
D1170–D1178 Nucleic Acids Research, 2021, Vol. 49, Database issue Published online 26 October 2020
doi: 10.1093/nar/gkaa920

DrugSpaceX: a large screenable and synthetically
tractable database extending drug space
Tianbiao Yang1,2,3,†, Zhaojun Li4,†, Yingjia Chen1,2, Dan Feng1,5, Guangchao Wang4,
Zunyun Fu1,6, Xiaoyu Ding1,2, Xiaoqin Tan1,2, Jihui Zhao1,2, Xiaomin Luo1,2, Kaixian Chen1,2,
Hualiang Jiang1,2,3,7,* and Mingyue Zheng 1,2,*

1Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, 2Department of Pharmacy,
University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China, 3School of
Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China,
4School of Information Management, Dezhou University, No. 566 University Rd. West, Dezhou 253023, Shandong,
China, 5Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China, 6Nanjing University of
Chinese Medicine, 138 Xianlin Road, Jiangsu, Nanjing 210023, China and 7School of Life Science and Technology,
ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China

Received July 24, 2020; Revised September 11, 2020; Editorial Decision October 02, 2020; Accepted October 05, 2020

ABSTRACT

One of the most prominent topics in drug discovery
is efficient exploration of the vast drug-like chem-
ical space to find synthesizable and novel chemi-
cal structures with desired biological properties. To
address this challenge, we created the DrugSpaceX
(https://drugspacex.simm.ac.cn/) database based on
expert-defined transformations of approved drug
molecules. The current version of DrugSpaceX con-
tains >100 million transformed chemical products
for virtual screening, with outstanding characteris-
tics in terms of structural novelty, diversity and large
three-dimensional chemical space coverage. To il-
lustrate its practical application in drug discovery,
we used a case study of discoidin domain recep-
tor 1 (DDR1), a kinase target implicated in fibrosis
and other diseases, to show DrugSpaceX perform-
ing a quick search of initial hit compounds. Addition-
ally, for ligand identification and optimization pur-
poses, DrugSpaceX also provides several subsets
for download, including a 10% diversity subset, an
extended drug-like subset, a drug-like subset, a lead-
like subset, and a fragment-like subset. In addition to
chemical properties and transformation instructions,
DrugSpaceX can locate the position of transforma-
tion, which will enable medicinal chemists to easily
integrate strategy planning and protection design.

INTRODUCTION

For a long time, computational chemists have attempted to
explore and generate drug-like ligands accurately and ef-
ficiently in large virtual chemistry spaces. Despite recog-
nized pitfalls, virtual screening (1) is still a practical route
in searching for novel bioactive compounds and pharma-
ceutical research. Traditionally, the compound sources for
virtual screening are from either natural or commercial
databases. The molecular structures from natural product
libraries are diverse, but their source, isolation, identifica-
tion and chemical modification are complicated. Commer-
cial compound libraries are generally constructed with the
same core scaffold and the introduction of various sub-
stituents, which leads to a lack of molecular diversity (2).
Therefore, many compounds in these commercial libraries
are not novel, which may generate intellectual property is-
sues. Moreover, the same compounds can be ordered by
competitors working on the same projects, which results in
resupply issues for some vendors (3).

The solution to space searching is to expand the realms of
possibility by using virtual molecules, and some novel vir-
tual chemical libraries have been proposed by researchers.
One of the most prominent examples is the generic database
(GDB) approach conducted by the Reymond laboratory,
with its current incarnation enumerating virtual molecules
containing up to 11, 13 and 17 atoms formed by combining
elements: C, N, O, S and halogen atoms (4,5). The types of
molecules generated by this approach are of great novelty;
however, their structures may be the major obstacle to the
establishment of synthetic routes. Smaller subsets focusing
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on solving this issue have also been proposed, such as the
fragment database (FDB17) (6), the Medicinal Chemistry
Aware Database (GDBMedChem) (7), and the ChEMBL-
Likeness Score and Database (GDBChEMBL) (8).

