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Abstract

Objective—Obesity prevalence in the United States (US) appears to be leveling, but the reasons 

behind the plateau remain unknown. Mechanistic insights can be provided from a mathematical 

model. The objective of this study is to model known multiple population parameters associated 

with changes in body mass index (BMI) classes and to establish conditions under which obesity 

prevalence will plateau.

Design and Methods—A differential equation system was developed that predicts population-

wide obesity prevalence trends. The model considers both social and non-social influences on 

weight gain, incorporates other known parameters affecting obesity trends, and allows for country 

specific population growth.
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Results—The dynamic model predicts that: obesity prevalence is a function of birth rate and the 

probability of being born in an obesogenic environment; obesity prevalence will plateau 

independent of current prevention strategies; and the US prevalence of obesity, overweight, and 

extreme obesity will plateau by about 2030 at 28%, 32%, and 9%, respectively.

Conclusions—The US prevalence of obesity is stabilizing and will plateau, independent of 

current preventative strategies. This trend has important implications in accurately evaluating the 

impact of various anti-obesity strategies aimed at reducing obesity prevalence.
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INTRODUCTION

Why is the prevalence of obesity in the United States (US) appearing to level off(1)? Are 

prevention and treatment strategies working (2)? Can we expect the plateau to continue or is 

the apparent stabilization of obesity prevalence a temporary state?

These questions are vigorously debated due to their potential impact on healthcare costs and 

the desire to credit or discredit various policies to reduce obesity at the national level in 

many countries of the world. Existing predictions of obesity trends (3, 4) cannot fully 

answer these questions because their underlying models assume a priori that obesity 

prevalence will either increase without bound or will continue to increase and eventually 

plateau. Dynamic models based on differential equations circumvent these limitations and 

can generate a predicted curve based on biological, behavioral and social factors that can 

potentially raise or lower population size in each BMI class such as the dynamic models 

developed by Hill et al.(5) and Keisuke et al(6). These models predicted obesity prevalence 

by segregating normal weight and obese populations into two compartments. However, 

existing models did not include the progression from normal weight to overweight and 

finally to the obese classification. Existing models also did not predict the prevalence of 

extreme obesity and the model did not include important moderators of obesity prevalence 

such as the impact of childhood obesity, differential population birth rates, and the higher 

susceptibility to weight regain in individuals who have lost weight.

Here we present a comprehensive differential equation model that overcomes these 

limitations by incorporating the mechanisms known to increase or decrease the population 

prevalence within each BMI class. The model was designed to predict obesity prevalence 

after input of country specific parameters, resulting in a highly flexible model that can be 

applied to other developed countries or communities. The proposed model is used here to 

determine whether the US obesity epidemic will plateau and how soon this will occur. These 

are issues of high national significance due to the medical, fiscal and social consequences 

imposed by excess population adiposity.
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METHODS

Model Development

Using the well-established susceptible, infected, recovered (SIR) model framework (7–9) 

from infectious disease modeling, we developed six differential equations that describe 

interactions and transitions between populations with different body mass index (BMI) 

classifications. SIR models have been applied to model the characteristics of a variety of 

infectious disease outbreaks such as HIV(10), tuberculosis (11), and influenza (12). SIR 

models also have been successfully applied to capture the dynamics of non-communicable 

conditions such as alcoholism (13), ecstasy use (14), and criminal activity (9). The 

application of SIR models in these conditions does not assume the mechanisms behind 

contagion, rather they reflect the overall dynamics, produce predictions of long-term 

outcomes, and identify which parameters have the most impact on the evolution of the 

epidemic.

The SIR approach divides a population into compartments of infected and non-infected 

individuals and model terms are constructed to describe the flow to and from each 

compartment (Figure 1). Complete details and a step by step model formulation appear in 

the Appendix. Here we outline the main qualitative properties central to our model for 

obesity prevalence.

Individuals in a population are deemed susceptible in our model if their BMI is below 25 

kg/m2 and they have never been overweight. In order to incorporate the long time scale 

necessary for normal weight individuals to become overweight, we introduced a class of 

individuals who were exposed to either social or non-social influences that lead to weight 

gain and these individuals will eventually become overweight. Thus, the exposed class can 

be considered as a latency period for obesity. The ‘infected’ population was comprised of 

three different classes; an overweight population (25 ≤BMI< 30 kg/m2), an obese population 

(30≤ BMI< 40 kg/m2), and an extremely obese population (BMI ≥40 kg/m2). Spontaneous 

transition to overweight, obese, and extremely obese independent of social influence was 

modeled by linear terms, similar to the Hill model (5). Socially influenced transition to 

overweight, obese, and extremely obese was modeled by a mass action term (5). Overweight 

individuals who lose enough weight to return back to normal BMI (≤25 kg/m2) are 

considered recovered. Weight regain in these individuals is assumed to occur at a higher 

infectivity rate in comparison to normal weight susceptible individuals who progress 

normally to the overweight category. In addition, the model allows for modest weight loss in 

the obese and extremely obese classes, which returns the individual to a lower BMI 

category. For example, obese individuals may lose enough weight to be classified as 

overweight and as a result move from the obese category to the overweight category. The 

model time scale also includes the natural population birth and death rates.

