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Abstract

Color vision deficiency (CVD) affects more than 4% of the population and leads to a different

visual perception of colors. Though this has been known for decades, colormaps with many

colors across the visual spectra are often used to represent data, leading to the potential for

misinterpretation or difficulty with interpretation by someone with this deficiency. Until the

creation of the module presented here, there were no colormaps mathematically optimized

for CVD using modern color appearance models. While there have been some attempts to

make aesthetically pleasing or subjectively tolerable colormaps for those with CVD, our goal

was to make optimized colormaps for the most accurate perception of scientific data by as

many viewers as possible. We developed a Python module, cmaputil, to create CVD-opti-

mized colormaps, which imports colormaps and modifies them to be perceptually uniform in

CVD-safe colorspace while linearizing and maximizing the brightness range. The module is

made available to the science community to enable others to easily create their own CVD-

optimized colormaps. Here, we present an example CVD-optimized colormap created with

this module that is optimized for viewing by those without a CVD as well as those with red-

green colorblindness. This colormap, cividis, enables nearly-identical visual-data interpreta-

tion to both groups, is perceptually uniform in hue and brightness, and increases in bright-

ness linearly.

Introduction

Presenting data that can be quickly interpreted and easily understood is essential in the scientific

community. Often, a quick view of a study’s results is the primary source of relaying information

and gaining interest, making it critical for the author to consider how it will be interpreted [1–6].

Among other components, the colors chosen to relay data must be considered and applied care-

fully. Here, we focus on using appropriate colormaps, arrays of colors used in a pre-defined

order, for representing i) digitally reconstructed scientific image data, ii) how someone with

color vision deficiency (CVD) may be affected by this choice, and iii) how we can create an opti-

mized colormap for those with CVD as well as those without.
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CVD reduces the ability to distinguish between certain colors and affects up to 8% of men

and 0.5% of women [7, 8]. While this has been known for decades, colormaps that cannot be

easily interpreted by those with CVD are still grossly over utilized [9, 10], perhaps because they

are often the default colormaps in data processing software. This can cause misinterpretation

for certain types of data, even for those with normal color vision (Fig 1) [11]. One possible solu-

tion for representing data is to simply switch to grayscale colormaps. Grayscale maps avoid the

issues associated with color perception and can provide linear luminance with relation to un-

derlying values. However, grayscale suffers from some viewing condition adaptations and has a

small dynamic range due to the lower discernibility of the shades of gray to the human visual

system. Humans without CVD can distinguish around ten million different colors versus only

about thirty shades of gray [12]. CVD limits this range of colors dramatically (Fig 2), but even

limited color vision can make use of the higher dimensionality of colorspace available when

using non-grayscale colormaps when they are optimized correctly. This makes color an indis-

pensable component to colormaps, as it enables the ability to see subtle changes in the underly-

ing data (i.e. increases our visual perception precision due to the larger dynamic range).

Another important consideration for how we view color, with or without CVD, is how we per-

ceive color differences. To represent a color, red-green-blue (RGB) values are most often used,

but changes in these values are not linearly proportional to how we perceive color change. The

sRGB colorspace was designed for employing RGB values in common digital displays [13] and is

the standard space most often used to pass color information (as RGB values), even though it cov-

ers a limited portion of colors visible to a human with normal trichromatic (no CVD) vision [14,

15]. Because of its wide applicability and the widespread use of digital displays for viewing scien-

tific data, this is the colorspace we both start from and return to (Fig 3, discussed in Materials and

Fig 1. Example of a misleading colormap. Comparison between different colormaps overlaid onto the test image by

