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Traditional ChineseMedicine (TCM) has a long history ofwidespread clinical applications, especially in East Asia,
and is becoming frequently used inWestern countries. However, owing to extreme complicacy in both chemical
ingredients andmechanism of action, a deep understanding of TCM is still difficult. To accelerate themoderniza-
tion and popularization of TCM, a single comprehensive database is required, containing awealth of TCM-related
information and equipped with complete analytical tools. Here we present YaTCM (Yet another Traditional Chi-
nese Medicine database), a free web-based toolkit, which provides comprehensive TCM information and is
furnished with analysis tools. YaTCM allows a user to (1) identify the potential ingredients that are crucial to
TCM herbs through similarity search and substructure search, (2) investigate the mechanism of action for TCM
or prescription through pathway analysis and network pharmacology analysis, (3) predict potential targets for
TCM molecules by multi-voting chemical similarity ensemble approach, and (4) explore functionally similar
herb pairs. All these functions can lead to one systematic network for visualization of TCM recipes, herbs, ingre-
dients, definite or putative protein targets, pathways, and diseases. This web service would help in uncovering
the mechanism of action of TCM, revealing the essence of TCM theory and then promoting the drug discovery
process. YaTCM is freely available at http://cadd.pharmacy.nankai.edu.cn/yatcm/home.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Throughout the history of drug development, natural products have
often proved to be a critical starting point in drug design [1]. All herbal-
basedmedicines are derived fromnatural compounds [2].Moreover, for
several thousand years, traditional Chinese medicine (TCM) has been
widely used in the treatment and prevention of various diseases,
playing a vital role in improving the health of Asian people. It is esti-
mated that approximately one-third [3] of the top-selling drugs are de-
rived from medicinal herbs. For example, Realgar-Indigo naturalis
formula can treat acute promyelocytic leukemia [4], whereas
artemisinin, the major compound of the herb Artemisia carvifolia can
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treat malaria [5,6]. Additionally, several other well-known drugs are
all derived from Chinese herbs. These include Taxol, a chemotherapy
medication used to treat breast cancer [7]; Danshensu, a phenolic acid
used for its cardio-protective effect [8]; and Salvicine, a diterpenoid qui-
none compound used for the treatment of several solid tumors [9]. In-
terestingly, recent studies have shown that some substances derived
from TCM herbs may also have toxic effects [10,11]. For example,
aristolochic acids, derived from the woody vines of Aristolochia plants,
are strongly associated with liver cancer [12]. Therefore, great efforts
have beenmade to identify, isolate, and investigate various compounds
of TCMs to better understand their biological background and mecha-
nism of action, including toxicity.

The human body is regarded as one of themost complex known sys-
tems, comprising metabolic and regulatory networks and pathways.
Thus, a silver-bullet approach or mono-target [13,14] drug interven-
tions are not effective strategies in every case owing to the complex
pathologies of systemic diseases like cancers, cardiovascular diseases,
and neurodegenerative disorders [15]. However, in such instances, net-
work pharmacology approaches [16] combining multi-component,
multi-target drug design are highly useful because of the ability of the
mputational and Structural Biotechnology. This is an open access article under the CC BY-
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Fig. 1. The main database schema for YaTCM. Each record contains six data fields, for
prescription, herbs, ingredients, diseases, targets, pathways. There are two analysis
modules—network analysis and pathway analysis. It includes one target prediction
function, similarity ensemble approach.
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drugs to target multiple proteins or networks involved in a disease
[17–19]. The accumulation of large amounts of biomedical data, along
with the improvement of knowledge-intensive computational technol-
ogies, make the network pharmacology approach a viable option to un-
cover new drugs and their mechanisms of action [20]. Therefore, at the
molecular level, TCM formulas are indeed multi-component and multi-
target agents, which in essence is the combination therapy strategy of
multi-component drugs. However, owing to the complex chemical
components and mechanism of action, understanding TCM at the mo-
lecular level is still a challenging task.

