is recruited to the plasma membrane 
after growth factor stimulation.2 In contrast, Spreds are localized in 
the plasma membrane both before and after stimulation.3 More con-
fusingly, Sprouty isoforms have slightly distinct suppressive mecha-
nisms. For example, the conserved tyrosine residue of Sprouty1 and 
Sprouty2 at the N-terminus, whose phosphorylation is important for 
their suppressive function, is phosphorylated by growth factor stimu-
lation, whereas that of Sprouty4 is not phosphorylated by the same 
stimulation.2

Sproutys are believed to have several mechanisms by which 
they can suppress the Ras/Raf/ERK pathway. Sproutys are gen-
erally considered to function upstream of Ras as they cannot 

F IGURE  1  Inhibitory mechanisms of Sproutys on the Ras/
Raf/ERK pathway. DUSP, dual-specificity phosphatase; miR-21, 
microRNA-21; SHP-2, Src homology 2 domain-containing protein 
tyrosine phosphatase-2; SOS, Son of Sevenless 
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suppress constitutively active Ras mutants.1 However, Sprouty4 in-
hibits VEGF-A-induced ERK activation by direct binding to c-Raf.1 
Interestingly, in mammals, Sproutys do not suppress EGF signaling; 
rather, they activate the signaling more by binding to c-Cbl, an E3 
ubiquitin-protein ligase for EGFR.2 Sprouty2 can also suppress Rac1 
activation and cell migration through protein tyrosine phosphatase 
1B.2 Furthermore, Sprouty1 and Sprouty2 are reported to be nega-
tive regulators of TGF-β-Smad signaling.10

Spreds inhibit ERK activation by associating with Ras and neurofi-
bromin and suppressing the phosphorylation and activation of Raf.3,6 
Spreds can also modulate the activation of the small GTPases, Ras, 
Rap1, and Rho.3 In Spred1, the inhibition of the Ras/Raf/ERK path-
way was recognized when its 2 tyrosine (Y) residues 377/420 were 
phosphorylated.11 Three other tyrosine residues (Y303/343/353) 
within the CRD are necessary for regulating Spred2 activity.12

3  | REGUL ATION OF SPROUT Y/SPRED 
E XPRESSION

The Sprouty/Spred family is induced by many receptor tyrosine ki-
nase signals and functions as negative feedback regulators of Ras/
Raf/ERK signaling.1-4 The mRNA and protein levels of members of 
this family are tightly regulated by several mechanisms, including epi-
genetic and posttranslational modifications. For example, Sprouty2 
transcription is inhibited by DNA methyltransferase 1-mediated 
methylation of the proximal promoter of Sprouty2,13 and the aber-
rant methylation of the Spred1 promoter regions is associated with 
low expression level of Spred1 mRNA in AML.14

An oncomiR, miR-21, targets both Sprouty1 and Sprouty2.2 In 
multiple myeloma cells, the reduction of Sprouty2 induced by miR-21 
results in the enhancement of proliferation and invasion and the inhi-
bition of apoptosis.15 In ovarian cancer cells, lncRNA GAS5 suppresses 
cell proliferation by decreasing miR-21, thereby increasing Sprouty2 
expression.16 Interestingly, lncRNA SPRY4-IT1 is overexpressed in 
many cancers, including gastric cancer, CRC, and HCC and functions as 
an oncogene in contrast to Sprouty4.17 However, in testicular germ cell 
tumors, both Sprouty4 and SPRY4-IT were found to function as onco-
genes through activation of the PI3K-Akt pathway.18 Moreover, miR-
122, miR-27a, and miR-330-5p target Sprouty2, leading to enhanced 
cell proliferation.19-21 MicroRNA-31 targets several negative regulators 
of the Ras/Raf/ERK pathway, including Sprouty1/3/4 and Spred1/2.22 
The stability of Sprouty2 protein is regulated by several E3 ubiquitin-
protein ligases, such as c-Cbl, Siah2, Nedd4-1, and pVHL,2 although it 
is unknown how the stability of other Sprouty proteins is regulated.

