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Hyperuricemia and gout are complex diseases mediated by genetic, epigenetic, and
environmental exposure interactions. The incidence and medical burden of gout, an
inflammatory arthritis caused by hyperuricemia, increase every year, significantly
increasing the disease burden. Genetic factors play an essential role in the
development of hyperuricemia and gout. Currently, the search on disease-associated
genetic variants through large-scale genome-wide scans has primarily improved our
understanding of this disease. However, most genome-wide association studies
(GWASs) still focus on the basic level, whereas the biological mechanisms underlying
the association between genetic variants and the disease are still far from well understood.
Therefore, we summarized the latest hyperuricemia- and gout-associated genetic loci
identified in the Global Biobank Meta-analysis Initiative (GBMI) and elucidated the
comprehensive potential molecular mechanisms underlying the effects of these gene
variants in hyperuricemia and gout based on genetic perspectives, in terms of mechanisms
affecting uric acid excretion and reabsorption, lipid metabolism, glucose metabolism, and
nod-like receptor pyrin domain 3 (NLRP3) inflammasome and inflammatory pathways.
Finally, we summarized the potential effect of genetic variants on disease prognosis and
drug efficacy. In conclusion, we expect that this summary will increase our understanding
of the pathogenesis of hyperuricemia and gout, provide a theoretical basis for the
innovative development of new clinical treatment options, and enhance the capabilities
of precision medicine for hyperuricemia and gout treatment.
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INTRODUCTION

Gout is the leading cause of inflammatory arthritis in males. This is primarily due to multiple
mechanisms resulting in the deposition of urate in the synovial fluid and other tissues to form
monosodium urate crystals, which are further stimulated by inflammatory irritants, ultimately
resulting in gout. The global prevalence of gout is approximately 0.1%–10%, and the incidence ranges
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from 0.3 to 6 cases per 1,000 person-years (Kuo et al., 2015; Liu
et al., 2015; GBD, 2017). With a worldwide trend of an aging
population, the medical disease burden of gout is increasing
(Smith et al., 2014). Risk factors for hyperuricemia and gout
include the use of medications (thiazides, cyclosporine, low-dose
aspirin), insulin resistance, metabolic syndrome, obesity, renal
insufficiency, abnormal blood pressure, purine-rich foods,
alcohol, and sugary drinks (Neogi, 2011). The role of wine in
gout may be contradictory, in any case, a retrospective study said
individuals with established gout and pre-existing risk factors
should limit all types of alcohol intake to prevent gout episodes
(Nieradko-Iwanicka, 2021).

The main source of uric acid is the metabolism of purines and
nucleotides in food produced in the liver and excreted by the
intestines and kidneys (Köttgen et al., 2013a). Uric acid is
reabsorbed and secreted into the proximal tubules of the
kidneys, and urate transporter-1 (URAT1), glucose transporter
9 (GLUT9) (also known as GLUT9L), organic anion transporter 4
(OAT4), and organic anion transporter 4 (OAT10) are
responsible for its reabsorption. TP-binding cassette
superfamily G member 2 (ABCG2), adenosine triphosphate
(ATP) binding cassette subfamily C member 4 (ABCC4), and
organic anion transporter (NPT1 and NPT4) proteins mediate
uric acid excretion. The balance between reabsorption and
secretion is related to the homeostasis of uric acid. Otherwise,
hyperuricemia and gout can occur. A high serum uric acid
concentration is the primary risk factor for gout. Controlling
the metabolism of uric acid in circulation at reasonable levels
plays a vital role in preventing and improving gout (Chung and
Kim, 2021). The progression from high blood uric acid levels to
gout occurs in three main steps, hyperuricemia, the deposition of
monosodium urate crystals, and inflammatory responses in the
joints (Dalbeth et al., 2016). Toll-like receptor (TLR) and NLRP3
inflammasome activation and the associated inflammatory
responses are critical factors in the progression of
hyperuricemia to gout. This primarily involves activation of
the downstream TLR4 and nuclear factor-κB (NF-kB)
pathways, activation of the NLRP3 inflammasome, and
production of interleukin (IL)-1β, which together regulate
immune, metabolic, and inflammatory processes (Qing et al.,
2013; McKinney et al., 2015; Rasheed et al., 2016).

Gene variants in related functional proteins can affect uric acid
metabolism and inflammation in vivo (Reginato et al., 2012).
Current research is focused on the heritability of uric acid-
associated phenotypes, estimated to be around 40%–70%,
implying a clear indication of the importance of its genetic
role (Köttgen et al., 2013a). Commonly used drugs to treat
acute gout attacks include nonsteroidal anti-inflammatory
drugs (NSAIDs), colchicine, and glucocorticoids (Terkeltaub,
2003). Several biologically targeted agents have also been
developed, such as IL-1/1β antagonists, anakinra, rilonacept,
canakinumab (So et al., 2007; Terkeltaub et al., 2009; Neogi,
2010; So et al., 2010). In addition, patients with gout require a
combination of long-term treatments to lower uric acid levels,
such as allopurin, probenecid, and sulfinpyrazone (Terkeltaub,
2003). Although existing gout treatment drugs have achieved
some efficacy, the multiple side effects and even poor drug

response in some patients suggest that we should focus, at
least in part, on the genetic mechanisms underlying
hyperuricemia and gout to identify other effective and well-
tolerated clinical treatment options. Large-scale genome-wide
association studies have identified many risk loci (Tin et al.,
2019a); however, the biological mechanisms underlying
hyperuricemia and gout remain unclear. A meta-analysis of
the Global Biobank Meta-analysis Initiative improved the
understanding of this disease, as well as risk prediction, by
integrating GWAS results from six major ancestral groups
(African ancestry from African or mixed-race immigrants,
mixed-race Americans, Central and South Asians, East Asians,
Europeans, and Middle Easterners), while also providing insight
into the underlying biology of the traits being studied by
integrating gene and protein expression data, enabling the
identification of disease-related genes and drug candidates
(Zhou et al., 2021). This review discusses the mechanisms
through which gene variants affect hyperuricemia and gout by
searching Pubmed and GBMI (https://www.globalbiobankmeta.
org/and http://results.globalbiobankmeta.org/) database. This
review further explores and discusses the relationship between
multiple biological agents and genetic variants and how they
potentially affect gout and hyperuricemia to provide a theoretical
reference for further clinical treatment options.