To solve the aforementioned issue, medicinal chemists
have utilized chemoinformatics to design molecules that can
be synthesized more conveniently. One approach is to use
chemical reaction information to direct synthetic routes for
compounds, which will make the use of virtual libraries
more attractive (9). For example, the TIN database con-
tains over 28 million product structures that are virtually
novel and synthetically accessible. It is a combinatorial
database built around the synthetic feasibility of multicom-
ponent reactions (10). Similarly, based on the ‘click reac-
tions’ of triazoles, the ZINClick database is composed of
over 16 million of 1,4-disubstituted 1,2,3-triazoles, whose
structures are novel, synthetically feasible and patentable
(11). Another free virtual library is ‘Screenable Chemical
Universe Based on Intuitive Data OrganizatiOn’ (SCU-
BIDOO). In SCUBIDOO, 58 robust reactions were ap-
plied to 18 561 common molecular building blocks to
generate more than 21 million compounds (12). In addi-
tion, the REAL database, described in the VirtualFlow
platform, contains more than 1.4 billion make-on-demand
compounds. The REAL database has been built with 113
260 high-score qualified in-stock building blocks via 194
high-score validated reaction procedures and shows out-
standing ease of synthesis (13). The successful applications
of these platforms have demonstrated the importance of in-
telligent reaction knowledge in the field of exploiting chem-
ical space.

It is true that the databases created by rule-based trans-
formations may lack structural diversity due to the limited
reaction rules. To address this issue, we chose to use Nova
and BIOSTER from StarDrop, which has the most compre-
hensive collection of transformation rules currently avail-
able (14). There are a total of 29 218 reliable and hand-
drawn rules collected from the literature, ranging from sim-
ple substitutions or bioisostere replacements to more dra-
matic modifications of the molecular framework, such as
ring opening or closing, and this large collection of rules
generates molecules with good structural novelty and diver-
sity (15). Notably, starting from old drugs provides a more
efficient method for the rapid identification and develop-
ment of new pharmaceuticals. As pointed out in a recent re-
view (16), the success rate of the drug repurposing approach
can be up to 30%. In contrast, for a typical de novo drug dis-
covery programme starting from the identification of lead
molecules, it takes 10–15 years to bring a drug to market en-
try, and the probability of success is <10%. Therefore, struc-
tural modifications to some approved drugs can rediscover
the potential value of these drugs, such as the repositioning
of thalidomide and the target discovery of pomalidomide
and lenalidomide (17).

In a multidimensional space, recognized reference points
will be required to fulfil a traverse mission. Principal com-
ponent analysis (PCA) is commonly utilized to visualize the
chemical space, with the advantage of reducing the number
of dimensions without causing unnecessary loss of informa-
tion (9). This approach was adopted by the Reymond labo-
ratory with a few different tools: MQN-mapplet (18), web-

DrugCS (19) and WebMolCS (20). In addition, the princi-
pal moments of inertia (PMI) analysis can be used to com-
pare the shape space covered by different compound sets to
rapidly assess and visualize the diversity of molecular shape
(21). Meanwhile, in exploring the chemical space, some re-
markable methods are also employed to evaluate the simi-
larity between molecules, such as chemical space networks
(CSNs) (22) and similarity maplets (23). There are also sev-
eral other interactive tools to visualize chemical space, such
as TMAP (24), ChemGPS-NPWeb (25) and ChemMaps.com
(26).

To explore the space of drug-like compounds more effi-
ciently, we constructed a virtual compound library called
DrugSpaceX based on transformation rules with approved
drug molecules as the starting points. The DrugSpaceX
database is freely accessible online via our website (https:
//drugspacex.simm.ac.cn/) and contains more than 100 mil-
lion chemical products for virtual screening at this re-
lease. Cheminformatics analyses show that the proposed
database possesses significant novelty and diversity and
covers a large three-dimensional chemical space. Moreover,
the DrugSpaceX database not only provides the physico-
chemical and drug-likeness properties represented by radar
charts but also displays transformation details to guide
compound synthesis.

MATERIALS AND METHODS

The data sets

The drug data set. The set of 2215 approved small
molecule drugs used in the validation of the transforma-
tions (the ‘Drug Set’) was derived as follows: version 5.1.4
of the DrugBank Small Molecule database (27) was ob-
tained on 7 July 2019. The original set with 2617 approved
small molecule drugs was further processed by removing
molecules with ambiguous or untransformable SMILES,
which produced a drug set consisting of 2215 compounds.