The model assumes extremely obese individuals do not have the capacity to socially draw 

other classes toward obesity. This model criterion is based on recent literature (15–17) 

demonstrating that individuals do not “imitate” the behavior of the extremely obese. 

Additionally, individuals exposed to the effects of obesity at birth are considered born in an 

“obesogenic” environment and are thereby considered more susceptible to becoming 
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overweight and later obese. Finally, because the epidemiological literature indicates that 

obese individuals die at an earlier age than normal weight people with the years of life lost 

in the obese population ranging from two to seven years (18, 19), the model included 

differential death rates.

We acknowledge the possible existence of normal weight individuals who are “immune” to 

weight gain. Since there is no flow out of the immune class, this population does not impact 

model dynamics and therefore a model equation is not required for this subpopulation. 

Finally, we note that only the flow rates between compartments are key factors in the model. 

Importantly, a population plateau or trend curve shape is not assumed as part of model 

development.

Model parameters

Models were created and simulations performed for the Unites States (US) and United 

Kingdom (UK). Model birth and death rates were set using population birthrate from 

published survey data for the US (see Table 1)(20). The model was also simulated based on 

survey data (Table 1) from the United Kingdom (21). The probability of being born into an 

obesogenic environment was estimated from the percentage of reproductive age women 

classified as overweight or obese. All other model parameters were set using initial trends 

from US based or UK-based obesity prevalence values (Table 1) for their respective 

simulation (20, 21). Some model parameters such as the rate of effective interaction between 

overweight and obese individuals are impossible to know, however, the range is fixed by 

knowledge of total prevalence in each category and thus dynamics can be examined by 

fluctuating these parameters within their ranges. Specifically, only information from 1988–

1998 for the U.S. and 1993–1997 for the U.K. was used to fit parameters. The model was 

simulated forward and then compared to the actual data past 1998 to test for agreement. 

Details on specific parameter calculations are provided in Table 1.

To observe the effects of varying birthrates on trajectories, the model was simulated for four 

different birthrates; one birth per 1000 individuals (0.0010), 14.4 births per 1000 individuals 

(US birthrate, 0.0144), 20 births per 1000 individuals (0.0200), and 50 births per 1000 

individuals (0.0500). All other parameters specific to the US simulation appear in Table 1. 

Similarly, the effects of varying the probability of being born in an obesogenic environment 

on future prevalence rates were analyzed by simulating the model with respect to maternal 

obesity for probability values, 0.0, 0.55, and 0.95, while holding all other parameters fixed. 

A similar analysis was conducted by raising the death rate of the obese and extremely obese 

from the uniform death rate value (D0 = 0.0144), to D0 = 0.0150 and finally D0 = 0.02. 

Similar to the other analysis, other parameters specific to the US simulation appear in Table 

1.

Model analysis

Long-term behavior or trends are analyzed by first calculating the equilibria or steady-states. 

This is achieved by setting the derivatives equal to zero and solving the resulting equations 

algebraically, as shown in the Appendix. The next step was to determine whether the 

trajectories defined by the differential equation actually plateau at the calculated steady-state 
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value. If they do, we refer to the steady-state as a plateau. A rigorous mathematical proof of 

the existence of a plateau relying on well-established differential equation theory (22) is 

included in the Appendix.

Model simulations

Specific model trajectories were simulated using the default differential equation solver 

available through Matlab r2012a (2012, MathWorks, MA).

Web-based program

The model was programmed to permit interested users to input parameters and baseline 

prevalence values and observe the resulting obesity prevalence rates predicted over time by 

the model with a graphical display of results. The web-based program can be accessed at 

http://www.pbrc.edu/research-and-faculty/calculators/obesity-prevalence/.

RESULTS

An obesity prevalence plateau

For any parameter choice, trajectories converge to a positive plateau (see Appendix for 

mathematical analysis). Using US prevalence data from 1988, model simulations reveal that 

it takes an approximately 40 year period for obesity percentages to plateau at prevalence 

rates of 28% for overweight, 32% for obesity, and 9% for extreme obesity (Figure 2 Panel 
A).