Concerning the upstream signal of Spreds, miR-126 is the most 
intensively studied component upstream of Spred1. MicroRNA-126 
promotes angiogenesis by suppressing the expression of Spred1, 
which normally inhibits the VEGF-A signaling pathway.23,24 In miR-
126−/− mice, the expression of Spred1 was increased and the intra-
cellular angiogenic signal from VEGF-A and FGF was suppressed.

4  | PATHOPHYSIOLOGIC AL ROLES OF 
SPROUT Y/SPRED

Genetic studies with genetically modified mice have revealed the 
developmental and pathophysiological roles of the Sprouty/Spred 
family proteins. Sprouty1−/− mice die after birth due to defects in 
kidney development caused by enhanced GDNF/RET signaling.1 Half 
of Sprouty2−/− mice die after birth, and the remainder show growth 
retardation due to enteric neuronal hyperplasia, caused by hyperac-
tivation of GDNF/RET signaling, resulting in esophageal achalasia.1 
Sprouty2−/− mice also have severe hearing impairment.1 Moreover, 
Sprouty4−/− mice show polysyndactyly; most Sprouty4−/− mice die 
shortly after birth due to mandible defects, and the remainder show 
growth retardation.25 Finally, Sprouty2−/−/Sprouty4−/− mice show 
severe defects in craniofacial, limb, and lung morphogenesis, as well 
as angiogenesis, and embryonic lethality, suggesting redundant and 
nonredundant roles of Sprouty2 and Sprouty4.25,26

Spred1−/− mice have a shortened face, melanin deposits in the 
spleen, and enhanced functions of hematopoietic stem cells.5,27 
Overexpression of Spred2 reduced the number of hematopoietic 
stem cells in the aorta-gonad-mesonephros culture, and hematopoi-
etic stem cells from Spred2−/− mice were upregulated.4 We gener-
ated Spred1−/−/Spred2−/− mouse embryos, which showed embryonic 
lethality due to subcutaneous hemorrhage, edema, and dilated lym-
phatic vessels filled with erythrocytes.28 Spred1 and Spred2 are nec-
essary for lymphatic vessel separation from the parental vein, and 
Spreds have an important role by negatively controlling VEGF-C/
VEGF receptor-3 signaling in the development of lymphatic vessels 
of mice.28

F IGURE  2  Inhibitory mechanisms of Spreds on the Ras/Raf/
ERK pathway. DUSP, dual-specificity phosphatase; miR-126, 
microRNA-126; SHP-2, Src homology 2 domain-containing protein 
tyrosine phosphatase-2; SOS, Son of Sevenless
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The Sprouty/Spred family negatively regulates VEGF-A and 
VEGF-C signaling pathways as well as angiogenesis and lymphangio-
genesis, both of which are important processes for tumor develop-
ment.4 These findings suggest that expression of the Sprouty/Spred 
family in the tumor microenvironment also indirectly affects tum-
origenesis and metastasis. Actually, we showed that s.c. tumors in 
Sprouty4−/− mice grow much faster than those in WT mice through 
enhanced neovascularization.29

It has recently been reported that the loss of Sprouty1 and 
Sprouty2 promotes the survival of effector CD8+ T cells, result-
ing in the formation of more protective memory  CD8+ T cells.30 
Another study has shown that Spred1 is upregulated in CD8+ tumor-
infiltrating lymphocytes in a TGF-β-dependent manner.31 These 
findings implicate the Sprouty/Spred family as the new potential 
targets in cancer immunotherapy.

5  | ROLES OF SPROUT Y/SPRED DURING 
TUMORIGENESIS AND META STA SIS

Aberrant activation of the Ras/Raf/ERK pathway induces exces-
sive cell proliferation and tumorigenic behavior.2 Therefore, nega-
tive regulators of this signaling pathway have been observed to 
protect against tumorigenesis. The Sprouty/Spred family is one of 

the most important negative regulators of ERK signaling, and thus, 
evidence of its antitumorigenic efficacy has accumulated (Tables 1 
and 2).1-4,19,32-60