The transformation rules data set. The Nova and
BIOSTER cheminformatics library was used within the
StarDrop software platform to exponentially broaden the
search by taking the ‘Drug Set’ molecules and creating new
generations of related compounds. The module contains
a unique compilation of 29 218 transformation rules
encompassing a broad range of optimization strategies,
such as bioisosteric replacements, linker replacements, ho-
mologization, introduction of conformational constraints
and reversible derivatizations.

The reference databases. As a reference, we also collected
existing databases dated 7 January 2020, e.g. DrugBank (10
666 compounds), PDB (28 987 compounds), BindingDB
(757 467 compounds), ChEMBL (1 870 267 compounds)
and CSD (1 055 799 compounds) (27–31). After standard-
izing the SMILES with the RDKit library, we compared
the canonical SMILES from the external database and
DrugSpaceX. Any two structures with the same canonical
SMILES can be accessed from the external dataset using
the matched ID tag as a reference.

https://drugspacex.simm.ac.cn/
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Property rules

To represent the properties of molecules, we calculated some
chemical descriptors for each molecular entity with the RD-
Kit library. The set of descriptors were molecular weight
(MW), octanol–water partition coefficien (logP) (32), num-
ber of hydrogen bond acceptors (HBA), number of hydro-
gen bond donors (HBD), total polar surface area (TPSA),
number of rotatable bonds (RotB), the quantitative estimate
of drug-likeness (QED) (33), and MCE-18 (34). The 752
molecules in the drug dataset did not comply with Lipinski’s
five rules (Ro5) (35). Nevertheless, there is no need to omit
these drugs from DrugSpaceX owing to the application of
a more appropriate modified version of Ro5 (36). The mod-
ified rules were as follows: MW ≤ 103 Da, –2 ≤ log P ≤ 10,
HBD ≤ 6, HBA ≤ 15, TPSA ≤ 250 Å2 and RotB ≤20.

Chemical space visualization

The drug dataset and the DrugSpaceX database were com-
pared using PCA (37). The descriptors were MW, log P,
number of H-bond donors, number of H-bond acceptors,
number of rotatable bonds and topological polar surface
area, which provides an overall estimate of molecular com-
plexity. The PMI analysis is a method to calculate the low-
est energy conformation and PMI value of each molecule
in the compound library using the molecular shape descrip-
tors (21). Based on this approach, all of the molecules were
classified as rods, discs or spheres to characterize the shape
and distribution of the library around the triangle, which
demonstrated the molecular shape diversity of the com-
pound library.

Synthetic accessibility scores

The transformation rules used here do not necessarily cor-
respond to specific chemical reactions or synthetic routes;
rather, they are intended to describe changes to molecules
that a medicinal chemist might consider in the course of an
optimization project (38). A single transformation might re-
quire multiple synthetic steps or the synthesis of new build-
ing blocks, and thus, a synthetic accessibility scoring mea-
sure has been included for reference. The synthetic accessi-
bility (SA) score was calculated for each of the molecules
using an RDKit-based Python script (39). SA score estima-
tion is based on fragment contributions and a complexity
penalty (chiral centres, weight, large rings). The SA score
ranges from 1 to 10, with a greater value representing a more
difficult synthesis.

Structure-based virtual screening of DDR1 inhibitors

In the process of finding the DDR1 kinase inhibitors, we
first downloaded the drug set as samples from DrugSpaceX,
which provides the corresponding structure SMILES (.smi)
and 2D and 3D structures (.sdf). Once downloaded,
the samples were prepared via LigPrep (version 3.4;
Schrödinger, LLC: New York, NY, 2015), which was used
to generate stereoisomers and tautomers. The ligands were
protonated at pH 7.0 ± 2.0 with Epik (40). For other pa-
rameters, the default values were used. Second, the crys-
tal structure of DDR1 complexed with ponatinib (PDB ac-
cession code: 3ZOS) was selected for molecular docking

Figure 1. Assembly procedure for chemotype library DrugSpaceX.