Applying parameter and baseline conditions to the UK conditions indicates that 

approximately 21% of the population will be overweight, 27% will be obese, and 5% 

extremely obese by 2033 (Figure 2 Panel B). In contrast to the US simulation, the UK 

simulation revealed that a plateau will not be reached before 2033. The parameters related to 

socially influenced weight gain estimated in the UK simulation did not differ from the 

analogous parameters determined in the US case. However, the parameters related to weight 

gain from non-social influences in the UK simulation were significantly lower than those in 

the US case (Table 1). The plateau for the US was directly calculated from the closed form 

expressions of the equilibrium (see the Appendix) as 26.8% classified overweight, 31.1% 

classified obese, 9.8% classified extremely obese. For the UK, the plateau was determined to 

be 25.7% classified overweight, 39.6% classified obese, and 9.4% classified extremely 

obese.

Model Validation

Since US model parameters were fit to data from 1988–1998, model simulations in this time 

interval represent calibration and not true prediction. However, as observed in Figure 2 A, 

past 1998, the model simulations demonstrated good agreement with mean data from 2008. 

Likewise, since we applied data points from 1993–1997 to fit UK model parameters, we 

expect good agreement between model simulations and actual data in this time interval. 

However, as observed in Figure 2 B, there is good agreement between model simulations 

and reported mean data between 1997 and 2008. To distinguish calibration from validation 
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and forecast, Figure 2 curves were depicted as solid for calibration, dashed for validation, 

and dotted for forecast.

The dependence of the plateau on population birth rate

The model analysis revealed that the level at which obesity rates plateau in a population 

depends on birth rate expressed as childbirths per 1000 people per year. Specifically, higher 

birthrate leads to increased time to plateau and lower obesity prevalence. Figure 3 A 

illustrates this phenomenon. It shows three different trajectories where all parameters are 

equal (US parameters in Table 1) except for birthrate. While this result may seem 

counterintuitive, a large new influx of births into the susceptible category replenishes the 

system. A higher birthrate yields a larger normal weight category and hence this category 

requires a longer time to proceed toward obesity and influence the final prevalence plateau.

The dependence of the plateau on the probability of being born into an obesogenic 
environment

The dependence of the level at which obesity rates will plateau also depends on the 

probability of being born into an obesogenic environment reflecting risk of childhood 

obesity. As the probability of being born into an obesogenic environment increases, the 

value at which obesity plateaus increases, and the time to plateau increases. This is 

illustrated in Figure 3B for three probability values of being born into an obesogenic 

environment as indexed herein by maternal weight during or around pregnancy.

The dependence of the plateau on the differential death rate

Similar to the probability of being born into an obesogenic environment, the differential 

death rate for obese and extremely obese populations also impacts the level at which obesity 

rates will plateau. It was found that the higher the differential death rate, the lower the 

plateau value, illustrated in Figure 3C.

DISCUSSION

This study proposes a dynamic model that predicts obesity prevalence (5) by including 

interactions and transitions between populations of different BMI classes, population wide 

differential birthrate, differential death rate, probability of being born into an “obesogenic” 

environment, and the lag time involved in weight gain. Dynamic models such as the one 

developed in our study capture long-term trends without being dependent on databases or a 

priori determination of the type of curve the trend will follow. Rather, our dynamic model 

relies on the relationships between segments of the populations and then predicts flow based 

on these input and output relationships.

Parameters were fit to the newly-developed dynamic model using US prevalence data and 

birth and death rates from 1988 to 1998. If these parameters remain constant, the model 

predicts plateaus by the year 2030 at prevalence rates of 28%, 32% and 9% for overweight, 

obesity, and extreme obesity, respectively. Similarly, we applied model parameters fit to 

data from the UK and found that approximately 34% of the population will be overweight, 
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32% will be obese, and 5% extremely obese by 2033, though a plateau was not reached by 

2033 in the UK simulation.

The model formulation described in this study provides a foundation for the inclusion of 

additional possible influences on obesity prevalence. There is no need to develop an entirely 

new model to include additional influences. Only the flow rates or specific model terms 

would need to be altered.

Many countries do not have a stable birth rate but have either increasing (China) or 

decreasing (European countries) birth rates. In fact, the birth rates in the US have decreased 

by 50% from 1950–1970 and held fairly steady at approximately 14 births per 1000 people 

since then (23). For model tractability, we assume a constant birth rate; however, a time 

dependent birth rate would provide potential for improved understanding of birth rate 

impacts on obesity prevalence. Changes in birth rate or other parameters would induce a 

“jumping plateau” effect as seen in Denmark for example (24) where obesity prevalence 

plateaus and then increases past this plateau only to plateau at a new value.

Another useful factor for model advancement would be the inclusion of immigration effects. 

We noted here that the new influx of normal weight individuals through births impacted 

prevalence rates and time to plateau. It stands to reason that a new influx through 

immigration would also have an effect on long-term trends, depending in part on the 

characteristics of the migrants.