ASSOCIATION BETWEEN URIC ACID
TRANSPORTER-RELATED GENE
VARIANTS AND HYPERURICEMIA AND
GOUT

A decline in kidney function is a vital cause of hyperuricemia and
gout. As the kidney is themain organ that excretes uric acid, when
this occurs, uric acid excretion by this organ is also reduced. The
increase in uric acid in the blood aggravates hyperuricemia,
negatively affecting each other and forming a vicious cycle
(Asgari and Hilton, 2021). The proximal tubule excretes most
uric acid, and when specific lesions occur there, dysfunction leads
to low uric acid excretion, which is often associated with genetic
variants of specific uric acid transport proteins. Pleiotropy in
genetic variation can underlie the regulation of renal function,
hyperuricemia, and gout (García-Nieto et al., 2022). For example,
Mendelian randomization analysis can be used to analyze
causality in confounding situations. Using this approach to
determine the relationship between genetic variants regulating
blood uric acid excretion in the kidney and renal function, it was
found that the uric acid transporter genetic risk score (mainly
comprising solute carrier family 2 member 9 (SLC2A9), ABCG2,
solute carrier family 22 member 11 (SLC22A11), solute carrier
family 17 member 1 (SLC17A1), and solute carrier family 22
member 12 (SLC22A12)) was positively associated with improved
renal function in European Caucasian males. The uric acid
transporter protein genetic risk score was used as an
instrumental variable. Mendelian randomization for renal
function using the two-stage least squares method to assess
the effect of urate on renal function quantitatively (Hughes
et al., 2014). In conclusion, it was found that the variant with
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the strongest effect on the protection of renal function was located
in SLC22A11 (Hughes et al., 2014). A meta-analysis further
identified four gene loci (SLC2A9, ABCG2, SLC22A12, and
MAF BZIP transcription factor (MAF)) associated with blood
uric acid levels and renal function in an East Asian population
(Okada et al., 2012). Another meta-analysis of GWASs on serum
urea salt concentrations and gout in African Americans found
genome-wide significance at three loci (SLC2A9, solute carrier
family 2member 12 (SLC2A12), and SLC22A12) (Tin et al., 2011).
Previous genome-wide significant loci associated with serum
urate levels, such as SLC2A12, were identified and validated in
a meta-analysis by combining GWAS data from more than
14,000 individuals (Köttgen et al., 2013a). Similarly, ABCG2,
SLC2A9, solute carrier family 16 member 9 (SLC16A9),
glucokinase (hexokinase 4) regulator (GCKR), SLC22A11,
SLC22A12, PDZ domain containing 1 (PDZK1), and SLC17A1
were found to be significantly associated with hyperuricemia and
gout risk in Asian, native Hawaiian, and Pacific Islander
populations estimated using the biospecimens repository at the
University of Hawai’i (Alghubayshi et al., 2022). Most gout-
related genetic studies have focused on this mechanism and
have made some exciting discoveries, but there still could be a
need to focus on this and explore it more extensively in the future
(Figure 1).

Hepatocyte Nuclear Factor 4 Alpha
(HNF4A), Hepatocyte Nuclear Factor 4
Gamma (HNF4G), and PDZK1
HNF4A encodes a nuclear transcription factor that binds DNA
and modulates the transcription of multiple genes, mainly in the
form of homodimers. A missense variant in HNF4A (rs1800961)
is probably the most likely leading and causal variant resulting in

better transactivation of the promoter of the urate transporter
protein-encoding gene ABCG2 (Tin et al., 2019a). Additionally,
HNF4A can also control gene expression in pancreatic islets,
potentially further associating with uric acid and gout by affecting
insulin secretion (Yoon et al., 2001). The inheritance and
expression of different alleles of HNF4A might also have
potential effects on renal function, but the exact mechanism
remains unknown (Leask et al., 2020).

PDZK1 primarily encodes a scaffolding protein containing the
PDZ structural domain. It mediates the localization of cell surface
proteins and is linked to cholesterol metabolism through the
regulation of multiple receptors. HNF4A can also directly
regulate PDZK1. The T-allele of PDZK1 single-nucleotide
polymorphism (SNP) (rs1967017) enhances HNF4A binding
to the promoter of PDZK1, augmenting its expression,
potentially increasing uric acid transport, and regulating uric
acid homeostasis, as PDZK1 is a scaffolding protein for multiple
transport proteins (Ketharnathan et al., 2018). A C-MAF BZIP
transcription factor-encoding (C-MAF) SNP (rs889472) might
also be associated with gout susceptibility by affecting uric acid
metabolism (Higashino et al., 2018), and part of the mechanism
could be related to regulation of the transcription factor HNF4A
(Leask et al., 2018). MAF/c-MAF is mainly expressed in the
proximal tubules of the kidney and is a critical factor for
maintaining differentiation and functional integrity (Imaki
et al., 2004; Tsuchiya et al., 2015). Its b-ZIP structure can
form dimers with other b-ZIP proteins and bind to DNA as
transcription factors to regulate the functions of various organs,
such as the kidney and pancreas (Yang and Cvekl, 2007; Tsuchiya
et al., 2015). Leask et al. summarized the genetic mechanisms
underlying the detailed regulation of uric acid levels mediated by
MAF variants, mainly involving the proximal signal cis-
expression quantitative trait loci (cis-eQTL) of MAF (controls

FIGURE 1 | Relationship between gene variants and reabsorption and excretion of uric acid in hyperuricemia and gout. Uric acid is reabsorbed and secreted into
the proximal tubules of the kidneys. URAT1, GLUT9 (also known as GLUT9L), OAT4, and OAT10 are responsible for its reabsorption. ABCG2, ABCC4, NPT1, and NPT4
mediate uric acid excretion. The balance between reabsorption and secretion is related to uric acid homeostasis. In addition, SMCT1/2 proteins can regulate ion
concentrations both inside and outside the cell. Different gene variants have different effects on these processes.
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TABLE 1 | Gene variants associated with hyperuricemia and gout.

Items SNPs and Its
Potential
Impact

Molecular Mechanisms and
Associations

Ref

HNF4A rs1800961 (+) Has a stronger activating effect on ABCG2 Tin et al. (2019a)
PDZK1 rs1967017 (-)

rs112129861 (+)
Enhances binding to HNF4A to increase uric acid transport and
interacts with IGF1R to regulate the inflammatory response

(Ketharnathan et al., 2018; Fernández-Torres et al., 2019)

C-MAF rs889472 (un) Can interact with HNF4A and is associated with gout susceptibility Higashino et al. (2018)
ABCG2 rs2231142 (+)

rs2231137 (+)
rs1481012 (+)
rs13120400 (+)
rs7672194 (+)

Associated with early-onset gout, erythema, and gout stone
appearance
Variants destabilize the nucleotide-binding structural domain of
ABCG2 and inflammatory responses
Also interacts with the SNP of PKD2 and serves as a diagnostic
and prognostic marker

(Tu et al., 2014; Wong et al., 2016; Dong et al., 2020; Onuora,
2020; Sandoval-Plata et al., 2021)

PKD2 rs2728121 (+) Interacts with the SNP of ABCG2 to increase the risk of gout and
increase urate concentration

(Mejías et al., 1989; Puig et al., 1993; Dong et al., 2020)

SLC2A9 rs734553 (+)
rs16890979 (un)
rs16891234 (+)

Alters protein affinity to increase the risk of hyperuricemia and gout
and can be used as a diagnostic and prognostic marker

(Yi et al., 2018; Sandoval-Plata et al., 2021)

SLC17A1 rs1183201 (-) Protects against disease by enhancing urate excretion and
transport and is associated with glucose metabolism

Kolz et al. (2009)

FAM35A rs7903456 (+) Reduces the excretion of uric acid in the kidneys Nakayama et al. (2017)
LRP2 rs2390793 (+)

rs2544390 (+)
rs16856823 (+)

Mainly affects the renal reabsorption of uric acid, alcohol, and lipid
metabolism

(Kamatani et al., 2010; Rasheed et al., 2013; Kanai et al.,
2018; Nakatochi et al., 2019b; Tin et al., 2019b)