5.1 | Sprouty/Spred and HCC

It is thought that deregulation of the Ras/Raf/ERK pathway in HCC is 
due to downregulation of the negative regulators, including Sproutys, 
Spreds, and dual-specificity phosphatases. In HCC, the expression 
of Sprouty1 is increased, whereas the expression of Sprouty2 and 
Sprouty4 is decreased, compared with the levels in correspond-
ing nontumor tissues.32-34 Sprouty2 is suggested to be a candidate 
tumor suppressor in HCC and is an independent factor associated 
with postoperative recurrence in HCC.34 Sprouty2-Y55F, a dominant 
negative mutant form of Sprouty2, promotes Akt-induced HCC de-
velopment through the activation of ERK1/2 and pyruvate kinase M2 
and cooperates with activated β-catenin to induce HCC in mice.2

In human HCC tissues, the expression of Spred1 and Spred2 was 
found to be lower than that of adjacent nontumoral tissue and the 
expression levels of Spred1 and Spred2 were negatively correlated 
with the rates of tumor invasion and metastasis.54 Spred1 overex-
pression in human HCC cell lines inhibited increased cell prolifera-
tion and negatively regulated the secretion of MMP-2/9.54 Another 
group reported that, in a human HCC cell line, Spred2 overexpression 

TABLE  2 Expression of Spreds in various human cancer types

Tissue Type
Sample 
size Country Target (method) Result Reference

Liver Hepatocellular 
carcinoma

32 Japan Spred1, Spred2 
(western blot, 
real-time PCR, 
immunohistochemis-
try)

Expression level of Spred1 and 
Spred2 is decreased compared to 
adjacent nontumoral lesion. 
Expression of Spred1 and Spred2 
is inversely correlated with the 
incidence of tumor invasion and 
metastasis

Yoshida et al54

Liver Hepatocellular 
carcinoma

140 USA miR-126, Spred1 
(real-time PCR)

mRNA level of Spred1 is inversely 
correlated with that of miR-126. 
Expression level of Spred1 in 
patients with TACE + operation is 
lower than those with operation

Ji et al55

Oral cavity Squamous cell 
carcinoma

10 China Spred1 (western blot, 
real-time PCR)

Expression of Spred1 is downregu-
lated in tumor tissues

Wang et al56

Esophagus Squamous cell 
carcinoma and 
adenocarcinoma

43 India Spred1 (real-time PCR) Spred1 is downregulated in 69% of 
esophageal cancer patients

Sharma et al57

Prostate Prostate cancer 15 UK Spred1, Spred2 
(real-time PCR)

Spred2 is downregulated in tumors 
compared to benign glands, 
whereas Spred1 expression 
remains unchanged

Kachroo et al58

Breast Breast cancer 46 China Spred1 (real-time PCR) Expression of Spred1 is negatively 
correlated to estrogen receptor 
status

Jiang et al59

Bone marrow Acute myeloid 
leukemia

58 France Spred1 (real-time PCR) Expression of Spred1 is lower 
compared to normal bone marrow 
cells

Pasmant et al60

miR, microRNA; TACE, transcatheter arterial chemoembolization.



     |  1531KAWAZOE and TANIGUCHI

inhibited cell proliferation and migration and induced apoptosis and 
Spred2 knockdown promoted tumor growth in vivo.61 Silibinin, a 
natural polyphenolic flavonoid, plays an antitumorigenic role in HCC 
through inhibition of the ERK1/2 cascade through the upregulation 
of Spreds.62

Taking these findings together, the Sprouty/Spred family inhibits 
the proliferation and migration of human HCC.

5.2 | Sprouty and pancreatic cancer

Only a few papers have been published about the role of Sproutys 
and Spreds in pancreatic cancer. Dual-specificity tyrosine 
phosphorylation-regulated kinase 1A, which is highly expressed 
in pancreatic ductal adenocarcinoma, stabilizes c-Met through 
Sprouty2 phosphorylation, thereby resulting in the promotion of 
tumor growth.63 In pancreatic cancer cells, miR-21 targets Sprouty2 
for promoting EGF-induced cell proliferation.64 Sprouty4 does not 
affect β-cell carcinogenesis in mice, although it regulates endocrine 
pancreas development.2