The model can be applied to a particular state by inputting birth rates and other parameters 

for the specific state. However, because the model does not include migration in and out of 

the region, the predictions would be overly simplified. To capture the full geographic 

dynamics, a geographic spread model would have to be developed.

Geographical models describing the spread of infectious diseases involve combining models 

as the one presented here with a conservation law and Fick’s law of diffusion (25). These 

spatial models could be applied to evaluate the effectiveness of obesity control strategies 

across geographical locations. However, the current models that predict obesity trends do 

not consider a potential progressive spread of obesity over geographical locations. Rather, 

they consider solely overall population trends, evolving over time. With careful analysis of 

regional patterns in obesity trends, our model can be extended to include a geographical 

diffusion component. Understanding the dynamics of how obesity moves geographically 

from obesity hotspots and how the borders of these hotspots influence future geographical 

spread of obesity are important but under-investigated issues.

Model application to developing countries

The model developed in this paper is based on assumptions most applicable to Western 

countries. Many developing countries have rapidly changing birth rates, infectious disease 

related deaths, high infant mortality, and rapid changes in food supplies and transportation 

systems as they undergo rapid nutritional and lifestyle transitions. These and possibly other 

influences will impact predictions. Some of these factors can be encompassed through 

variable birthrates and differential death rates. However, specific reviews of these different 
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influences and factors will need to be considered for appropriate model application to 

developing countries.

Additional potential model extensions

The current model provides a framework for extensions. For example, one can consider 

assortative mating (26) or differential birth rates by revising these terms within the currently 

developed model. To include the effects of age structure, the current model can be revised as 

an age structured model (27). Such inclusions will need to be well thought out and carefully 

analyzed since they will increase the complexity of the model.

In summary, we have developed a comprehensive and dynamic mathematical model to 

predict changes in overweight, obesity and extreme obesity prevalence. The model is 

flexible and can be adapted to specific parameters of a community, region, ethnic 

subpopulation, or country. The model predicts a slower increase in obesity prevalence and 

an eventual plateau of the obesity epidemic by about 2030 in the United States. It should be 

noted that despite the predicted deceleration in obesity rate, the prevalence of obesity 

remains sufficiently high at all times to warrant new and effective obesity prevention and 

management strategies. This model provides a baseline to evaluate the efficacy of various 

obesity prevention and management strategies and policies. To be effective, changes in 

policies and disease prevention programs will need to produce a change in obesity 

prevalence that is larger than predicted by our model for the natural course of the epidemic.
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APPENDIX. DETAILED MODEL DESCRIPTION

The appendix is a self-contained complete description of the obesity prevalence model 

development and analysis. The appendix is separated into four distinct sections. The first 

section presents details of model development including model assumptions, definitions of 

model state variable, description of the model parameters, and the formulation of all model 

terms. The second section provides step by step numerical parameter calculation details for 

the United States and the United Kingdom. The third section provides a lay description of 

the conclusive theoretical model results and their biological meaning. The last section 

provides rigorous theorem statements and their proofs using traditional mathematical 

notation and classical mathematical proof structure.

I. MODEL DEVELOPMENT

The Newtonian derivative of a variable represents the instantaneous rate of change for the 

variable changing with time. An ordinary differential equation is an equation that relates the 

derivative of a variable to a function of itself. A system of ordinary differential equations 

represents several equations that relate a set of interconnected variables that influence each 

other and impact their derivatives. Because individuals cannot transition to obesity without 

moving from a normal to obese BMI classification, this movement or flow is appropriately 

described by differential equation.

Modeling this flow requires identification of the mechanisms which increase or decrease the 

population within each BMI classification. The mechanisms considered in the developed 

model appear as a flowchart in Figure 1. Each compartment depicted in Figure 1 represents 

a state variable or more importantly, a variable we desire a prediction for over time. Table 1 

lists each term of the differential equation model that describes the flow from and to each 

compartment as depicted in Figure 1.

Model assumptions

Every mathematical model relies on assumptions. Some assumptions are instated to enhance 

model tractability, for if we included every possible effect, the model will be so complex 

that we would be unable to analyze it. These are referred to as simplifying assumptions. As 

models advance in complexity, simplifying assumptions are typically disposed over time 

through careful investigation of how to conduct the ensuing analysis. Non-simplifying 

model assumptions are based on known facts that influence the phenomena we are 

modeling, which in this case is the time dependent changes in the prevalence of obesity. The 

list that follows outlines all assumptions behind our model formulation.
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(A1) The immune population does not contribute to the analysis, and thus can be 

ignored.

(A2) The population can be compartmentalized as follows:

S(t) Individuals consistently classified with BMI <25 at year t (susceptible).

E(t) Individuals consistently classified with BMI < 25 that have been 

effectively exposed by year t but are not yet overweight (exposed).