SLC22A12 rs150255373 (-)
rs563239942 (-)
rs200104135 (-)
rs528619562 (-)
rs12800450 (-)

Protective factor against gout that functions by altering protein
function

Tin et al. (2018)

ADH1B rs129984 (+) It mainly affects the renal reabsorption of uric acid and acts
synergistically with transporter protein URAT1 and can be used to
predict the transition from asymptomatic hyperuricemia to gout

(Lieber et al., 1962; Edenberg, 2007; Macgregor et al., 2009;
Sandoval-Plata et al., 2021)

HNF4G rs2941484 (+) Associated with gout by regulating endogenous fatty acid
metabolism

Wisely et al. (2002)

PNPLA3 rs738409 (-) Affects gout susceptibility by influencing lipid metabolism and
oxidative stress processes

Diogo et al. (2018)

IGF1R rs12908437 (un)
rs659854 (un)
rs659854 (un)
rs1291127 (un)
rs4966024 (un)
rs7193778 (un)

Affects gout susceptibility by influencing lipid metabolism and
oxidative stress processes and modulates the inflammatory
response by interacting with PDZK1

Park et al. (2021)

GCKR rs780094 (+)
rs1260326 (+)

Regulates uric acid levels by modulating glucolipid metabolism,
promotes an inflammatory response by interacting with STC1, and
can be used as a diagnostic and prognostic marker

(Köttgen et al., 2013b; Fernández-Torres et al., 2019;
Sandoval-Plata et al., 2021)

A1CF rs10821905 (+) Regulates uric acid levels by modulating dyslipidemia and alcohol
metabolism

Köttgen et al. (2013b)

MLXIP rs7953704 (un) Transcription factor that might regulate serum uric acid through
the pentose phosphate pathway

Boocock et al. (2020)

MLXIPL rs1178977 (un) Responsible for regulating glucose flux and potentially affects the
renal clearance of urate

(Hutton et al., 2018; Boocock et al., 2020)

STC1 rs17786744 (+) Promotes the precipitation of monosodium urate crystals to
activate the inflammatory response

(Köttgen et al., 2013b; Fernández-Torres et al., 2019)

CLNK rs16869924 (+)
rs2041215 (+)
rs1686947 (+)

Regulates B-cell development and activation and mediates the
formation of immune complexes through the STAT signaling
pathway and might serve as a diagnostic and prognostic marker

(Siniachenko et al., 1984; Wang et al., 2002; Marrero et al.,
2006; Jin et al., 2015)

SLC22A6 rs3017670 (un)
rs2276300 (un)
rs4149171 (un)
rs4149170 (un)

Might be associated with the regulation of tryptophan metabolism Granados et al. (2021)

BCAS3 rs11653176 (+) Activates estrogen receptor alpha to regulate sex hormone levels
affecting uric acid levels

Sakiyama et al. (2018)

SLC16A9 rs12356193 (un) Might be related to sex hormone regulation Köttgen et al. (2013a)
HCRTR2 rs4715517 (un) Might affect the immune system by regulating sleep rhythms (Lane et al., 2017; Dashti et al., 2019)
SLC22A11 rs2078267 (+) Sandoval-Plata et al. (2021)

(Continued on following page)
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the expression of MAF transcriptional regulator RNA
(MAFTRR)) and the distal signal cis-eQTL (controls the
expression of LINC01229). The MAFTRR lncRNA region
binds to the MAF promoter and recruits the histone imprint
H3K27me3 to repress MAF transcription, whereas the removal of
both LINC01229 and MAFTRR promotes MAF expression
(Leask and Merriman, 2021).

HNF4G also encodes a transcription factor involved in the
positive regulation of transcription by RNA polymerase II. It has
a lower transcriptional activation potential than that of HNF4A.
An HNF4G SNP (rs2941484) can increase gout susceptibility in
the Chinese population and mainly affects serum uric acid
concentration and gout risk in men (Dong et al., 2017). In
Chinese Han men, the TT genotype of the HNF4G rs2941484
may represent a gender-specific genetic marker of hyperuricemia.
The distribution frequency of TT and CC+CT alleles in
hyperuricemic and normokalemic males differed considerably
(p = 0.011) in the rs2941484 recessive model (Chen et al., 2017).
miR-34a can regulate HNF4G to control the survival,
proliferation, and invasion of bladder cancer cells (Sun et al.,
2015) and might bind to endogenous fatty acids to regulate fatty
acid metabolic pathways affecting gout (Wisely et al., 2002).

ABCG2 and Polycystin 2 (PKD2)
ABCG2 is a multispecific heterotrimeric and endogenous
transporter protein expressed mainly in the kidney, liver, and
gastrointestinal tract that affects drug metabolism and plays a key
role in uric acid excretion. Its variants can lead to destabilization
of the nucleotide-binding structural domain of ABCG2, resulting
in its reduced expression and dysfunction, leading to the
inadequate renal excretion of urate, causing hyperuricemia and
gout (Wong et al., 2016). ABCG2 variants (rs2231142) are
variants associated with gout and an increased frequency of
erythema (Onuora, 2020). Individuals carrying the ABCG2
SNP (rs2231142) have a nearly 2-fold increased susceptibility
to gout (Lee et al., 2019), and alcohol consumption independently
increases the risk of gout stones in the Han Chinese population in
Taiwan (Tu et al., 2014). The alpha kinase 1 variant in
combination with the ABCG2 SNP (rs2231142), the SLC2A9
SNP (rs1014290), or the SLC22A12 SNP (rs475688 and
rs3825016) is linked to gout in the recessive model (Tu et al.,

2018). ABCG2 SNP (rs2231142) significantly increased the risk of
gout in Asians (dominant model: OR = 2.64, 95% CI = 2.04–3.43,
p = 0.02 for heterogeneity; recessive model: OR = 3.19, 95% CI =
2.56–3.97, p = 0.28 for heterogeneity; co-dominant model: OR =
1.37, 95% CI = 1.18–1.59, p = 0.09 for heterogeneity) as well as
other populations (dominant model: OR = 1.85, 95% CI =
1.20–2.85, p < 0.0001 for heterogeneity; recessive model: OR =
3.78, 95% CI = 2.28–6.27, p = 0.19 for heterogeneity; co-dominant
model: OR = 1.48, 95% CI = 1.26–1.74, p = 0.19 for heterogeneity)
(Li et al., 2015a). The ABCG2 SNP (rs72552713) also significantly
increased the risk of gout in Asians (dominant model: OR = 3.87,
95% CI = 2.07–7.24, p = 0.06 for heterogeneity) (Li et al., 2015a).
ABCG2 and PKD2 were found to have epistatic interactions, and
two SNP pairs (rs2728121:rs1481012 and rs2728121:rs2231137)
were mainly identified as associated with the serum urate
concentration or risk of hyperuricemia (Dong et al., 2020).
ABCG2 variants might affect disease progression through
inflammatory pathways, in addition to lowering uric acid
excretion. The knockdown of ABCG2 in endothelial cells leads
to higher IL-8 release, which further leads to inflammation (Chen
et al., 2018). ABCG2 deficiency in hepatocytes leads to
mitochondrial dysfunction and dynamics. Owing to increased
intracellular protoporphyrin IX/DRP-1-mediated mitochondrial
fission, abnormal protein function results in aggregate formation,
leading to excessive reactive oxygen species activation of the
NLRP3 inflammasome, which plays a role in the development of
gout (Lin et al., 2013). Mitochondrial dysfunction can induce the
NLRP3 inflammasome in gout to promote IL-1β and
inflammation (Gosling et al., 2018). In addition, monosodium
urate crystals also disrupt proteasomal degradation, leading to
increased P62 expression, impaired cellular autophagy, and the
inability to clear dysfunctional proteins, thus leading to
aggregates formation. An ABCG2 SNP (rs2231142) enhances
this autophagic impairment, diminishes the formation of
neutrophil extracellular traps, and aggravates gout via the
overactive release of the NLRP3 inflammasome and IL-1β.
Neutrophil extracellular traps can degrade cytokines and
chemokines to limit inflammation (Luciani et al., 2010; Shi
et al., 2012; Choe et al., 2014; Schauer et al., 2014). PKD2 is
localized near ABCG2 and encodes a urate transporter protein.
PKD2 variants in autosomal dominant polycystic kidney disease