During the last decade, many databases specializing in TCM have
emerged. For example, Hou's CTM [21,22] database is a 3D structure re-
pository of components extracted from TCM that have been experimen-
tally investigated for characteristics such as drug-likeness and clinical
effects [23,24]. Database@Taiwan [25] once contained data on the larg-
est number of herbal compounds with 3D structures in the world
(it contained nearly 24,000 pure compounds isolated from 453 Chinese
herbs). Phytochemical database [26] includes 78 protein targets for
2,597 Chinese herb compounds. TheHIT [27] database focuses on herbal
compounds and related targets, but it only contains 586 compounds
with 1,301 related targets. The latest version of the TCMID [28] database
is one of the largest databases of oriental Chinese medicine, including
8,159 herbs, 43,413 ingredients, and 4,633 diseases. TCMSP [29], a data-
base of systems pharmacology for drug discovery contains 499 Chinese
herbs, 29,384 ingredients, and 3,311 targets. There are also other dis-
tinctive databases, such as CVDHD [30] (a cardiovascular disease herbal
database), CEMTDD [31,32] (Chinese ethnic minority traditional drugs
database), and TCMGeneDIT [33] (linking TCMand participating genes).

To keep pace with the ever-increasing number of published TCM
compounds and provide analytical tools for TCM-based drug discovery,
we developed Yet another Chinese Traditional Medicine database
(YaTCM). Our database provides comprehensive biologically relevant
information of isolated TCM compounds, including prescriptions,
herbs, ingredients, definite or putative protein targets, pathways and
diseases. The database incorporates an analysis toolkit that includes a
variety of modules, such as similarity search and substructure search
for potential structures; an in-house multi-voting similarity ensemble
approach (MV-SEA) [34] for predicting protein targets; interaction net-
work analysis; pathway analysis; and functional similarity of herb pairs.
The output of the tools is rendered through a visualization network. To
our knowledge, the following five key aspects make YaTCM unique,
when compared to those of other related TCMdatabases: (1) Integration
of large-scale structural data [47,696 natural compounds, 6,220 herbs,
18,697 targets (with 3,461 therapeutic targets included), 1,907 pre-
dicted targets, 390 pathways and 1,813 prescriptions] with manually
curated information; (2) Incorporation of N50 key ADMET-related prop-
erties from diverse sources for active compound screening; (3) Estab-
lishment of prescription-herbs-compound-target-disease-pathway
networks and herb-pairs networks for studying mechanism of action
of TCM; (4) Mapping the TCM ingredients and targets to KEGG path-
ways [35] (https://www.kegg.jp/), which combines KEGG gene set en-
richment analysis; and (5) Predicting potential targets for TCM
molecules by an in-house multi-voting chemical ensemble approach
[34] (MV-SEA). YaTCM could serve as a useful tool for uncovering the
mechanism of action of TCMs at a systematic level, validating anecdotal
evidence and theory. It also has the potential to contribute significantly
to the drug discovery process andmodernization andwider adoption of
TCM.

2. Materials and Methods

2.1. Data Sources

To build a comprehensive TCM database, various resources were
manually integrated, including published TCM databases (TCMID [28],
Database@Taiwan [25], TCMSP [29]), Therapeutic Target Database
(TTD) [36], ChEMBL, the KEGG database [35], books [37–47] and scien-
tific literature mined from PubMed (https://www.ncbi.nlm.nih.gov/
pubmed/). The following steps were taken to manage the quality and
updating of data: (1) manually extracted the TCM crude information
from resources above; (2) collected prescription information mainly
through text-mining of relevant literature (i.e., books and publications),
Formulas of ChineseMedicine, and the latest release of Chinese Pharma-
copoeia [48] (2015 edition); (3) integrated herb information, and re-
moved duplicates from different resources with respect to the herb's
Chinese name, English name or Latin name; (4) integrated compound
information, removed duplicates with respect to English name, chemi-
cal compound name or structure, and established a network relation-
ship between YaTCM structure and ChEMBL bioactivities;
(5) integrated target and disease information and removed duplicates
with respect to respective item name; (6) identified KEGG compounds
and targets, and constructed relationship between YaTCM and KEGG
entries by calculating Tanimoto similarity between KEGG and YaTCM
compounds; (7) established the relationship between the database en-
tries for prescription, herb, compound, target, disease and pathway by
using in-house scripts; (8) updated the database bi-weekly by
conducting literature text-mining and manual curation, in addition to
repeating the procedures above. The data entries present in YaTCM
have the following components: herbal recipe, the molecular structures
of active ingredients, protein targets, KEGG pathways, and diseases. To
visualize and graphically analyze the relationship of the different as-
pects of YaTCM data, we developed a visualization interface using
ECharts (http://echarts.baidu.com/) and NetworkX (http://networkx.
github.io/), allowing the information of the interactive network to be
displayed within a webpage. Fig. 1 shows the main schema of YaTCM
where the data is stored in a PostgreSQLdatabase. The following subsec-
tions will describe how the data is compiled and organized.