I1(t) Individuals classified as overweight (25≤BMI < 30) at year t.

I2(t) Individuals classified as obese (30≤BMI<40) at year t.

I3(t) Individuals classified as extremely obese (40≤BMI) at year t.

R(t) Individuals who have reduced back to normal weight at year t 

(susceptible but predisposed to weight regain).

(A3) The extremely obese cannot socially influence population weight gain.

(A4) The death rate DO for obese and extremely obese populations is higher than the 

death rate D of susceptible, exposed, overweight, and recovered populations.

(A5) Recovered individuals are susceptible to becoming overweight once again at a 

different rate than normal weight individuals who have never been overweight. 

This transition is independent of social influence.

(A6) Social interactions between compartments are governed by the law of mass 

action and modeled by multiplying the population numbers in each class.

(A7) A fraction of the population is born with a higher risk for becoming obese.

(A8) Individuals can spontaneously gain weight through non-social influences. As a 

result not all movement through the different BMI classifications arises from 

social interaction.

We formulate assumptions (A1)–(A8) using a system of six differential equations and begin 

by denoting the total population in year t, N(t) as the sum of the state variables,

to arrive at the obesity prevalence model:
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The initial values and parameters must be non-negative: S(0), E(0), I1(0)0, I2(0), I3(0), R(0) 

≥ 0 and μ, p, k1, k2, D, α, a, ρR, D0, ρ1, ρ2, a1, a2, β1, β2, β3 ≥ 0. Since we are interested in 

studying the time-dependent changes in obesity prevalence within a fixed population, we 

will impose a further restriction that the total population remains constant.

(A9) The total population shall remain constant for all times t. That is,

Assumption (A9) is consistent with the above system of differential equations provided that

which holds when the total number of births equals the total number of deaths at all times t: 

μN(t) = D(S(t) + E(t) + I1(t) + R(t)) + Do(I2(t) + I3(t)) = DN(t) + (Do − D)(I2(t) + I3(t)). The 

inclusion of this assumption further reduces the model to:

Incorporating assumption (A9) also implies that we can replace the equation of one of the 

subpopulations. Letting R(t) = N − S(t) − E(t) − I1(t) − I2(t) − I3(t) results in the 5-

dimensional model:

We refer to the above system of equations as System 1 and will assume S(0), E(0), I1(0)0, 

I2(0), I3(0) ≥ 0 in all our rigorous proofs.

The special case of uniform death rates

In the case where D = D0 the constant population assumption reduces to μ = D and System 1 
can be written in terms of the birth rate:
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The advantage of working with this simplified system allows us to easily observe the impact 

of birth rate on obesity prevalence. All simulations and the web-calculator were performed 

using this simplified model, while all theoretical results were proved using the general 

model.

II. DETERMINATION OF MODEL PARAMETERS

Model parameters were determined using the method of shooting 1. Shooting requires an 

initial guess of all parameter values that can be chosen by the user (Figure 2 Panel A) and is 

not determined by population data such as birth rate. The resulting trajectories are directly 

inspected. If the rate of growth is too high, that is the initial increase of prevalence rates rose 

too quickly past the data points provided from 1988–1998, we adjust the parameters that 

contribute to growth by reducing them. Similarly, if the initial increase was not high enough, 

parameters that contribute to growth were raised. This method of feedback testing requires 

several iterations because adjusting one parameter impacts other compartments. However, 

once the initial growth rates have been adjusted so that the resulting trajectories move 

through the data points provided by the 1988–1998 NHANES prevalence data, the 

parameters are fixed (Figure 2 Panel B).

III. LAY DESCRIPTION OF THEORETICAL RESULTS

Good modeling practice requires that is that basic properties of the phenomena are intrinsic 

to the model itself. For example, in this case since we are modeling obesity prevalence over 

time, we expect that our model should not give rise to solutions that are negative or 

unbounded. Indeed, we hope that solutions even exist, since there is no assurance that 

simply writing down differential equations will guarantee existence of a solution. Thus, the 

first rigorous result verifies not only the existence of solutions to the model, but that 

solutions are non-negative and bounded.

Proposition 1

The solution to the model which represents prevalence of obesity in a population is never 

negative and is capped by the amount of the total population.

Since the solution to System 1 cannot be expressed as a stand-alone formula, the next 

question is whether we can determine what will happen as a forecast. Perhaps obesity 

prevalence may oscillate over time, or perhaps it will have random patterns. The initial 

collected data in most countries do not suggest such patterns and we should hope that the 

outcome of the model follows the observed trend.
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In fact, we prove in two steps that the solutions plateau over time. We first show the 

existence of a steady state or plateau value and then we show that any solution that starts 

near this value will head to this value (plateau) over time.

Proposition 2

The model yields a unique positive value that is a steady state or a plateau. If obesity 

prevalence arrives at this value, it remains at this value.