TABLE 1 | (Continued) Gene variants associated with hyperuricemia and gout.

Items SNPs and Its
Potential
Impact

Molecular Mechanisms and
Associations

Ref

Can be used to predict the transition from asymptomatic
hyperuricemia to gout

MEPE rs114580333 (+) Can be used to predict the transition from asymptomatic
hyperuricemia to gout

Sandoval-Plata et al. (2021)

PPM1K-DT rs4693211 (+)
rs28793136 (+)
rs1545207 (+)

Can be used to predict the transition from asymptomatic
hyperuricemia to gout

Sandoval-Plata et al. (2021)

LOC105377323 rs114791459 (+) Can be used to predict the transition from asymptomatic
hyperuricemia to gout

Sandoval-Plata et al. (2021)

(+), The SNP promotes hyperuricemia or gout (-), The SNP inhibits hyperuricemia or gout (un), The SNP has unknown or contradictory effects on hyperuricemia or gout.
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result in PKD2 transporter dysfunction and elevated serum urate
concentrations, which are associated with hyperuricemia and
gout (Mejías et al., 1989; Puig et al., 1993). A transcript assay
revealed that PDK2 and ABCG2 gene expression levels are
positively correlated; thus, the regulators of PDK2 interact
with ABCG2 to indirectly influence gout incidence (Dong
et al., 2020).

SLC16A9, SLC17A1, and Shieldin Complex
Subunit 2 (FAM35A)
A SLC16A9 SNP (rs2242206) can affect the function of its
encoded monocarboxylate transporter 9 (MCT9) protein,
resulting in inadequate urate excretion in the kidney (Kolz
et al., 2009; Nakayama et al., 2013). SLC2A9 is expressed in
the liver, kidney, and bone cells and transports various
substances, including urates and sugars. The SNP rs734553
alters protein affinity to increase the risk of hyperuricemia and
gout (Yi et al., 2018).

SLC17A1 encodes the NPT1 protein. The SNP rs1183201
appears to have a protective effect against diseases by
enhancing urate excretion and transport (Kolz et al., 2009).
A meta-analysis of GWASs on serum uric acid and gout in
28,283 Caucasian individuals found genome-wide significance
for the SLC17A1 SNP with serum urate levels (Yang et al.,
2010).

FAM35A variants are associated with gout and hyperuricemia
via a mechanism that might involve a reduction in uric acid
excretion during renal excretion (Nakayama et al., 2017).
FAM35A encodes a DNA repair protein expressed mainly
in the distal tubules of the kidney and has not been directly
linked to uric acid metabolism in functional assays.
Therefore, there might be other indirect mechanisms and
the potential involvement of kidney function in the
regulation of uric acid excretion (Nakayama et al., 2017;
García-Nieto et al., 2022).

SLC22A12
SLC22A12 encodes the transporter protein URAT1, which is
primarily responsible for urate reabsorption following urine
filtration. Tin et al. identified 97 rare variants of SLC22A12, of
which functional validation of p. Trp325, p. Cys405, and p. Met467
variants revealed that they cause loss of function of the encoded
protein affecting serum uric acid levels. Individuals carrying
SLC22A12 variants have a lower risk of developing gout (Tin
et al., 2018). Linkage disequilibrium between SLC22A12 and
SLC22A11 might be associated with uric acid in Caucasian
individuals (Yang et al., 2010). Novel G65W variants of
SLC22A12 (rs12800450) are characterized as functional alleles
with an approximately 6–10-fold greater effect on uric acid than
that observed for common variants in SLC22A12 (Tin et al.,
2011). Existing drugs have been developed to target URAT1, such
as probenecid and benzbromarone. In addition, a new URAT1
inhibitor for the treatment of chronic gout, lesinurad
(Zurampic®; RDEA594), was approved in the United States
and Europe in 2016 (Miner et al., 2016). However, lesinurad
alone appears to impair renal function and should be used in

combination with xanthine oxidase inhibitors, and recipients
should be closely monitored for renal function (Narang and
Dalbeth, 2018). The alcohol dehydrogenase 1B (Class I), beta
polypeptide (ADH1B) SNP (rs129984) might increase the
NADH/NAD ratio to promote lactate production by
facilitating ethanol conversion to highly reactive acetaldehyde,
thereby increasing uric acid reabsorption in synergy with the
SLC22A12-encoded transporter protein URAT1 (Lieber et al.,
1962; Edenberg, 2007; Macgregor et al., 2009; Sandoval-Plata
et al., 2021).

Solute Carrier Family 22 Member 6
(SCL22A6)
SLC22A6 primarily encodes organic anion transporter 1 (OAT1)
involved in eliminating endogenous and exogenous organic
anions from the kidney. Tanner et al. identified multiple
SNPs in SLC22A6 associated with hyperuricemia, including
rs3017670, rs2276300, rs4149171, and rs4149170. Strong
association studies with gout have been performed;
however, there is potential evidence linking it to gout
(Tanner et al., 2017). Granados et al. found altered
tryptophan metabolite profiles in SLC22A6-knockout
mice, including several gut microbiota metabolites that
are thought to be deleterious for chronic kidney disease.
Probenecid, a gout treatment drug, elevates the levels of
circulating tryptophan metabolites. Different variants affect
the ability of OAT1 to regulate tryptophan metabolism, thus
potentially causing gout. Therefore, based on the
relationship between OAT1 and tryptophan metabolism, it
might be a potential future direction for targets of drug
development (Granados et al., 2021). Liu et al. also
demonstrated that OAT1 is associated with various
metabolic processes, including the tricarboxylic acid cycle,
tryptophan metabolism, and other amino acids, fatty acids,
and prostaglandins (Liu et al., 2016).