(41). The structure was prepared with the Protein Prepara-
tion Wizard Workflow provided in the Maestro module of
Schrödinger software (Schrödinger, LLC: New York, NY,
2015). The protein structure was first fixed by assigning
bond orders, adding hydrogens, creating zero-order bonds
to metals, filling in missing side chains using Prime, deleting
water molecules >3 Å from the het group, removing waters
with less than three H-bonds to nonwaters, and restraining
the minimization to allow only hydrogen atoms to be freely
minimized. Based on the optimized protein structures, the
receptor grid of the complex was generated with the Glide
module of Schrödinger software, and the grid files were de-
fined as a 10 × 10 × 10 Å3 region centred at the original
ligand of the complex structure. The prepared ligand con-
formations were docked to the corresponding target pro-
tein grid files by Glide with the SP precision mode. For the
other parameters, the default values were used. Third, we
identified promising drugs based on the docking scoring re-
sults and downloaded the drug analogues to reconstruct the
dataset for another molecular docking process. Eventually,
the hit compounds were determined via the comprehensive
evaluation of docking scores, ligand efficiency (LE) (42) and
SA.

RESULTS

Creation of the data sets

Creation of the product database. Using the Drug Set as a
starting point, the virtual chemical library DrugSpaceX was
built based on transformation rules to explore the chem-
ical space of drug-like molecules (Figure 1). In the first
round, the 2215 approved drugs were transformed through
the transformation rules on the StarDrop software plat-
form, and the Sample Set including 937 230 products was
generated after removing duplicate ones. The application of
one generation of transformations produced 423 child com-
pounds, suggesting that exhaustive enumeration through
more than two generations would be intractable. There-
fore, only two rounds of transformations were performed.
Afterward, two rounds of transformations were performed
within property rule limits, giving rise to a final database
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of 100 946 534 products. We also checked the novel struc-
tures in DrugSpaceX. After removing existing chemicals
collected in various databases (including Zinc, ChEMBL,
BindingDB, PDB, PubChem and CSD), the proportion of
novel structures following the first round of transformations
was 95.31%, and the proportion following the second round
of transformations increased to 99.58%.

Creation of representative samples. For the assembly pro-
cedure, the 100 million products were divided into three sets
of representative samples with different sizes (D, S and A),
which represent the Drug Set, the Sample Set and the All
Data Set, respectively. In addition to these three, Supple-
mentary Table S1 also describes five different collections of
DrugSpaceX compounds that were prepared based on the
following criteria: (i) an extended drug-like subset (DSX-
EL) included compounds with MW ≤ 700 Da, 0 ≤ log P
≤ 7.5, HBD ≤ 5, TPSA ≤ 200 Å2 and RotB ≤ 20 (36).
(ii) A drug-like subset (DSX-DL) was based on the follow-
ing rules: MW ≤ 500 Da, log P ≤ 5, HBD ≤ 5, HBA ≤
10, TPSA ≤ 150 Å2, RotB ≤ 7 (35). (iii) A lead-like subset
(DSX-LL) was defined as follows: MW ≤ 350 Da and MW
≥ 250 Da, log P ≤ 3.5, and RotB ≤ 7 (43). (iv) A fragment-
like subset (DSX-FL) was also defined with MW ≤ 250 Da,
log P ≤ 3.5, and RotB ≤ 5 (44). (v) To reduce the number of
DrugSpaceX compounds, a random selection (10%) of the
compounds in DrugSpaceX (DSX-10%) was generated.

Analysis of the data sets

Chemical properties. The distributions for each descrip-
tor of the compounds from DrugSpaceX and the Drug Set
were compared using distribution histograms and probabil-
ity density curves (Figure 2A). Based on these algorithms,
the distributions of logP show Gaussian-shaped curves with
a peak centred on 4 log P units, and the two datasets have
similar logP values. Those clusters are equally populated
between 1 and 5, while the Drug Set shows a preference
for the region between 1 and 4. Similarly, the MW dis-
tributions also show Gaussian-shaped curves for the peak
value between 450 and 550 Da. The MW space covered
by DrugSpaceX has higher values than the Drug Set be-
cause larger starting compounds have more opportunities
to match the transformation rules and produce more deriva-
tives. The peaks for HBA and HBD are 8 and 2, and both
curves fall off rapidly from their maxima of 20 and 12. The
number of H-bond acceptors and donors in DrugSpaceX
compounds is twice as high as they are in the Drug Set. The
TPSA and RotB distributions have peaks at approximately
100 Å2 and 10, respectively.