Corollary

For the cases of the US and UK described in Table 1, obesity prevalence will plateau. For 

the US, the plateau will occur at 31.09% for obese (30≤BMI<40) and 9.80% for extremely 

obese (40≤BMI). For the UK, the plateau will occur at 39.62% for obese and 9.37% for 

extremely obese.

The method of proving whether obesity prevalence will plateau requires evaluation and 

analysis of a 5 by 5 matrix called the Jacobian, which cannot be conducted symbolically. 

Thus, country specific parameter values need to be entered into the matrix. On the other 

hand, numerical simulation is straightforward and can be achieved using the online 

calculator accessible at: http://www.pbrc.edu/research-and-faculty/calculators/obesity-

prevalence/

IV. MATHEMATICAL PROOFS OF THEORETICAL RESULTS

In this section, we prove that

1. Solutions to our model exist, are bounded, and are nonnegative.

2. That for any choice of parameters and baseline prevalence, all trajectories will 

plateau.

3. The plateau value will be positive, indicating that obesity cannot be eradicated on 

its own.

Existence of solutions is guaranteed by Peano’s Existence Theorem, see for example2. 

Instead of proving non-negativity and boundedness of solutions directly, we will identify a 

positively invariant set X of System 1. The set is such that if the initial conditions lie in X, 

then so do the corresponding solutions, which must then be non-negative and bounded 

because of the structure of the set X.

Based on assumption (A9), we define the set 

, where  denotes the set of all 

quintuples with non-negative components. We will see that X is an invariant set of System 1. 

To see that solutions remain in X for all times t ≥ 0, note first that it is true for t = 0 based on 

the initial conditions and assumption (A9). If (S(t), E(t), I1(t), I2(t), I3(t)) ∈ X for some t ≥ 0, 

then the right hand side of S′ (t) is non-negative whenever S(t) = 0 and Ij(t) ≥ 0 for j = 1, 2. 

Similarly, Ij′(t) ≥ 0 whenever Ij(t) = 0, E(t) ≥ 0, S(t) ≥ 0, and Ik(t) ≥ 0 for; j ≠ k. Also E′(t) ≥ 0 

whenever E(t) = 0 and provided that (S(t), E(t), I1(t), I2(t), I3(t)) ∈ X. This shows that 
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 for t < t̃ < t + δ for some δ > 0. At the same time, Σ(t) = 

S(t) + E(t) + I1(t) + I2(t) + I3(t) gives Σ′(t) = (D + ρR)(N − Σ(t)) − ρ1I1(t). If (S(t), E(t), I1(t), 

I2(t), I3(t)) ∈ X and D ≤ DO, then Σ′(t) ≤ (D + ρR) N − (D + ρR) Σ(t). Solving this differential 

inequality for t̃ ≥ t yields Σ(t̃) ≤ Σ(t)e−(D+ρR(t̃−t) + N(1 − e−(D+ρR)(t̃−t)) From here we can see 

that Σ(t) ≤ N implies Σ(t̃) ≤ N. Thus, (S(t), E(t), I1(t), I2(t), I3(t)) ∈ X implies that (S(t̃), E(t̃), 

I1(t̃), I2(t̃), I3(t̃)) ∈ X for t < t̃ < t + δ for some δ > 0. Consequently, X is a positively (also 

forward) invariant set. We have proved the following.

Proposition 1

Assume D ≤ DO Then all forward solutions to System 1 corresponding to initial conditions 

in X are non-negative and bounded (and remain in X).

Furthermore D ≤ DO ensures that the set X, attracts . This can be seen from Σ(t) ≤ 

Σ(0)e−(D+ρR)t + N(1 − e−(D+ρR)t), which implies that limsupt→∞ Σ(t) ≤ N.

Predicted trends plateau (Equilibria and Global Stability)—System 1 has one 

positive equilibrium in X. Using I1 to express the equilibrium values for each subpopulation, 

we obtain:

and  corresponds to the solutions of the quadratic equation v2Z2 + v1Z + vo = 0, where

In the above expressions, 

, and . 

Consider the function f(Z) = v2Z2 + v1Z + vo. When Do = D, the leading coefficient v2 

reduces to

and v2 < 0 continues to be true as long as . This condition then guarantees 

that the quadratic equation f(Z) = 0 has a unique positive solution .
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Proposition 2

Assume .Then System 1 has a unique positive equilibrium (S*, E*, 

) in X. The equilibrium can be described in terms of , which is given by

All other values of the equilibrium are given above.

Proposition 1 implies the existence of a compact attractor in the set X and the positive 

equilibrium lies in X and must be contained in the attractor. For parameter values given in 

Table 1, one can verify that the positive equilibrium is locally asymptotically stable by 

showing that all eigenvalues of the corresponding Jacobian have negative real parts.