Kovesi and a nanoscale secondary ion mass spectrometry image. Colormaps are as follows: (a) perceptually uniform

grayscale, (b) jet, (c) jet as it appears to someone with red-green colorblindness, and (d) viridis [1], the current gold

standard colormap. Below each NanoSIMS image is a corresponding “colormap-data perceptual sensitivity” (CDPS)

plot, which compares perceptual differences of the colormap to actual, underlying data differences. m is the slope of the

fitted line and r2 is the coefficient of determination calculated using a simple linear regression. An example of how the

data may be misinterpreted are evident in the bright yellow spots in (b) and (c), which appear to represent significantly

higher values than the surrounding regions. However, in fact, the dark red (in b) and dark yellow (in c) actually

represent the highest values. For someone who is red-green colorblind, this is made even more difficult to interpret

due to the broad, bright band in the center of the colormap with values that are difficult to distinguish.

https://doi.org/10.1371/journal.pone.0199239.g001
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Methods); however, sRGB is not a suitable colorspace for colormap modification since under-

standing how humans truly perceive difference in color is essential in colormap design.

One of the first color spaces created to represent actual human perception of color was the

CIE 1931 XYZ colorspace created by the International Commission on Illumination (CIE)

[16]. This colorspace is still used today and well accepted; however, it does not account for var-

iable viewing conditions. This led to the need for color appearance models (CAMs) which can

take viewing conditions into account and use them to create new colorspaces. Phenomena

dealt with using CAMs include chromatic and spatial adaptation and changes in the percep-

tion of a color due to factors such as hue and contrast changing based on their surroundings.

An image appearance model, named iCAM, has also been created as a way to simulate more

complex viewing conditions that cannot be achieved with traditional CAMs alone [17].

The comprehensive color appearance model CIECAM02 was created to better account for

how we perceive color and is effectively the international gold standard [15, 18]. Luo et al.

used this to create a new colorspace, named CIECAM02-UCS (Uniform Color Space), opti-

mized to account for large and small differences in color [19]. In this colorspace, three values

are used to describe a color: lightness (J0), a red-green correlate (a0), and a yellow-blue correlate

(b0) (Fig 2). Equal Euclidean distances between values in this space leads to an equal color dif-

ference perception, enabling the straightforward creation of perceptually uniform colormap-

s;”perceptually uniform” in that a difference in color space is intended to closely correspond

monotonically to human perception of color difference. By converting between sRGB

Fig 2. CVD-safe colorspace in CIECAM02-UCS. Visual of how limited color vision is for those with CVD. (a) 2D-

representation of area of colorspace accessible to those without (black) and with (gray) complete red-green

colorblindness as a function of the CIECAM02-UCS parameters (J0, a0, and b0). (b) Fraction of sRGB colors visible as a

function of deuteranomaly severity. A severity of 0 corresponds to normal color vision whereas a severity of 100

corresponds to complete dichromacy (i.e. red-green colorblindness in this case).

https://doi.org/10.1371/journal.pone.0199239.g002
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colorspace and CIECAM02-UCS colorspace, we can ensure colormaps are optimized for view-

ing via modern monitors, which cover sRGB space. This is an important consideration because

reading science articles and viewing science data using digital displays is now ubiquitous.

To quantify the perceptual sensitivity of a colormap, we introduce the “colormap-data per-

ceptual sensitivity” (CDPS) plot which is designed to compare perceptual differences to actual,

underlying data differences (Fig 1). Specifically, the “Data Δ” is calculated by taking the abso-

lute value of the difference between underlying image data points (in this case, the data points

used were along the white line shown in each overlaid image). It is important to note this data

has been normalized, but the same normalized image was used for the generation of each over-

laid image and CDPS plot. The “Perceptual Δ” is the perceptual difference between colored

Fig 3. Script pipeline. Schematic of our script and how it optimizes colormaps for CVD. The colorspace, either sRGB or CIECAM02-UCS, where

each operation takes place is shown along with the Python packages specifically required for each step.

https://doi.org/10.1371/journal.pone.0199239.g003
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pixels (calculated as the Euclidean distance between their points in CIECAM02-UCS space) of

the overlaid image, normalized by dividing this distance by the slope of the grayscale case.

How the overall slope in the CDPS plot compares to greyscale (which always has a slope of 1)

indicates how far apart colors within the colormap are. Higher slopes correspond to colormaps

that cycle through more colors, and therefore have a higher sensitivity between colors in the

map. The coefficient of determination, r2, calculated using a simple linear regression, indicates

how well the changes represent the true underlying data differences. High r2 show a better cor-

relation between differences in the underlying data and the perceived color differences (i.e.,

colormaps with r2 = 1 are perceptually uniform).