5.3 | Sprouty/Spred and CRC

The role of Sproutys, especially Sprouty2, in CRC is still controver-
sial. The expression of Sprouty2 is reported to be reduced in human 
CRC and is inversely correlated with the expression of miR-21.37 The 
expression level of Sprouty4 is also reduced in human CRC due to 
DNA methylation and serves as an independent predictor of overall 
survival.36 The expression of Sprouty2, which promotes the cyto-
toxic effect of 5-fluorouracil and metformin, is downregulated by 
miR-21 in a human colon cancer cell line.65 Sprouty2 also increases 
the sensitivity to gefitinib, an EGFR inhibitor, by increasing the ex-
pression of phosphorylated and total EGFR in human CRC cell lines.2 
Moreover, in colon cancer cells, Sprouty2 induces PTEN expression 
and suppresses the PI3K-Akt pathway in addition to the Ras/Raf/
ERK pathway.37 However, in contrast, Holgren's group reported that 
Sprouty2 is upregulated in human CRC samples and functions as an 
oncogene by inducing the expression of c-Met.38 The same group 
showed that the downregulation of Sprouty2 induces E-cadherin and 
p21 expression and inhibits EMT and cell proliferation.39 Sprouty2 
also increases ZEB1 expression through Akt and Src activation and 
induces EMT in colon cancer cells.66

A study about Spreds and CRC was carried out using an azoxy-
methane/DSS-induced colon tumor model.9 The number and size of 
colon tumors in Spred2−/− mice were lower and smaller than those in 
WT mice.9 Knockdown of Spred2 in a human colon cancer cell line 
modestly increased the cell proliferation and migration.9 To eluci-
date the role of Spreds in CRC, further investigation is necessary.

5.4 | Sprouty/Spred and upper digestive 
tract cancer

In gastric cancer, low expression of Sprouty2 is associated with poor 
prognosis via the upregulation of FGFR2-induced ERK activation, 

positive lymphatic invasion, and metastasis.40 MicroRNA-23a, which 
is considered as an oncogene, is upregulated in gastric cancer sam-
ples and promotes cell proliferation and metastasis by targeting 
Sprouty2.67 MicroRNA-592 also enhances the proliferation and in-
vasion of gastric cancer cells by targeting Sprouty2.41 In esophageal 
squamous cell carcinoma, lncRNA CCAT1 is upregulated and induces 
the histone methylation of the promoter of Sprouty4, resulting in the 
suppression of Sprouty4 expression.68

MicroRNA-182 was found to be upregulated in malignant 
oral carcinoma tissues and overexpression of miR-182 sustained 
Ras/Raf/ERK signaling activation and promoted cell proliferation 
through the inhibition of Spred1, whereas the knockdown of miR-
182 revealed the inverse effect using a human tongue squamous 
cell carcinoma cell line.56 The expression of Spred1 in esophageal 
cancer including both squamous cell carcinoma and adenocarci-
noma was analyzed.57 Spred1 was downregulated compared with 
that in nonmalignant tissue in two-thirds of esophageal cancer 
patients. An inverse correlation of Spred1 and miR-144, whose 
upregulation was seen in dysplastic esophageal cancer cells, was 
also observed.57

5.5 | Sprouty/Spred and melanoma

Sprouty2 directly binds to and suppresses WT BRAF and is down-
regulated in WT BRAF melanoma cells.2 However, it does not bind to 
or inhibit BRAF V600E and is instead upregulated in BRAF-mutant 
melanoma cells.2 Sprouty2 is also related to the induction of resist-
ance to BRAF inhibitor in BRAF-mutant melanoma cells.69 Salmonella 
typhimurium strain VNP20009 harboring Sprouty2-expressing plas-
mid suppresses the s.c. growth of B16F10, a murine melanoma cell 
line, in vivo.70

The knockdown of Spred1 and Spred2 shows an effect similar 
to that of an MEK inhibitor and protects against apoptosis of BRAF 
V600E-positive melanoma cell lines.71 The inhibition of the ERK 
pathway can even worsen the tumorigenesis of melanoma under 
certain conditions. Recently, biallelic inactivation mutations of 
Spred1 have been reported in patients with mucosal melanoma.72