The Jacobian is given by

In the case when D = D0, this matrix simplifies to

Corollary

For parameter values given in Table 1, in the case when D = D0, we obtain the following:

i. For the U.S., the equilibrium values are (S*, E*, ) = (2.77%, 13.28%, 

26.8%, 31.09%, 9.80%). This equilibrium is locally asymptotically stable.

ii. For the U.K., the equilibrium values are (S*, E*, ) = (4.21%, 19.89%, 

25.67%, 39.62%, 9.37%). This equilibrium is locally asymptotically stable.
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Figure 1. 
Diagram describing flow from each compartment formulated in the dynamic model.

Figure 2. 
The method of shooting employed to determine parameter values to force solutions through 

the initial prevalence data (1988–2000). Panel A depicts model solutions for an initial guess 

of parameter values. This initial guess led to an overestimated rate of increase in the 

overweight category (blue) and an underestimated rate of increase in the obese and 

extremely obese category. Parameters that influence these rates were adjusted so that the 
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rate of overweight increase was lowered and the rate of increased prevalence of obese and 

extremely obese were slightly higher. Panel B shows a good fit through prevalence data 

from 1988–2000. The resulting curves continue to follow prevalence data after 2000 which 

validates their projections and the parameter estimates.

Table 1

Detailed description of each model term.

Compartment Assumption Mathematical Formulation

Susceptible (BMI <25) Proportion of births entering a nonobesogenic 
environment BMI < 25.

μN(1 − p)

 S(t) A fraction of the population dies (normal death rate) −DS

A fraction of susceptibles become exposed.

The rate of transition is dependent on

• contact with overweight individuals 
(25≤BMI<30)

• contact with obese individuals 
(30≤BMI<40)

• spontaneous increase in weight, unrelated 
to social contact

−αS

Exposed
This compartment models 
the lengthy time period 
involved in exposure 
leading to infection. 
Individuals in this 
compartment do not show 
symptoms and are not 
infectious.

Proportion of births born into and obesogenic 
environment.

p(μN)

A fraction of the population dies (normal death rate). −DE

A fraction of the population becomes overweight 
(25≤BMI<30)

−aE

 E(t) A fraction of the recovered population becomes 
susceptible to re-infection.

ρRR

A fraction of the susceptibles become exposed. The rate 
of transition is dependent on:

• contact with overweight individuals 
(25≤BMI<30)

• contact with obese individuals 
(30≤BMI<40)

• spontaneous increase in weight, unrelated 
to social contact.

αS

Infected (Overweight 25 
≤BMI < 30)

A fraction of the population dies (normal death rate). −DI1

 I1(t) A fraction of exposed became infected. aE

A fraction of infected (overweight) transition to a 
higher stage of infection (obese).

−a1I1

A constant fraction of overweight individuals recover. −ρ1I1

A constant fraction of obese transitioned back to the 
overweight compartment.

β2I2
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Compartment Assumption Mathematical Formulation

Infected (Obese 30 ≤BMI 
< 40)

A fraction of the population dies (differential death 
rate).

−D0I2

 I2(t) A fraction of overweight individuals became obese. a1I1

A fraction of infected (obese) transition to a higher 
stage of infection (extremely obese).

−a2I2

A constant fraction of obese individuals recovered and 
transitioned back to the overweight compartment.

−β2I2

A constant fraction of extremely obese individuals 
transitioned back to the obese compartment.

β3I3

Infected (Extremely 
Obese BMI ≥40)

A fraction of the population dies (differential death 
rate).

−D0I3

 I3(t) A fraction of infected (obese) individuals transitioned 
to a higher stage of infection (extremely obese).

a1I1

A constant fraction of extremely obese transition back 
to the obese compartment.

−β3I3

Recovered (BMI ≤25) A fraction of the population dies (normal death rate). −DR

 R(t) A fraction of infected (overweight) recovered. ρ1I1

A fraction of the recovered population returns to the 
exposed class.

ρRR
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1. What is already known about this subject?

Future obesity prevalence has been predicted by statistical models and simple dynamic 

models that predict only the size of the obese population. The simple models do not 

assume differential death rates or the effect of country specific birth rate and more 

importantly birth into sub-populations at higher risk for obesity. The models also do not 

differentiate between individuals who have never been overweight and individuals who 

have lost weight and are more pre-disposed to weight regain.

2. What this study adds

• The proposed model includes differential death rates, possibility of 

differentiated births into more susceptible versus less susceptible to obesity, the 

long time length involved in weight gain, compartmentalization into BMI 

cutpoints (normal weight, overweight, obese, and extremely obese), and 

increased susceptibility to weight regain for individuals who have lost weight.