Colormaps have been used for almost 150 years [20] and design techniques have steadily

evolved throughout this time due to increasing awareness of the effect colormaps can have on

data interpretation [4, 5]. For an in-depth review on commonly accepted colormap design

methods, please refer to the review by Dr. Peter Kovesi [21], which includes descriptions of dif-

ferent colormap types, the history of colorspace design, best practices for their design, and

examples for their use. It is important to note that for this study, we focus on colormaps appli-

cable for typical scalar scientific data, which assumes a need for monotonically increasing col-

ormaps. This is not the case for all data. Non-monotonically increasing colormaps are well

accepted for specific types of data, such as using a diverging colormap [21] to represent the

correlation between a subject and its reference.

From Kovesi’s review and others [1, 2, 22], there have been a few design principles for creat-

ing modern monotonically increasing colormaps. First, a linear increase in lightness should be

used to avoid the perception of gradients that are not present. For example, colormaps can

quickly change in brightness and hue, causing small changes in the underlying data to seem

significant or, in regions where the values change too slowly, large changes to seem negligible.

Along with avoiding this banding effect, a linear increase in brightness makes it straightfor-

ward to interpret which values are more significant than others and allows direct comparison

between values within and (assuming the same scale is used) between images. Second, colors

in the colormap should be equidistance from each other in colorspace, ensuring colors percep-

tually change at a constant rate (i.e., perceptually uniform). Being uniform in this aspect is a

quantitative way of preventing regions of the colormap from changing too quickly or too

slowly, which helps truly significant changes in data to be visually apparent. Colormaps created

using these design principles can be evaluated by using the test image mentioned in Kovesi’s

review. This test image works by using a sine wave to iterate through the colors of the color-

map, with increasing amplitude toward the top edge of the test image. Areas where the sine

wave cannot be easily seen show the presence of regions where the color gradient is too small

to properly distinguish the different color values. Additionally, inconsistent presence, or lack

thereof, of the sine wave at each amplitude shows varying color gradients throughout the map.

Our module, cmaputil, includes a function to create this test image as well as overlay a color-

map on it.

While these design principles have led to the development of several wonderful, and

increasingly popular, perceptually uniform colormaps (e.g., viridis in matplotlib [1], parula in

MATLAB [23], and the cmocean package for oceanography applications [24]), we believe two

additional critical design principles should be added. First, J0 should cover as large a range as

possible within the bounds dictated by a0 and b0 (and, in the case for monitor-viewable color-

maps, without leaving sRGB space), in order to increase perceptual distances between points

and further improve the correlation of brightness with higher values. Second, all designs prin-

ciples should be completed considering CVD.

We created a Python module called cmaputil that can automatically change a pre-defined

colormap so that it complies with these recommendations considering a chosen CVD type

Optimized colormaps for the scientific community
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(deuteranomaly, protanomaly, or tritanomaly). Note that most of those with CVD still have

trichromatic vision but have a limited perception of colors due to one cone type having an

altered range of sensitivity, causing it to overlap with another cone type, limiting the ability to

distinguish colors detected by those two photoreceptors. Complete colorblindness, the most

severe form of each type of CVD, is a complete absence of a cone. To our knowledge, our

study here is the first to mathematically optimize a colormap specifically for viewing by those

both with and without CVD. Below, we discuss the creation of our module and the many con-

siderations that came along with its creation. We also present cividis and explain why we feel it

is optimal for the typical scientific data set.

Materials and methods

Color vision deficiency simulation

Several CVD simulators are readily available within Python. Among these, we chose colorspa-
cious which, to our knowledge, was the only module that also had the ability to convert between

sRGB colorspace and CIECAM02 color spaces [1, 25]. The CVD simulation model used in col-
orspacious is from Machado et al. [26] and requires as input the CVD type as well as severity,

both of which are easily controlled through this module. Specifically, CIECAM02-UCS was

used for the colorspace for altering the colormap. Deuteranomaly was chosen as the CVD type

because deuteranomaly, also referred to as a red-green color deficiency (protanomaly being

another form of red-green color deficiency), is by far the most common form of CVD [7, 8].