2.2. Prescription-Herb Relationships

Prescription-herb relationships were deduced mainly by combining
TCMID (16) databases and text-mining output of two books—Formulas
of Chinese Medicine [47], and Chinese Pharmacopoeia (2015 edition).
TCMID consists of N46,000 prescriptions, however, most of them con-
tain rather vague information on usage and dosage as it was accumu-
lated over several thousand years of empiricism and folklore, recorded
in ancient natural language. According to the books Formulas of Chinese
Medicine and Chinese Pharmacopoeia (2015 edition), the 1813 most
commonly used prescriptions were manually curated, and these
contained additional properties like Chinese name, English name, pho-
netic name, related herbs and its ingredients, traditional explanation,
traditional usage, traditional and modern application and their English
description. (Table S1 in Supporting information).

2.3. Herb-Ingredients Relationship

Herb-ingredients relationships were collected from public TCM da-
tabases, TCMID, TCMSP and Database@Taiwan, in addition to a text-
mining approach. The current version of TCMID contains 8,159 herbs,
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with 43,413 compounds, TCMSP contains 29,384 compounds, Data-
base@Taiwan contains 453 herbs with N20,000 compounds. To enrich
the herbs and compounds repertoire, 10 additional books [37–46]
(TCM Series of Active Components) (the information of each book de-
tailed in Table S2 in Supporting information) were manually curated.
Furthermore, to avoid outdated information in our database, text-
mining of PubChem abstracts was performed on articles from 2013
to-date. Some search queries used for retrieving articles were: “tradi-
tional Asianmedicine,” “traditional Chinese medicine,” “TCM,” “herbal,”
“Chinese,” “oriental,” and “combined” among others. The PubChem
search retrieved N1000 articles. All data from the sourcesweremanually
curated and added to the compiled ingredients data, together with their
additional details, including herb's information such as Chinese name,
English name, medicinal part, herb images, category, effect and
indication.

2.4. Ingredients-Targets-Disease Relationships

Ingredients-targets-disease relationships were compiled from en-
tries in TCMID, TTD [36], and OMIM databases (http://www.omim.
org/).

The data used for the ingredients category were standardized using
the open source data analytics, reporting and integration platform,
KNIME [49], in the following steps: (1) The canonical SMILES of com-
pounds were generated and the duplicates were removed. (2) Physico-
chemical descriptors, including LogP, the number of H-bond donors/
acceptors, the number of rotatable bonds, and molecular weight, were
calculated for each ingredient compound using RDKit (http://rdkit.
org/). In addition, 48 molecule-related ADMET descriptors (see
Table S3 in Supporting information) were calculated by QikProp [50]
module of Schrödinger 2018 and stored in YaTCM. Each ADMET param-
eter has its respective suitable druggability threshold. It is worth noting
that ADMET parameters in a total of 39 molecules in the database are
absent because of abnormal valence and could not be recognized by
RDKit or Schrödinger 2018. (3) The Morgan fingerprint [51] together
with the Tanimoto coefficient [52]were employed formapping ingredi-
ents to ChEMBL database (https://www.ebi.ac.uk/chembl/) and KEGG
(http://www.genome.jp/kegg/) metabolism pathway database.
(4) Tao’ classical drug-likeness prediction method [16] was added as
the drug classifier by calculating the Tanimoto similarity between
YaTCM structures and 8842 molecules from DrugBank (version 5.1.1)
based on 4885 Dragon soft descriptors. In YaTCM, we considered mole-
cules with drug-likeness N0.18 to be bioactive compounds [29]. Table 1
show the data statistics of YaTCM and a comparisonwith other TCMda-
tabases. It is evident from Table 1 that YaTCM contains the most ingre-
dients, targets (predicted targets or not), and pathways, out of all
presented databases.

2.5. Ingredient Category

We divided these ingredients into 10 categories based on structural
characteristics of natural products. These included steroids, alkaloids,
cardiac glycosides, flavonoids, phenylpropanoids, phytosterols, qui-
nones, steroidal saponin, terpenoids, and triterpenoid. Each category
contained a number of subclasses. There are 60 subclasses in total
(See Table S4 in Supporting information for more details).
Table 1
Data statistics and comparison with other TCM databases.