• Based on these inclusions, we demonstrate for the first time that birth rate 

influences obesity prevalence.

• We predict obesity prevalence trends for both the U.S. and the U.K. using the 

same model with appropriate parameter changes.
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Figure 1. 
Diagram describing flow from each compartment formulated in the dynamic model. All 

compartments include a population wide differential death term.
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Figure 2. 
Comparison of model predictions with actual trends. Parameters and baseline conditions 

applied in model simulations appear in Table 1. Panel A depicts model predicted trends 

(solid curves) in overweight, obese, and extremely obese in US adults from years 1988 to 

2030. Solid circles depict the Centers for Disease Control reported trends in overweight, 

obese, and extremely obese in US adults from years 1988–2008 (20). Panel B depicts model 

predicted trends (solid curves) in overweight, obese, and extremely obese in adults in the 

UK from years 1993 to 2033. Solid circles depict the Health Survey for England reported 

trends in overweight, obese, and extremely obese in US adults from years 1993–2008. In 

comparison to the US, parameter values for social influence and recovery rates are almost 

identical. The spontaneous rate of transition is significantly lower. The portion of the 

simulations that were fit to data is depicted by solid curves. The dashed curves represents 

the simulation which did not rely on curve fitting and represents model validation. The 

dotted portion of the simulations represent the portion of the curve that is a forecast beyond 

available data.

Thomas et al. Page 22

Obesity (Silver Spring). Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The dependency of the plateau on birth rate can be observed by varying the birth rate 

parameter. In Panel A, the percent of the obese population was plotted for four birth rates; μ 

= 0.001, 0.0144, 0.02, and 0.05, which reflect rates of 1, 14.4, 20, and 50 births per 1,000 

individuals. The curves show that the percent at which obesity plateaus decreases as a 

function of increasing birth rate. Similarly, Panel B depicts three simulations for different 

probabilities of being born into obesogenic environment; p = 0.0, p = 0.55, p = 0.95. As p 

increases, the value at which obesity plateaus increases and the time to plateau increases. 

Panel C depicts three simulations for different obese and extremely obese population death 

rates D0 = 0.0144, D0 = 0.0150, D0 = 0.02. As D0 increases the value at which obesity 

plateaus decreases.
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Table 1

List of parameters used in model simulation for the United States obesity prevalence predictions and the 

United Kingdom obesity prevalence predictions.

United States Simulation

Parameter Method of estimation

Description Value

Probability (p) of being born in obesogenic environment. p=0.55 55% of females of reproductive age are overweight or 
obese (25).

Birth rate %=0.0144 Central Intelligence Agency World Factbook (26)

Baseline Prevalence Rates 32% overweight
22% obese
3% strictly obese

1988, CDC prevalence rates (20)

Social influence by overweight and obese k1=0.4
k2=0.2

Fit to initial trends, 1988–1998 using shooting (see 
Appendix) (20)

Spontaneous rate of weight gain to each class; exposed, 
overweight, obese, extremely obese

α = 0.05
a=0.14
a1=0.08
a2=0.014

Fit to initial trends, 1988–1998 using shooting (see 
Appendix) (20)

Rate of weight loss to each class; extremely obese to 
obese, obese to overweight, overweight to normal weight

β2=0.05
β3=0.03
ρ1=0.033

Fit to initial trends, 1988–1998 using shooting (see 
Appendix) (20)

Rate of weight regainers transitioning from normal 
weight to overweight

ρR=0.04 Fit to initial trends, 1988–1998 using shooting (see 
Appendix) (20)

Death rate of obese and extremely obese populations D0=16.5–22.0 Range reported in (27)

United Kingdom simulation

Parameter Method of estimation

Description Value

Probability (p) of being born in obesogenic environment. p=0.30 30% of females pre-pregnancy BMI are classified 
overweight or obese (28).

Birth rate μ=0.01229 Central Intelligence Agency World Factbook (26)

Baseline Prevalence Rates 38% overweight
14 % obese
0.8% extremely obese

1988 Health Survey for England (21)

Social influence by overweight and obese k1=0.4
k2=0.2

Fit to initial trends, 1993–1997 using shooting (see 
Appendix) (21)

Spontaneous rate of weight gain to each class; exposed, 
overweight, obese, extremely obese

α = 0.05
a=0.05
a1=0.025
a2=0.01

Fit to initial trends, 1993–1997 using shooting (see 
Appendix) (21)

Rate of weight loss to each class; extremely obese to 
obese, obese to overweight, overweight to normal weight

β2=0.001
β3=0.03
ρ1=0.003

Fit to initial trends, 1993–1997using shooting (see 
Appendix) (21)

Rate of weight regainers transitioning from normal 
weight to overweight

ρR=0.05 Fit to initial trends, 1993–1997using shooting (see 
Appendix) (21)
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