SLC2A9
SLC2A9 mainly encodes the GLUT9 protein. The missense
variants (rs16890979) of SLC2A9 showed an association with
uric acid and gout (Dehghan et al., 2008). On the one hand,
SLC2A9 is related to regulation by the transcription factor
HNF4A. HNF4A overexpression enhances the activity of
SLC2A9. The mRNA expression levels of HNF4A and SLC2A9
are significantly correlated, and there is an interaction between
them (Prestin et al., 2014). The contribution of the coding
sequence variants of SLC2A9 to overall uric acid metabolism is
still unknown because of the presence of linkage disequilibrium
and heterogeneity, but 24 annotated nonsynonymous
variants have been identified (Reginato et al., 2012). The
effects of variants in SLC2A9 (Val253Ile, and Arg265His) are
also inconsistent based on studies on gout and
hyperuricemia, and further studies are required (Hollis-
Moffatt et al., 2009; Tu et al., 2010; Urano et al., 2010;
Reginato et al., 2012). On the other hand, SLC2A9 can
exchange uric acid with glucose and fructose, which are
involved in gluconeogenesis. This may also have a
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potential impact on hyperuricemia and gout (Batt et al.,
2014).

EFFECT OF GENE VARIANTS RELATED TO
GLUCOLIPID METABOLISM ON
HYPERURICEMIA AND GOUT
Multiple metabolic factors, including abnormalities in glucose
regulation, lipid levels, obesity, and arterial hypertension, are
associated with primary gout and hyperuricemia (González-
Senac et al., 2014). The glycolytic pathway leads to increased
serum uric acid levels through various mechanisms. In addition,
insulin resistance and high blood glucose levels can directly affect
uric acid clearance in the kidneys (Padova et al., 1964).
Hyperinsulinemia increases urate reabsorption in the kidney
and decreases renal uric acid and sodium excretion, and this
effect can also occur at sites other than the proximal tubule
(Quinones Galvan et al., 1995; Maaten et al., 1997). Studies have
demonstrated that a high intake of fructose or other high-calorie
foods can dramatically increase serum uric acid levels beyond
what the body can typically handle, resulting in urate deposition
with a severe disruption in hepatocyte metabolism. The rapid
intake of fructose can also cause an increase in blood lactate,
probably via a mechanism involving blockage of the
gluconeogenic pathway caused by the inhibition of glucose-
phosphate isomerase mediated by fructose 1-phosphate,
leading to the excessive production of lactic acid in
hepatocytes (Perheentupa and Raivio, 1967). In addition,
fructose phosphorylation in the liver can increase serum uric
acid levels by interacting with aldolase B, ATP, and adenosine
monophosphate deaminase 2 (AMPD2) (Lanaspa et al., 2011).

Dyslipidemia, insulin resistance, hyperuricemia, and gout are
interrelated (Schmidt et al., 1996). Excessive alcohol intake,
but not including wine, has been shown to increase serum
uric acid levels in several studies (Choi and Curhan, 2004; Yu
et al., 2008). Some alcohols, such as beer, contain high levels of
purines, and excessive intake can increase uric acid synthesis,
leading to hyperuricemia and resistance to some of the
antioxidant components of the plasma (van der Gaag et al.,
2000; Nishioka et al., 2002). The specific underlying
mechanism might involve the degradation of adenosine
triphosphate to monophosphate during alcohol metabolism,
thereby increasing adenosine and uric acid synthesis. The
oxidation of alcohol (ethanol) increases blood lactate, further
decreases uric acid excretion, and potentially affects lipid
metabolism, thereby increasing the risk of hyperuricemia and
gout (Nakamura et al., 2012). Multiple gene variants are
associated with glucose metabolism and are potentially
associated with hyperuricemia and gout.

GCKR, MLX Interacting Protein (MLXIP),
and MLX Interacting Protein-Like (MLXIPL)
GCKR encodes the GCKR subfamily of proteins that are
regulatory proteins that inhibit glucokinase in the liver and
pancreatic islet cells by binding noncovalently with the
enzyme to form inactive complexes. GCKR variants
(rs1260326) are missense variants that serve as possible
candidate causal variants for which the leucine allele leads to
increased glucokinase GCK activity, resulting in increased
glycolytic flux, which facilitates hepatic glucose metabolism
(Beer et al., 2009). A GCKR SNP (rs780094) is strongly

FIGURE 2 | Potential relationship between gene variants and glucolipid metabolism and NLRP3 inflammasome-mediated inflammatory pathways in hyperuricemia
and gout. The ingestion of fructose increases uric acid formation via the gluconeogenic pathway. In addition, triglycerides are also produced, increasing free fatty acid
contents via the lipid metabolic pathway. Free fatty acids and monosodium urate crystals together stimulate downstream TLR2/4 and NLRP3 inflammasome formation,
facilitate the of release IL-1β, and inhibit P62-mediated activation of autophagy and NETosis, ultimately promoting inflammation. Gene variants have different effects
on different processes.
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associated with gout in Polynesian, European, Japanese, and
Chinese populations (Wang et al., 2012; Köttgen et al., 2013a;
Urano et al., 2013). In the recessive model,GCKR SNP (rs780094)
was shown to be associated with the risk of hyperuricemia in men
in the Uyghur population of Xinjiang in China (p = 0.015, OR =
1.311) (Wang et al., 2018). GCKR and NFAT5 are associated with
glucose metabolism or the insulin response, and GCKR increases

the metabolites that cause gout-related factors through glycolysis
(Köttgen et al., 2013a; Rasheed et al., 2017). MLXIP encodes a
protein that forms a heterodimer with MAX dimerization
protein. It regulates the genes that moderate cellular glucose
levels.MLXIPL encodes aMyc/Max/Mad superfamily basic helix-
loop-helix leucine zipper transcription factor that forms a
heterodimeric complex. That binds and activates the

TABLE 2 | Gene tests in clinical trials.

Items ClinicalTrials.gov
identifier

Condition or Disease Intervention/Treatment Aims

HNF4A NCT01181505 Genotype guided (HNF4a), healthy
subjects

Tolterodine To study the effect of the HNF-4A G60D variant on the
CYP2D6 activity in vivo

NCT04239586 Maturity onset diabetes in the young
(MODY)

Sulfonylurea To detect the association of the HNF4A variant with insulin
secretion in MODY.

ABCG2 NCT03710395 Hypertensive breastfeeding women Nifedipine The present study aimed to evaluate the effect of ABCG2
c.421C>A on nifedipine breast milk/plasma concentration
ratio in hypertensive breastfeeding women

NCT04410965 Multiple sclerosis Teriflunomide To evaluate the relationship between ABCG2 mutation
(rs2231142) and teriflunomide exposure

NCT04608344 Rheumatoid arthritis Atorvastatin, pravastatin,
rosuvastatin, filgotinib

To evaluate the effect of filgotinib on a mixed organic anion
transporting polypeptide/cytochrome P450 3A (OATP/
CYP3A), OATP/breast cancer resistance protein (BCRP), and
OATP substrates

PKD2 NCT02112136 Autosomal dominant polycystic
kidney disease (ADPKD)

Blood collection To identify families with ADPKD, characterize the phenotype,
and screen for mutations in PKD2 genes

SLC22A12 NCT04040907 Gout XNW3009, placebo XNW3009 is a small molecule hURAT1 inhibitor. The study
investigates the safety, tolerability, pharmacokinetics, and
pharmacodynamics of XNW3009

NCT02815839 Gout, hyperuricemia SHR4640, placebo SHR4640 is a URAT1 inhibitor. The study assesses the safety,
tolerance, food effect, and pharmacokinetic and
pharmacodynamic properties of single-dose administration of
SHR4640 in healthy volunteers