Severity can also be controlled by adjusting it along a scale of 0–100, with 0 representing no col-

orblindness and 100 representing complete dichromacy. We chose to use a severity of 100 to

ensure that anyone with either partial or complete red-green color deficiency could benefit

from the same optimized colormap. The colorspace, CVD type, and CVD severity settings can

all easily be changed within the code.

It is important to note other algorithms exist for simulating CVD and colorblindness [27,

28], including the “corresponding pair algorithm,” which can account for different viewing

conditions [29, 30]. We found the model [26] used here is the best for our purposes since it is

not limited to dichromatic vision simulation. Different design considerations of this model

that make it useful across many applications are also discussed in the original paper [26].

cmaputil: Python-based colormap utilities

The scripts referred to in this paper can be found at https://github.com/pnnl/cmaputil or can

be downloaded using PyPI (pip install cmaputil). Our module has other capabilities

beyond those discussed here, some of which are described in a previous paper [3]. The process

used for testing and optimizing colormaps is provided as an example script with the code.

Python (v 2.7.10), with the packages OpenCV2 (v 3.1.0, opencv.org), numpy (v 1.9.3) [31],

matplotlib (v 1.5.0) [32], and colorspacious (v 1.1.0) [25], was implemented using WinPython

(v 2.7.10, winpython.github.io). IPython (v3.2.0) [33], an enhanced Python shell, was used

within the Scientific Python Development Environment (Spyder, v2.3.5.2, github.com/spyder-

ide) for interactively analyzing data and creating figures.

An overview of our pipeline is shown in Fig 3. A visual example iteration of a colormap as it

is being adjusted is shown in Fig 4. For the implementation of our pipeline, a colormap (repre-

sented as an array of RGB values with each column representing a new color) is required as

input. There are many colormaps readily available for download or via built-in modules such

as matplotlib. Colormaps can also be created using custom techniques or the graphical user

interface created by Dr. Smith0s lab, viscm [1]. One useful part of viscm is that it shows where

colors lie within CIECAM02-UCS color space.

Optimized colormaps for the scientific community
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The input colormap is converted to the RGB values as seen by someone with CVD, based

on the CVD type defined in the module. From here, these values are converted to CIECA-

M02-UCS and the colormap is optimized by (i) interpolating a0 vs. b0 to generate points equi-

distance from each other, then (ii) linearizing and maximizing the J0 range. Once this is

complete, the colormap is brought back to sRGB colorspace for easy sharing and application

within other modules. Details for the optimization follow.

The a0 and b0 arrays are interpolated using 10,000 points each. The total arc length of a0 vs. b0

is then calculated. This value is divided by 255 to calculate the desired distance to be achieved

between each set of points within the final colormap to ensure perceptual uniformity. The num-

ber of points in common colormaps is 256, but the interpolation function can easily be changed

for generating 512, 1024, or other sized colormaps. Once this distance is found, all 10,000 sets of

(a0, b0) points are iterated through to select points that are this distance apart. It is important to

note this method is used to ensure the total arc length through a0b0 space is the same before and

after this interpolation function so the original hues are used and the colormap still travels

through the same path in CIECAM02-UCS colorspace.

J0 is then linearized using two independent methods. The first method simply fits a line to

the original J0 trend using linear regression. For the second method, each (a0, b0) point is iter-

ated through to find the minimum and maximum J0 values that can be matched with that

point to create a valid RGB value (i.e., a value between 0 and 1). Once these ranges are found

for all 256 (a0, b0) points, a line is fitted within these bounds with the steepest slope possible.

Please refer to S1 File to see iterative changes made to several example colormaps.