Diversity and novelty. To generate a representation of the
chemical space covered by DrugSpaceX, a PCA of the
chemical descriptors represented by DrugSpaceX was per-
formed (Figure 2B). Analysis of the space spanned by the
aforementioned physicochemical properties using the two
main principal components, accounting for 70.24% and
18.02% of the X-variance, shows that DrugSpaceX over-
laps with the property regions of known drug compounds.
This indicates that most of the generated products are in
principle drug-like. It also shows that the two databases do

not completely overlap, and DrugSpaceX has effectively ex-
plored new regions of chemical space.

Molecular shape. Drug-like molecules can be classified in
terms of shape by analysing the PMI of their 3D struc-
tures, which allows the classification of molecules as rods
(linear shape, e.g. propyne), discs (cyclic planar shape,
e.g. benzene), or spheres (globular shape, e.g., adaman-
tane). Normalized PMI ratios (NPRs) are plotted into two-
dimensional triangular graphs and then used to compare
the shape space covered by different compound sets to
rapidly assess and visualize the diversity in molecular shape
associated with a given compound set (21). As shown in
Figure 2C, the compounds of DrugSpaceX were subjected
to the above shape analysis, and the results were compared
with the data from the Drug Set. This figure shows that
the vast majority of approved small molecule drugs are ei-
ther rodlike or disklike, while the DrugSpaceX database
densely populates the third dimension in shape space, sug-
gesting that it contains many more scaffold types and spher-
ical molecules that are rare in conventional compound li-
braries (45). Due to the application of transformation rules,
the shape diversity of compounds reflects the transforma-
tion of drugs at different positions. As a result, by compari-
son with the Drug Set, the DrugSpaceX compounds almost
entirely cover the whole area of three-dimensional chemical
space, highlighting the advantage of this database in terms
of diversity.

Synthetic accessibility. To obtain a computational assess-
ment of the ease of synthesis for all of the products within
DrugSpaceX, the SA score was computed. The distribution
of SA scores, plotted in Figure 2D, is centred around the
value of 4.0, with the vast majority lying below an SA score
of 6.0, which indicates that they are easily synthesized prod-
ucts rather than overcomplex molecules.

In addition, we compared the size and key properties of
DrugSpaceX with those of all comparable resources, and
Supplementary Table S2 summarizes the available resources
attempting to define the unknown chemical space (left col-
umn) and the size of DrugSpaceX. As the second largest vir-
tual chemical library, in contrast to GDB-17, DrugSpaceX
mainly aims to explore the drug-like chemical space effi-
ciently. Regarding the compounds in this database, we care
more about their similarity to existing drugs (Figure 3A),
feasibility of synthesis (Figure 3B), and structural diver-
sity (Figure 3C). Based on these analyses, we may find that
DrugSpaceX shows outstanding drug-likeness, synthesiz-
ability, and large three-dimensional chemical space cover-
age.

Website interface

The DrugSpaceX database can be accessed for free via
our website (https://drugspacex.simm.ac.cn/), and all of
the structures are available to download in the canonical
SMILES format. As shown in Figure 4A, several subsets
have been created to narrow the number of tailored to spe-
cific applications, which are also available to download.
Generally, the user can manually write the compound struc-
ture using the SMILES notation or draw the 2D chemical

https://drugspacex.simm.ac.cn/
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Figure 2. Analysis of chemical properties. (A) Comparison of the property distributions for the Drug Set (blue) and DrugSpaceX (red). Relative frequencies
of the descriptors logP (upper left), molecular weight (upper right), H-bond acceptors (middle left), H-bond donors (middle right), rotatable bonds (lower
left), and TPSA (lower right). (B) A principal component analysis (PCA) plot comparing the chemical space defined by the DrugSpaceX databases: all
compounds (red), the Drug Set (blue). (C) A molecular 3D shape analysis of the diversity of DrugSpaceX (red) and Drug Set (blue) by the principal
moments of inertia. (D) Distribution of SA scores for all of the products contained in DrugSpaceX (red) and Drug Set (blue).