NCT01883167 Healthy RDEA3170, febuxostat,
placebo

To evaluate the potential pharmacokinetic and
pharmacodynamic interaction between the xanthine oxidase
inhibitor febuxostat and the investigational URAT1 inhibitor
RDEA3170

NCT03316131 Asymptomatic hyperuricemia RDEA3170, febuxostat,
dapagliflozin, placebo

To assess the effect of intensive uric acid lowering therapy
with RDEA3170, febuxostat, and dapagliflozin on urinary
excretion of uric acid, in asymptomatic hyperuricemic patients

GCKR NCT01023750 Hypertriglyceridemia, insulin
resistance

Fenofibrate To study the pretreatment genotyping at GCKR loci and
response to fenofibrate therapy

PNPLA3 NCT04640324 Non-alcoholic fatty liver disease,
insulin resistance

Nutraceutical therapy To explore the effect of 303 mg of silybin-phospholipids
complex, 10 mg of vitamin D, and 15 mg of vitamin E twice a
day for 6 months in NAFLD patients carrying PNPLA3-
rs738409, TM6SF2-rs58542926, and MBOAT7-rs641738
genetic variants

NCT04483947 Non-alcoholic steatohepatitis
(NASH)

AZD2693, placebo AZD2693 is a PNPLA3 inhibitor. This study is intended to
investigate the safety and tolerability, pharmacokinetics, and
pharmacodynamics of AZD2693 in NASH patients carrying
PNPLA3-rs738409

GNAS NCT04671719 Fibrous dysplasia, albright
syndrome,
adult children
hypoparathyroidism
hyperparathyroidism
pseudo hypoparathyroidism

blood sample To study the full spectrum of PTH and GNAS pathologies

SLC22A6 NCT02743260 Healthy Pitavastatin, metformin,
digoxin,
Adefovir
sitagliptin

To establish in vivo phenotyping procedures for organic
anionic transporter polypeptide 1B1 (OATP1B1), organic
cation transporters 1 and 2 (OCT1/2), multidrug and toxic
compound extrusion transporters 1 and 2, kidney splice
variant (MATE1/2K), organic anion transporters 1 and 3
(OAT1/3), and p-glycoprotein (P-gp) transporters via a
cocktail approach
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carbohydrate response element-binding protein motif within the
triglyceride synthesis gene promoter in a glucose-dependent
manner. MLXIP and MLXIPL variants can also correlate with
serum urate concentrations (Boocock et al., 2020). MLXIPL is
primarily associated with cellular carbohydrate metabolism and
glycolytic processes. It is directly responsible for regulating
glucose flux, interpreted as the pentose phosphate pathway
producing ribose 5-phosphate, an essential precursor of de
novo purine synthesis, and is involved in the production of
uric acid (Köttgen et al., 2013a). In addition, the
overproduction of lactate affects the transmembrane transport
of urate, leading to impaired clearance of urate by the kidney (Luo
et al., 2005; Tong et al., 2009; Levine and Puzio-Kuter, 2010).

Patatin-Like Phospholipase
Domain-Containing 3 (PNPLA3) and Insulin
Like Growth Factor 1 Receptor (IGF1R)
PNPLA3 encodes an active lipase that hydrolyzes various lipids
and is associated with oxidative stress (Huang et al., 2011). A
PNPLA3 SNP (rs738409) is associated with hyperuricemia in a
Japanese population (Nakatochi et al., 2019a). The rs738409-G
allele was found to be associated with a reduced risk of gout in
phenome-wide association studies (Diogo et al., 2018). This study
indicated that the PNPLA3 SNP (rs738409) enhances
susceptibility to metabolism-related fatty liver disease
(MAFLD) and is involved in the pathology of liver fibrosis
(Kawaguchi et al., 2018; Namjou et al., 2019). In the recessive
model, the PNPLA3 SNP (rs738409) was associated with NAFLD
in different ethnic groups in China: Han (OR = 1.84, 95% CI:
1.03–3.27, p = 0.036), Uyghur (OR = 2.25, 95% CI: 1.23–4.09, p =
0.006) (Zhang et al., 2014). IGF1R encodes the insulin-like growth
factor I receptor. This receptor binds insulin-like growth factor
with a high affinity. It has tyrosine kinase activity. The insulin-like
growth factor I receptor plays a critical role in transformation
events. IGF1R SNPs (rs12908437, rs659854, rs1291127, and
rs4966024) might correlate with blood uric acid levels by
affecting the body mass index (BMI) (Park et al., 2021). An
abnormal BMI is indicative of abnormal lipid metabolism, and
plasma uric acid is a powerful antioxidant (Ames et al., 1981).
Thus, PNPLA3 and IGF1R variants might be linked to
hyperuricemia and gout by affecting lipid metabolism and
oxidative stress.

APOBEC1 Complementation Factor (A1CF)
A1CF encodes a protein that may primarily act as an RNA
binding subunit and be involved in RNA editing or
processing. Rasheed et al. found that both a GCKR SNP
(rs780094) and A1CF SNP (rs10821905) interact with alcohol
exposure to increase the risk of gout in a European population
under alcohol exposure conditions, suggesting that the
involvement of GCKR and AICF in alcohol metabolism
promotes the development of gout (Rasheed et al., 2017). The
A1CF SNP has been previously associated with hyperuricemia
(Köttgen et al., 2013b). Makoto et al. further investigated the
association between the A1CF SNP (rs10821905) and gout in
Japanese individuals. They found that it was significantly

associated with elevated serum uric acid and gout via a
mechanism that might involve the regulation of dyslipidemia
and uric acid metabolism (Kawaguchi et al., 2021). Further
investigation of the mechanism of interaction between alcohol
and AICF could suggest that the metabolite acetate of alcohol
(ethanol) leads to the increased production of diacylglycerol
and further activates protein kinase C and AICF
phosphorylation in the nucleus. This leads to the increased
production of apolipoprotein B (ApoB)-48 and decreased
production of ApoB-100 at the transcriptional level, further
causing increased free fatty acid production from very-low-
density lipoproteins/triglycerides, which stimulates
downstream TLR, the NLRP3 inflammasome, and IL-1β to
activate the inflammatory response and produce more
monosodium urate crystals (Joosten et al., 2010; Jump et al.,
2013; Rasheed et al., 2017).

Lipoprotein Receptor-Related Protein 2
(LRP2)
LRP2 encodes an endocytic receptor protein, low-density
lipoprotein-related protein 2, which is associated with multiple
ligands such as ApoB, lipoprotein lipase, and lactoferrin. It is
expressed in numerous tissues, such as proximal renal tubules
(Christensen and Birn, 2002). LRP2 SNPs (rs2390793, rs2544390,
and rs16856823) are associated with blood uric acid (Kamatani
et al., 2010; Kanai et al., 2018; Nakatochi et al., 2019b; Tin et al.,
2019b) and increased gout susceptibility in Japanese (Akashi
et al., 2020) and Chinese populations (Dong et al., 2015).
However, its variants might lead to renal tubular dysfunction,
affecting the renal reabsorption of uric acid (Kamatani et al.,
2010; Kanai et al., 2018; Nakatochi et al., 2019b; Tin et al., 2019b).
In contrast, rs2544390 was shown to have a non-additive
interaction effect with alcohol consumption (beer or spirits),
which can increase the risk of serum urate accumulation and
gout in alcohol drinkers (Rasheed et al., 2013). However, there are
additional contradictory results showing that LRP2 is not
associated with gout susceptibility (Nakayama et al., 2014).
LRP2 can also regulate the activity of lipoprotein lipase to
modulate lipid metabolism, which is associated with uric acid
metabolism (Rasheed et al., 2013). Additional experiments are
needed to clarify the potential biological mechanisms and links
between LRP2 and hyperuricemia and gout.