Mass spectrometry imaging data

The yeast images in Figs 2 and 5 were collected using mass spectrometry imaging of Baker’s

Yeast (Red Star Yeast), drop cast (DI water) onto a silicon wafer and dried, performed with

Fig 4. Colormap adjustment iterations. In this example, the viridis colormap is taken through each stage of our pipeline. From top to bottom, the image plotted is the

colormap (i) as it was input, (ii) overlaid on the test image discussed by Peter Kovesi [21], and (iii-v) based on the method presented by the Smith group [1], these show the

values of this colormap in CIECAM02-UCS space, with (iii) comparing individual values J0 (black), a0 (blue), and b0 (red) across the map, (iv) showing the perceptual

deltas between each point on the map, calculated as the Euclidean distance between each point, and (v) providing a three dimensional view of the colormap in this space.

https://doi.org/10.1371/journal.pone.0199239.g004
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high-lateral resolution secondary ion mass spectrometer (NanoSIMS, Cameca NanoSIMS 50L,

Gennevilliers Cedex, France), which is housed in the Environmental Molecular Science Labo-

ratory. Sample preparation and analysis was performed similarly to Renslow et al. [34]. Briefly,

prior to analysis the sample was coated with 10 nm of Au to minimize charging during analysis

[3]. High current sputtering was performed with the Cs+ primary ion beam prior to collecting

data, where samples were dosed with ~2 x 1016 ions/cm2 to achieve sputtering equilibrium [3].

A ~1.5 pA Cs+ primary ion beam was used for all analysis, and the 12C12C-, 12C13C-, 12C14N-,

and 12C15N-, and 31P- secondary ions were detected simultaneously. The data visualized in this

manuscript is the 12C14N- ion count data. The imaging area was 40 μm x 40 μm, acquired at

256 pixels x 256 pixels, with 2 ms/pixel over nine planes.

COMSOL Multiphysics1 modeling data

COMSOL Multiphysics1, (COMSOL, Inc., Burlington, MA, USA), a finite element analysis

software package, is used throughout many scientific research areas [35–38]. Our optimized

colormap, cividis, will be available in COMSOL v5.3a and higher. Here, we demonstrate the

use of cividis for displaying a velocity map in a simple fluid flow model (Fig 5). The model,

available in the Fluid Dynamics examples provided with the software (and available at https://

www.comsol.com/model/flow-past-a-cylinder-97, which includes the cylinder_flow.mph files

and details in models.mph.cylinder_flow.pdf), simulates the time-dependent flow past a cylin-

der. The model examines unsteady, incompressible flow past a long cylinder placed in a

Fig 5. Our optimal colormap, cividis. Colormap shown overlaid onto a a) NanoSIMS image and b) fluid velocity map

from COMSOL. Below is each corresponding CDPS plot for data along the white lines.

https://doi.org/10.1371/journal.pone.0199239.g005
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channel at right angle to the oncoming fluid. The cylinder is offset somewhat from the center

of the flow to make the steady-state symmetrical flow unstable. In this simulation the Reynolds

number equals 100, which gives a developed Karman vortex street; but the flow is still not fully

turbulent.

Results and discussion

Considerations for implementation

Linearizing J0 was more complex than initially predicted due to values in CIECAM02-UCS not

always mapping to sRGB colorspace. Therefore, we introduced the ability to linearize J0 in two

different ways: (i) fit to the original J0 line as closely as possible without considering how these

values will map back to RGB colorspace or (ii) maximize the range of J0 based on valid (J0, a0,

b0) to (R, G, B) mappings. The first option ensures the colormap returned is as close as possible

to the original whereas the second option allows the ends of the colormap to be as far apart as

possible which can lead to larger perceptual differences between colors and an increased ability

to precisely distinguish between them. It is important to note the first method can fail due to

invalid mappings and the second method can fail due to the inability to fit a straight line

through the available J0 range. We found maximizing the J’ range worked best in most cases.

However, the user will need to use the method that is most appropriate for their specific use.