5.6 | Sprouty/Spred and prostate cancer

The expression of Sprouty1 and Sprouty2 is reduced in human 
prostate cancer, and Sprouty2 expression is mainly suppressed by 
epigenetic inactivation.2,42,43 Sprouty4 expression is also reduced 
by methylation of the Sprouty4 promoter region in human prostate 
cancer.44 Only loss of Sprouty2 induces growth arrest and sup-
presses prostate tumorigenesis through PP2A-mediated nuclear ac-
cumulation of PTEN.73 However, the loss of Sprouty2, followed by 
the inactivation of PP2A or PTEN, accelerates prostate tumor pro-
gression.73 Concomitant suppression of Sprouty isoforms and Spred 
isoforms has been reported in prostate cancer, suggesting a dose ef-
fect of negative regulators.43,74 Loss of both Sprouty1 and Sprouty2 
in prostate epithelium results in ductal hyperplasia and low-grade 
prostatic intraepithelial neoplasia in mice.2
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The expression of Spred2, but not Spred1, was elucidated to 
be downregulated in human prostate cancer.58,74 Spred2 overex-
pression in a human prostate cancer cell line reduced ERK acti-
vation and decreased cell proliferation and migration, and Spred2 
knockdown indicated the inverse effect.58 Thus, Spred2 rather 
than Spred1 appears to be involved in prostate cancer as a tumor 
suppressor.

5.7 | Sprouty/Spred and breast cancer

The expression of Sprouty1 and Sprouty2 is reported to be down-
regulated in human breast cancer samples, and overexpression 
of the dominant negative form of human Sprouty2 in breast can-
cer cells promotes cell proliferation and anchorage-independent 
growth.45 Another paper reported that the expression of Sprouty2 
is inversely correlated with human epidermal growth factor recep-
tor 2 (HER2) expression and is an independent prognostic marker in 
breast cancer.46 However, it has also been reported that Sprouty1 
knockdown in a human breast cancer cell line suppressed cell pro-
liferation, migration, and colony formation.75 Stromal Sprouty1 
expression regulates mammary branching morphogenesis by modu-
lating EGFR-dependent paracrine signaling and ECM remodeling.76 
This mechanism might be related to mammary tumorigenesis. 
Sprouty4 also appears to function as a tumor suppressor in human 
breast cancer cells.2 MicroRNA-196a is known to be involved in 
estrogen-induced breast cancer development and directly inhibits 
Spred1 and the tumorigenic activity of miR-196a is due to the sup-
pression of Spred1.59

5.8 | Sprouty and gynecological cancer

In human endometrial carcinoma, Sprouty2 is silenced because of 
promoter hypermethylation.2 In human high-grade serous ovar-
ian carcinoma, the expression of Sprouty2, but not of Sprouty1 
and Sprouty4, is decreased, and Sprouty2 loss enhances EGF-  or 
amphiregulin-mediated E-cadherin downregulation and cell inva-
sion.77 The suppression of Sprouty1 promotes the proliferation and 
invasion of human ovarian cancer cell lines.48 Moreover, low ex-
pression of Sprouty1 and Sprouty2, but not of Sprouty4, is associ-
ated with poor prognosis in patients with human epithelial ovarian 
cancer.48,49 Finally, decreased expression of Sprouty2 is associated 
with posttreatment development of ascites in carbotaxol-treated 
patients with epithelial ovarian cancer.78

5.9 | Sprouty and lung cancer

Sprouty2, but not Sprouty1, is downregulated in human NSCLC.50 
In a urethane-induced mouse lung tumor model, overexpression 
of Sprouty2 inhibited tumor initiation and growth.2 Consistent 
with this report, Sprouty2 was shown to regulate lung tumorigen-
esis in a K-rasG12D-mediated lung tumor model.2 In human NSCLC 
lines, Sprouty4 suppresses cell proliferation, invasion, and EMT.2 
Trametinib, an MEK inhibitor, suppresses Sprouty4 expression, 

leading to FGFR1-FRS2 activation, in mesenchymal-like K-ras-
mutant NSCLC.79 Downregulation of Sprouty4 by an EGFR inhibitor 
also contributes to the emergence of tolerant lung cancer cells.80 
The role of Spreds in lung cancer has not yet been investigated.