NLRP3 INFLAMMASOME AND
INFLAMMATION-ASSOCIATED GENES
PROMOTE THE PROGRESSION OF
HYPERURICEMIA TO GOUT
Pyroptosis, involving the NLRP3 inflammasome, can lead to cell
destruction and the release of the pro-inflammatory factors IL-18
and IL-1β, thus promoting inflammation, which has been
discussed in rheumatoid arthritis and MAFLD. Both have
similarities to gouty arthritis in terms of disease mechanisms
(Zhao et al., 2021a; Zhao et al., 2021b). As mentioned earlier, the
excessive deposition of uric acid leads to the appearance of
monosodium urate crystals, which are stimulated by the
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NLRP3 inflammasome and inflammatory factors to progress
further toward inflammation. Many genetic variants could be
involved in this (Figure 2).

IGF1R
IGF1R might be associated with activation of the NLRP3
inflammasome in gout. Spadaro et al. found that macrophages
lacking the IGF1R have reduced NLRP3 activation and a
controlled inflammatory response (Spadaro et al., 2016). Liang
et al. found that IGF1R primarily regulates vascular homeostasis
and precise endothelial functions and that IGF1R deficiency
impairs endothelial function in experimental mice and
increases the degree of fibrosis in renal disease, which is
associated with a poor wound healing response owing to
repeated irritation from inflammation (Liang et al., 2015).
Thus, both studies suggest that IGF1R variants might
influence gout by regulating inflammation. In addition, a
IGF1R SNP (rs7193778) and PDZK1 SNP (rs112129861) could
interact with each other, further enriching our understanding of
the genetic and biological mechanisms underlying uric acid
accumulation and gout (Fernández-Torres et al., 2019).

Stanniocalcin 1 (STC1)
STC1 encodes stanniocalcin-1, a glycoprotein that plays a role in
multiple biological responses, including bone development,
angiogenesis, and inflammatory responses (Yeung et al., 2012).
Studies have reported that STC1 is associated with elevated serum
uric acid levels (Köttgen et al., 2013b). An STC1 SNP
(rs17786744) might cause the crystalline precipitation of
sodium urate to trigger the inflammatory process, further
exacerbating cartilage damage and promoting knee
osteoarthritis, which could be associated with the inflammatory
response in gouty arthritis. In addition, an interaction between an
STC1 SNP (rs17786744) and GCKR SNP (rs1260326)
synergistically promotes crystalline precipitation with urate-
promoting gout (Fernández-Torres et al., 2019).

THE ASSOCIATION BETWEEN GENETIC
VARIANTS INVOLVED IN OTHER
MECHANISMS AND HYPERURICEMIA AND
GOUT

Various factors, such as coffee intake, tryptophan metabolism,
B-cell development and activation, and sex hormones, are
interlinked with genetic variants that play a role in
hyperuricemia and gout. Hutton et al. found a negative
association between coffee intake and gout. ABCG2, GCKR,
MLXIPL, and cytochrome P450 family 1 subfamily A member
2 (CYP1A2) are variants associated with coffee consumption
habits, and GCKR and ABCG2 are associated with low coffee
intake and a high gout risk. Coffee consumption habits indirectly
affect the association between gene variants and gout. In contrast,
the direct effect of these gene variants on gout is still possible
through other mechanisms, as described previously herein
(Hutton et al., 2018). Evidence from studies involving genetic

variants associated with other mechanisms is relatively scarce,
and further research is needed in the future. Therefore, in this
section, we summarize briefly the association of other
mechanisms with gout, including sleep rhythm, immune
response and B-cell activation (hypocretin receptor 2
(HCRTR2), cytokine-dependent hematopoietic cell linker
(CLNK), guanine nucleotide-binding protein a-stimulating
polypeptide (GNAS)), sex hormones (breast cancer-amplified
sequence 3 (BCAS3)).

HCRTR2, CLNK and GNAS
The protein encoded by HCRTR2 is a G protein-coupled receptor
involved in the regulation of feeding. The encoded proteins bind to
orexin A and orexin B. A HCRTR2 SNP (rs4715517), a variant
associated with serum uric acid, appears to be specific to Asian
populations with significantly higher allele frequencies than those
in European populations. Differences in allele frequencies might
contribute to interethnic differences in serum uric acid levels (Park
et al., 2021). HCRTR2 is mainly involved in the sleep rhythm of the
body (Lane et al., 2017; Dashti et al., 2019). With the accelerated
pace of life in modern society, irregular sleep affects the immune
system and the function of multiple organs, including the kidneys
and liver. Therefore, genes regulating sleep rhythms might be
potentially associated with hyperuricemia and gout. CLNK, a
member of the SLP76 family, plays an essential role in
integrating immunotyrosine-based activation motif-bearing
receptors and integrins and is a positive regulator of immune
response signaling (Yu et al., 2001; Wu and Koretzky, 2004). The
allele “G" of CLNK SNP (rs2041215 and rs1686947) was identified
as susceptibility genes for gout in the Chinese population by using
dominant model (OR 1.66; 95% CI 1.04–2.63; p = 0.031) (OR 2.19;
95% CI 1.38–3.46; p = 0.001) and additive model (OR 1.39; 95% CI
1.00–1.93; p = 0.049) (OR 1.67; 95% CI 1.19–2.32; p = 0.003),
respectively (Jin et al., 2015). ACLNK SNP (rs16869924) within the
established SLC2A9 gout-associated locus was shown to increase
the risk of gout in Polynesian and Chinese Tibetan individuals,
genetically independent on the SLC2A9 association signal (Lan
et al., 2016; Ji et al., 2021). It is hypothesized that CLNK mainly
regulates B-cell development and activation and co-mediates the
formation of immune complexes through the STAT signaling
pathway to promote gout, as suggested be a combination of
related studies (Siniachenko et al., 1984; Wang et al., 2002;
Marrero et al., 2006). GNAS encodes GSa protein, which
activates downstream cyclic AMP (cAMP) production and
promotes signaling (Turan and Bastepe, 2015; Tafaj and
Jüppner, 2017). GNAS variants predispose patients to an
abnormal synovial environment and the deposition of uric acid
crystals, promoting the formation of gout and related osteoarthritis
(Rhyu and Bhat, 2021).