There are two unavoidable issues in cmaputil of which users should be made aware. One

issue, which arises during conversion from CIECAM02-UCS to sRGB colorspace, is that sets

of J0a0b0 values can map to invalid RGB values, as noted above. This is due to the fact that CIE-

CAM02-UCS covers much more than sRGB space since it does not encompass all human visi-

ble colors [14, 15]. When the mapping is invalid, no errors are returned by colorspacious
during conversion. To avoid invalid RGB values, each time a color array comes back from

CIECAM02-UCS, we use an absolute colorimetric rendering intent [39][40] for gamut map-

ping by ensuring all values are set to be between 0 and 1 (note we are using the 0–1 scale rather

than 0–255 to represent the full span of RGB colorspace). This means color values between 0

and 1, which are valid, are not changed. If outside this range, they are then replaced with a 0 or

1, depending on which value is closer. Absolute colorimetic rendering intent can lead to large

departures from the intended color, especially when the invalid color values are far from 0 or

1. This is an additional reason why we provide two methods of linearizing J0. From our experi-

ence, if one linearization method fails, the other method can be chosen by the user.

The second issue is that the perceptual deltas are not always perfectly linear even though they

are optimized to be constant across the colormap. This is due to the fact cmaputil manipulates

colors in CIECAM02-UCS then converts back to sRGB to determine the RGB values of the new

colormap. To analyze how the colormap travels through CIECAM02-UCS (such as in Fig 4),

the RGB values of the newly optimized colormap are converted back to CIECAM02-UCS space,

rather than using the original CIECAM02-UCS values available prior to conversion to sRGB.

This may seem counterintuitive since CIECAM02-UCS values are converted to sRGB and back

before determining their perceptual deltas but this is important since they may initially change

upon the first conversion to RGB if they fall outside sRGB colorspace. For example, in Fig 4, the

colormap created in Step 4 is supposed to have a perfectly linear perceptual delta across its

length, however, there is a slight bump around the 20th value in the colormap. In this case, this

is because the value for R in sRGB colorspace upon conversion of CIECAM02-UCS to sRGB is

about -0.038. Following an absolute colorimetric rendering intent, this value gets set to zero,

leading to the slight difference (0.47% average error, nearly negligible) between the original and

final J0a0b0 value.
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Even though the perceptual deltas are not perfectly flat, we felt our goal to provide color values

that are perceptually uniform is still accomplished as any imperfections in this line are relatively

small (<0.2, as compared to perceptual deltas of>0.8 seen in other colormaps such as jet).

An optimized colormap

We used cmaputil to create several example colormaps. We identified one colormap in particu-

lar to be optimal for viewing by those with or without CVD, which we name cividis (Figs 4 and

5), generated by optimizing the viridis colormap and selecting the J’ linearization that maxi-

mizes the range of J’. We chose this map due to its wide range of colors, resulting from a wide

range of J0 values while still changing b0 significantly, and overall sharpness when overlaid

onto complex images. Other optimized colormaps produced using this method had a more

limited J0 range due to spanning more of the b0 space. While spanning more hues is preferable

as well, we felt this colormap had the best balance of hue and lightness range. For the RGB

color values of this colormap, please refer to S2 File. This colormap is also close to optimal for

protanomaly and tritanomaly, as shown in S4 File, where figures are plotted with each of the

forms of CVD with severity set to 100.

Right now, viridis is seen as the gold standard since it follows each of the design principles

discussed above; however, it is optimal for those with normal vision and not CVD. While its

CVD-simulated counterpart is close to optimal, cmaputil helped to further improve upon this

by forcing the perceptual delta to be as close to flat as possible and by increasing the light range

covered. At this time, it is preferable to have both viridis and cividis available to the scientific

community as viridis is more aesthetically pleasing to some and covers more colors for those

with normal vision, allowing greater visual perception sensitivity (Fig 1 viridis CDPS plot vs.

the Fig 5 CDPS plot).