5.10 | Sprouty and brain tumors

Sprouty2 expression is upregulated and is associated with poor 
prognosis in GBM patients.81 Sprouty2 promotes ERK activation, 
proliferation, and drug resistance in GBM.81,82 Moreover, Sprouty1 
is induced by insulin-like growth factor binding protein-2 through 
the nuclear factor-κB (NF-κB) pathway, which might play an impor-
tant role in maintenance of the mesenchymal phenotypes of GBM 
cells.83

5.11 | Sprouty/Spred and bone and soft 
tissue tumors

In Ewing sarcoma, EWS-FLI1, a fusion gene driving this disease, sup-
presses Sprouty1 expression, leading to basic FGF-induced cell pro-
liferation.51 Sprouty2, but not Sprouty4, inhibits the proliferation and 
migration of osteosarcoma cells.2 In rhabdomyosarcoma, Sprouty2 
binds and stabilizes c-Met.84 Therefore, depletion of Sprouty2 leads 
to c-Met degradation and reduction of ERK activation.

By using a highly metastatic human osteosarcoma cell line, 
Miyoshi et al85 indicated that Spred1 inhibits their metastasis in 
nude mice as Spred1 and Spred2 suppress the activation of RhoA-
induced stress fiber formation and migration. Spreds are assumed to 
function as tumor suppressors in bone and soft tissue tumors, but 
further evidence in support of this is needed.

5.12 | Sprouty/Spred and hematological 
malignancies

In B-cell lymphoma, Sprouty2 is epigenetically silenced and pro-
motes cell proliferation.2 Sprouty2 is also downregulated in chronic 
lymphocytic leukemia and is an important negative regulator of 
B-cell receptor-mediated ERK activation.52 In multiple myeloma, 
Sprouty2 is downregulated by miR-21 expression.15,86 High expres-
sion of Sprouty4 is associated with a favorable prognosis in patients 
with AML.53

From a large series of 230 pediatric acute lymphoblastic and my-
eloblastic leukemias, Spred1 mutations were found.60 In 1 of the 4 
patients with Legius syndrome, a loss-of-function frameshift Spred1 
mutation was detected. In this patient, the karyotype of blast cells 
showed Spred1 loss of heterozygosity. Moreover, Spred1 was sig-
nificantly decreased in the bone marrow of patients with AML com-
pared with normal bone marrow.60 Conditional double knockout of 
Spred1 and Spred2 induced the aberrant self-renewal of hematopoi-
etic stem cells, whereas the knockout of Spred1 did not show ab-
errant proliferation of hematopoietic stem cells.27 Both Spred1 and 
Spred2 appear to function as tumor suppressors in hematopoietic 
malignancies.27
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6  | CONCLUDING REMARKS

Sproutys and Spreds are believed to be tumor suppressors as they 
are downregulated in most human cancers and are important nega-
tive regulators of the Ras/Raf/ERK pathway, which is usually acti-
vated in cancer and promotes tumorigenesis and metastasis. As 
shown in Tables 1 and 2, the expression level of the Sprouty/Spred 
family could be used as a prognostic marker in some types of cancer. 
The downregulation of the Sprouty/Spred family is due to aberrant 
promoter hypermethylation or mRNA degradation by specific miR-
NAs, such as miR-21 and miR-126, in some cases; therefore, treat-
ment using epigenetic modifiers, such as 5-aza-2′-deoxycytidine 
and trichostatin A, or miRNA-targeted therapy should be tested to 
restore the expression, although these therapies are nonspecific to 
the Sprouty/Spred family. Further studies are required for specifi-
cally restoring the expression of the Sprouty/Spred family. However, 
as mentioned above, Sprouty1, Sprouty2, and Sprouty4 function as 
oncogenes in some types of cancer. The roles of the Sprouty/Spred 
family, especially Sproutys, in cancer, that is, as tumor suppressors 
or oncogenes, appear to be cell-type and tumor-type dependent. 
Furthermore, the importance of Sprouty expression appears to be 
dependent on oncogenic Ras mutations in certain tumors.2 In addi-
tion, the expression of the Sprouty/Spred family in CD8+ T cells might 
contribute to the suppression of antitumor immunity.30,31 Therefore, 
when the Sprouty/Spred family is targeted in cancer therapy, these 
should be taken into consideration to avoid unexpected results of 
the targeted therapy.
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