BCAS3
BCAS3 encodes proteins that are associated with several
functions, such as angiogenesis, activation and recruitment of
cell division cycle 42, reorganization of the actin cytoskeleton at
the leading edge, regulation of cell polarity, the endothelial cell
migration, filopodia formation, estrogen receptor response, and
autophagy.
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Rs11653176 in BCAS3 is significantly associated with uric acid
levels and gout in Japanese and Chinese Han populations (Li
et al., 2015b; Sakiyama et al., 2018). BCAS3 can activate estrogen
receptor alpha (Sakiyama et al., 2018). Studies have shown that
sex hormones can affect uric acid levels (Adamopoulos et al.,
1977). Postmenopausal women might have elevated uric acid
levels owing to a decrease in estrogen, especially estradiol, because
estrogen is more effective in promoting urate clearance by the
kidneys (Hak and Choi, 2008). Similarly, the effects of some gene
variants on serum uric acid levels and gout appear to be sex-
specific. For example, variants in SLC2A9 and ABCG2, which are
associated with urate concentrations, are sex-specific (Köttgen
et al., 2013a). An SLC16A9 SNP (rs12356193) was found to be
weakly associated with gout but strongly associated with blood
uric acid and showed a sex-specific difference (Köttgen et al.,
2013a). It is thus possible that sex hormones primarily contribute
to sex differences in disease or drug efficacy.

Gene Variants as Potential Diagnostic
Markers of Drug Efficacy and Prognosis
A case-control association study of gout in Chinese populations
revealed that CLNK SNPs (rs2041215 and rs1686947) are
associated with various clinicopathological parameters and
might have potential as diagnostic and prognostic markers for
patients with gout (Jin et al., 2015). Patients with gout carrying an
ABCG2 SNP (rs2231142) respond poorly to allopurine therapy
(Wen et al., 2015; Roberts et al., 2017; Wallace et al., 2018). A
GWAS and polygenic risk scores in patients with asymptomatic
hyperuricemia and gout revealed that ABCG2 (rs2231142,
rs13120400, and rs7672194), SLC2A9 (rs16890979 and
rs16891234), SLC22A11 (rs2078267), GCKR (rs1260326),
matrix extracellular phosphoglycoprotein (MEPE)
(rs114580333), protein phosphatase, Mg2+/Mn2+ dependent
1 K-divergent transcript (PPM1K-DT) (rs4693211, rs28793136,
and rs1545207), LOC105377323 (rs114791459), and alcohol
dehydrogenase 1B (Class I), beta polypeptide (ADH1B)
(rs1229984) SNPs can be used as markers of asymptomatic
hyperuricemia to identify transition predictors (Sandoval-Plata
et al., 2021). However, little research has been conducted on
genetic variants as markers to predict disease progression and
drug efficacy, as serum uric acid levels can effectively predict the
risk of gout. However, this might provide more relevant results
that could be uncovered through in-depth studies in the future.

CONCLUSION

Gout is a form of arthritis that damages patients’ physical and
mental health and causes severe pain during acute attacks.
Identifying individuals at risk in the early stages of the disease
is essential to prevent and reduce hyperuricemia and gout and to
provide pharmacological and lifestyle interventions to better treat
patients with clinically diagnosed gout. The identification of
genetic variants might help in disease prevention and
intervention. Many GWASs have performed to uncover loci
related to hyperuricemia and gout, mostly linking it to uric

acid transporter proteins, such as the widely studied URAT1
and GLUT9. Some drugs have been used as targets for drug
development (see Table 1). We also summarize the latest clinical
trials of these genes, and some of these were conducted in the
context of gout, which is certainly instructive. Although some
trials were not investigated in the context of gout, they have some
informative implications for the clinical management of gout,
which urgently needs to be studied in depth in the context of gout
in the future (see Table2). Currently, the most elucidated is the
effect of variants in the uric acid transporter protein gene on
hyperuricemia and gout. We aim to increase our understanding
of the genetic mechanisms behind the disease by adding
descriptions of other genes of potential clinical value. All of
these genes are undoubtedly promising and essential.
Associations between genetic variants and traits are often
located in regions of strong linkage disequilibrium and aided
by eQTL analysis and fine localization studies, these can be
exploited to identify true causal variants of gout in complex
genetic backgrounds. Genetic-related issues in multiple disease
contexts still need attention and elucidation, such as disease-
specific genetic variants in different ethnic backgrounds, genetic
variants based on sex differences, rare and low frequency
variants, functional polymorphisms in genetic susceptibility
genes, and epigenetic mechanisms. With the rapid
development of modern molecular biotechnologies and multi-
omics techniques, these issues require further clarification. In
addition, attention should be paid to the interconnection
between hyperuricemia/gout and other diseases, such as
metabolic syndrome and cardiovascular diseases, as well as
the role of genetic factors in these diseases. Elucidating these
genetic issues will contribute to the improvement of clinical
outcomes and precision medicine.
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GLOSSARY

GWAS genome-wide association studies

GBMI Global Biobank Meta-analysis Initiative

URAT1 urate transporter-1

GLUT9 glucose transporter 9

OAT4 organic anion transporter 4

OAT10 organic anion transporter 4

ABCG2 TP-binding cassette superfamily G member 2

ABCC4 ATP Binding Cassette Subfamily C Member 4

ATP adenosine triphosphate

TLR Toll-like receptor

NLRP3 nod-like receptor pyrin domain 3

NF-kB nuclear factor-κB

IL interleukin

NSAIDs non-steroidal anti-inflammation drugs

SLC2A9 solute carrier family 2 member 9

SLC22A11 solute carrier family 22 member 11

SLC17A1 solute carrier family 17 member 1

SLC22A12 solute carrier family 22 member 12

MAF MAF BZIP transcription factor

SLC2A12 solute carrier family 2 member 12

SLC16A9 solute carrier family 16 member 9

GCKR glucokinase (hexokinase 4) regulator

PDZK1 PDZ domain-containing 1

HNF4A hepatocyte nuclear factor 4 alpha

SNP single-nucleotide polymorphism

C-MAF C-MAF BZIP transcription factor

cis-eQTL cis-expression quantitative trait loci

MAFTRR MAF transcriptional regulator RNA

HNF4G hepatocyte nuclear factor 4 gamma

PKD2 polycystin 2

ADH1B alcohol dehydrogenase 1B (Class I), beta polypeptide

MCT9 monocarboxylate transporter 9

FAM35A shieldin complex subunit 2

AMPD2 adenosine monophosphate deaminase 2

MLXIP MLX interacting protein

MLXIPL MLX interacting protein-like

PNPLA3 patatin-like phospholipase domain containing 3

MAFLD metabolism-related fatty liver disease

IGF1R insulin like growth factor 1 receptor

BMI body mass index

A1CF APOBEC1 complementation factor

ApoB apolipoprotein B

LRP2 lipoprotein receptor-related protein 2

STC1 stanniocalcin 1

CYP1A2 cytochrome P450 family 1 subfamily A member 2

HCRTR2 hypocretin receptor 2

CLNK cytokine-dependent hematopoietic cell linker

GNAS guanine nucleotide-binding protein a-stimulating polypeptide

SCL22A6 solute carrier family 22 member 6

BCAS3 breast cancer-amplified sequence 3

cAMP cyclic AMP

OAT1 organic anion transporter 1

MEPE matrix extracellular phosphoglycoprotein

PPM1K-DT protein phosphatase, Mg2+/Mn2+ dependent 1K- divergent
transcript

ADH1B alcohol dehydrogenase 1B (Class I), beta polypeptide
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