While it may take some time for the full scientific community to both be aware of the need

to choose appropriate colormaps and agree on preferred colormaps, we hope the code we pro-

vide here can help with this transition by allowing others to experiment with the different

aspects of colormap design and see how the various characteristics of a colormap affect its

interpretation. Our code can also be leveraged for creating non-monotonically increasing col-

ormaps, by adjusting the J0 linearization function, introducing the ability to create colormaps

for datasets where this is the optimal choice, such as when a diverging colormap is preferred.

Our team has been working to ensure this colormap is easily accessible. As a result, COM-

SOL [41], the OpenMIMS plugin for ImageJ [42], and Fiji [43], will be adding cividis as an

option among their colormaps. For those who already have a copy of ImageJ, the LUT version

of cividis is provided as S3 File. We will also be reaching out to other software teams to further

increase awareness about our colormap and important considerations in colormap design.

Ideally, we hope to reduce the number of non-perceptually uniform and rainbow-style color-

maps being used as default in scientific data analysis software, and to increase the availability

of CVD-friendly colormaps so the estimated more than 600 million individuals worldwide

with CVD can interpret and perceive data like the rest of the population.

An important consideration about our colormap moving forward is it may become obsolete

due to monitors and screens being designed to display larger color gamuts, i.e. colors outside

sRGB colorspace [44, 45]. Our module can again be used for this purpose simply by changing

the sRGB colorspace setting to the more modern colorspace viewed on future screens (e.g., 8K

Ultra HD screens, which may eventually cover nearly twice as much natural color space as the

current sRGB). Additionally, this could better enable cmaputil to create perfectly straight per-

ceptual delta lines, even after conversion to and from CIECAM02-UCS, due to more colors

being available than in sRGB color space.
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Future work

A downside of cividis, as reported by colleagues, is its minimal coverage of different colors:

varying straight from blue to yellow rather than cycling through other colors, as viridis does.

This keeps cividis from being as aesthetically pleasing as viridis. Of course, this is because

those who have a form of CVD cannot see these colors the way those with normal vision can.

However, since normal color vision is more common, using more colors is often desired for

representation of data and for increasing visual perception precision through use of a larger

dynamic color range. An area of research we are pursuing is the ability to cycle through more

colors while still keeping both normal color vision and deuteranomaly (ranging from a mild

form to complete dichromacy) perceptions of the colormap optimal. Furthermore, by using

CDPS plots (e.g., shown in Figs 1 and 5) to judge our success, we plan to maximize the slope

(m, thus maximizing perceptual sensitivity) while keeping the colormap perceptually uniform

(i.e. r2� 1). Viridis is already close to accomplishing this since the perceptual delta of the col-

ormap, as perceived by someone with complete red-green colorblindness, has only a small

imperfection toward the center. Through the next version of cmaputil we hope to create a “viri-

dis 2.0”, and other aesthetically pleasing colormaps, that are perceptually linear for all people.

It is not clear yet if this task is possible, as those with deuteranomaly but still have trichromatic

vision will be able to see some of the additional colors to varying extents, making it difficult to

optimize for all possible severities. We will try different variations of colormap creation and

optimization to find if this can be done.

Supporting information

S1 File. Colormap results. Zip file of example optimization figures for multiple colormaps we

tested. This includes the iteration image (colormap conversion to CVD, interpolation of a0 vs.

b0, and the two J0 linearization methods), a0 vs. b0 change overlay, and a comparison of the two

fits used for J0.

(ZIP)

S2 File. Cividis. Table with all 256 colormap values for our optimal colormap, cividis.

(TXT)

S3 File. LUT Cividis. Table with all 256 colormap values for our optimal colormap, cividis.

This format matches the LUT format required by the ImageJ software. To add this to your

copy of ImageJ, simply paste it in ImageJ/luts. Note this will be included in upcoming Fiji ver-

sions.

(LUT)

S4 File. Cividis overlay examples. Three images overlaid with the cividis colormap as it would

appear with one of the three forms of CVD (deuteranomaly, protanomaly, and tritanomaly),

severity 100. Middle image,"4x autofluor.tif", collected from imagej.nih.gov/ij/docs/examples/

IJ-M&M08-Figures.zip.

(PNG)
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