structure at the ‘Draw Molecule Interface’ (Figure 4B) web-
page and click the ‘search’ button to obtain a results page,
where all of the compounds found in DrugSpaceX are de-
picted (Figure 4C). In addition, our UI design aims to sim-
plify the interface and keep it lightweight. Only minimal in-
formation has been provided on the query result page, but
detailed information can be accessed via functions such as
mouse hovering and clicking, and the hitlist can be down-
loaded via an autohide sidebar. For each result, five com-
pound properties are available in a radar map: logP, MW,
HBA, HBD and RotB. A details page (Figure 4D) shows
the physicochemical parameters and is also represented by
a radar map with the corresponding descriptions. All of
the chemical descriptors are computed using the RDKit li-
brary. In addition to chemical properties, we have provided
the related ID codes and cross-reference links to other pub-
licly available databases whenever a compound is present
in other resources, including DrugBank, ChEMBL, Bind-
ingDB, PDB, CCDC, Sure ChEMBL, and so on. Addi-
tionally, DrugSpaceX could also provide transformation in-
structions, such as the transformation type and the posi-

tion of transformation. The functional groups involved in
the transformation have been highlighted in both the parent
and child compounds. An example is given below, showing
the ‘benzamide to aminoquinoline’ transformation of the
drug ponatinib. The transformation details enable medici-
nal chemists to easily make systematic decisions on strategy
planning and protection design. Because of the relatively
large size of the library, we do not provide a download-
able link for all the 3D format molecules in the DrugSpaceX
database, but the compound structures can be downloaded
as a single file in SMILES notation or as a 2D or 3D SDF
file for user convenience.

Case studies

Identification of Discoidin domain receptor 1 kinase in-
hibitors. Discoidin domain receptor 1 (DDR1) is a
collagen-activated receptor tyrosine kinase implicated in fi-
brosis and other diseases that has attracted significant at-
tention as a therapeutic target (46). Since 2013, at least
eight chemotypes have been released as selective small
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Figure 3. Key property distributions of different chemical libraries. (A) Molecular fingerprint-based similarity to the approved drugs, which quantifies the
closest distance of chemicals to existing drugs; (B) The synthetic accessibility (SA) score calculated by an RDKit-based Python script, where a lower value
indicates easier synthesis; (C) Structural diversity measured by molecular 3D shape analysis based on the principal moment of inertia (PMI), which allows
the classification of molecules as rods (linear shape, e.g. propyne), discs (cyclic planar shape, e.g., benzene), or spheres (globular shape, e.g. adamantane).
Considering the large size of these databases, 100 000 samples were randomly selected from each for analysis of these properties.

molecule inhibitors of DDR1 (or DDR1 and DDR2), some
of which have been modified from multitarget inhibitors
(47). In this case study, the Drug Set of DrugSpaceX (https:
//drugspacex.simm.ac.cn/download/) was used to reposi-
tion known drugs to DDR1. Structure-based virtual screen-
ing was performed with Schrödinger’s GLIDE docking
program, and the top 10 drugs with the lowest dock-
ing scores were selected (Figure 5A). Among them, ima-
tinib, nilotinib and ponatinib have been reported to show
cross-reactivity to DDR1 (47). The first round of trans-
formation products of these top 10 drugs were retrieved
from DrugSpaceX as Set1. By searching available re-
sources, including BindingDB, ChEMBL, PubChem, and
SureChEMBL databases, we found that 152 drug ana-
logues in Set1 (6.08%) are known, among which 16 com-
pounds have reported kinase activity, and one compound
has reported DDR1 activity. The Set1 compounds were fur-
ther tested by docking. Figure 5A shows a t-SNE struc-
tural diversity distribution map of these drugs and ana-
logues, among which the top 10 analogues (Table S3 in
the Supporting Information) highlighted in blue are mainly
located near ponatinib, indicating that transformations

around ponatinib may be more promising for developing
DDR1 inhibitors. Interestingly, a literature survey suggests
that one of the top 10 analogues, i.e. the third-ranked
compound DE209841, has been covered by a DDR1 in-
hibitor patent recently reported by Insilico Medicine (NO.
WO2020079652A1). Figure 5B shows the putative bind-
ing mode of DE209841 (DDR1 docking score = –16.44
kcal/mol and ligand efficiency = –0.411 kcal/mol), which
perfectly overlaps with cocrystallized ponatinib within the
active site of DDR1 (PDB id: 3ZOS) and agrees well with
the binding model proposed by Zhavoronkov et al (48).
In the hinge-binding region, the imidazo[1,2-b]pyridazine
group establishes a hydrogen bond with the backbone
amide nitrogen atom of M704, which has proven to be
essential in the binding of DDR1 inhibitors (41). More-
over, extensive hydrogen bonding interactions are formed
with E672, V763, H764 and D784, resulting in a very low
docking score. Similarly, the second round of transforma-
tion products of the top 10 analogues can be retrieved
and screened by following the same procedures, leading
to Set2. As shown in Figure 5C, the points on the heat
map represent the compounds after two rounds of transfor-

https://drugspacex.simm.ac.cn/download/
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Figure 4. Detailed view of the DrugSpaceX webpage: (A) Details of the subsets available to download; (B) Details of the search section; (C) Example of a
search results page; (D) Details page for a DrugSpaceX molecule.

Figure 5. Docking-based virtual screening of DDR1 inhibitors against DrugSpaceX compounds. (A) The t-SNE projection of the compounds in Set1,
including the top 10 drugs repositioned in relation to DDR1 and their first round of transformation products. The chemical structure features were encoded
as an ECFP4 512-bit vector for t-SNE analysis. (B) The putative binding mode of DE209841 (cyan carbons) derived from docking simulations compared
to the crystallized ligand ponatinib (salmon carbons) in DDR1 kinase (PDB code: 3ZOS). (C) The t-SNE projection of the compounds in Set2 coloured
by docking scores ranging from the lowest in orange to the highest in yellow. The compound DE50204704, showing the lowest docking score, can be traced
back to ponatinib in two rounds of transformation.
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mations. Among them, compound DE50204704, obtained
by sequential modification to the highlighted red ‘tail’ and
green ‘linker’ regions of ponatinib, yields a compound with
a docking score and ligand efficiency score even higher than
those of the first round of transformation analogues.

CONCLUSION AND DISCUSSION

One of the most prominent problems in small molecule
drug discovery is to efficiently explore the vast drug-like
chemical space to find synthesizable and novel chemical
structures with desired biological properties. In this study,
with approved drugs as the starting point, we created
the DrugSpaceX (https://drugspacex.simm.ac.cn) database
based on expert-defined transformation rules to facili-
tate the reuse of drug molecules. The current release of
DrugSpaceX contains >100 million chemical products for
virtual screening. Cheminformatics analyses show that the
database possesses outstanding structural novelty and di-
versity as well as large three-dimensional chemical space
coverage. A case study illustrates that DrugSpaceX offers
a viable alternative for rapid lead identification. Moreover,
DrugSpaceX also provides good annotations and display
functions, such as radar charts of physicochemical and
drug-likeness properties and information on the transfor-
mation pathway from known parent drugs, which will be
useful to guide the subsequent lead compound optimization
process.

Furthermore, DrugSpaceX uses a concept that efficiently
explores the vast drug-like chemical space, incorporating
intelligent reaction knowledge into key considerations so
that we can readily deliver available molecules with a desir-
able biological effect. These vast resources enable medicinal
chemists to execute rapid scaffold-hopping experiments and
rapid hit expansion in intellectual property-free territory
and at low cost. Ultra-large-scale screening could improve
the true positive rate. If the DrugSpaceX database can be
combined with an ultra-large-scale screening platform sim-
ilar to VirtualFlow, the quality of hits could be improved
by expanding the initial screening scale, such as screening
from a larger subset or even the entire library. Moreover, it
is possible to consider adding clinical-stage compounds and
corresponding analogues to the database in the same way
to further expand the size of the database. In addition, since
DrugSpaceX is a Web-based application, feedback from the
scientific community can be gathered to update the products
in future versions for improved utility.
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