Database Ingredients Herbs Prescriptions

YaTCM 47,696 6220 1813
TCMID 43,413 8159 46,914
TCMSP 29,384 499 0
Database@Taiwan 24,033 453 0
3. Utility and Discussion

3.1. Target Prediction

In silico target prediction is critical for drug discovery and develop-
ment, on which there is a substantial body of research [53]. One such
method—SEA—has proved to be a promising tool and has been suc-
cessfully applied in drug repositioning [54–56] and natural products
target prediction [57]. In our previous work, we proposed a multi-
voting SEA model (MV-SEA) for small molecule target prediction
[34]. By utilizing the MV-SEA model, all compounds in YaTCM can
be systematically predicted and mapped to single protein targets
from the ChEMBL database. Four different molecular fingerprints
(MACCS, Morgan, Topological and Atom pair) were used to build
MV-SEA models. Prediction results of MV-SEA were depicted in re-
spective compound detailed pages. In addition, to increase the func-
tionality of target prediction, the YaTCM built-in “Tools” section
includes an in-house developed “Chemical Screening” module and ex-
ternal webserver links to “PharmMapper” and “ChemMapper,” which
were implemented to identify potential drug targets of the query
compounds. “Chemical Screening” allows users to submit a batch of
molecules, which were also predicted and mapped in ChEMBL, and
obtain the potential targets by applying the in-house MV-SEA scripts
[34]. Users receive the computed results via email.

3.2. KEGG Pathway Mapping

The concept of metabolite-likeness, which is derived from the fact
that drugs are more structurally similar to endogenous metabolites
than library compounds, is a useful principle in drug design [58].
Kim et al. [4] reported that the degree of structural similarity between
compounds derived from traditional oriental medicine and human
metabolites is even higher than that between small drug molecules
and human metabolites. They argue that mapping of TCM compounds
to human metabolic pathway based on structural similarity may be
useful in analyses of mechanisms of action [4]. Therefore, in YaTCM,
all compounds were mapped to KEGG human metabolic pathway by
calculating structural similarity of TCM-metabolite pairs. In addition,
we further mapped therapeutic targets to KEGG human signal trans-
duction pathways. To quantitatively elucidate the importance of
these pathways, we further applied commonly used gene-ontology
enrichment analysis [59] to rank the score of these pathways. Fig. 2
shows the pathway mapping result in prescription Yu Ping Feng. In
Fig. 2, the corresponding compound and protein are outlined by a
red circle and a blue rectangle, respectively. It is possible to click on
these objects to acquire the corresponding relationship between
YaTCM and KEGG.

3.3. Network Analysis

3.3.1. Herb-Herb Interaction
Hu et al. [60] apply a simple definition that two targets are related to

each other if they share at least five active compounds. In our previous
work, the PhIN [61] database defined target-target interaction pairs in
terms of shared compounds or shared scaffolds. As an analogy of this
methodology, in YaTCM, two herbs are defined as an interacting func-
tionally similar pair if they share a certain number (user can define
Targets Predicted targets Pathways Update date

18,697 1907 390 2018–10
17,521 0 0 2017
3311 0 0 2014–06
0 0 0 2011

http://www.omim.org
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http://www.genome.jp/kegg/


Fig. 2. Pathway analysis. To obtain the comprehensive pathway analysis of TCM, YaTCMmaps related ingredients and TTD targets to one specific pathway. Corresponding compounds and
protein targets were highlighted in red point and blue rectangle respectively. These can be clicked to reveal the corresponding relationship between YaTCM and KEGG data.
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the cutoff number) of therapeutic targets or diseases. To give the user a
global view of the herb-herb network (HHN) in YaTCM, we employ vi-
sualization of interaction networks to display the network in herbs' de-
tail pages where user can specify the number of shared targets or
diseases. Take one famous traditional Chinese herb Glycyrrhiza Uralensis
for example (http:cadd.pharmacy.nankai.edu.cn/yatcm/herb/5742/
graph): there are 288 functionally similar herb pairs that share the
135 common targets (Fig. 3A), and 511 herb pairs that share the 200 po-
tential diseases (Fig. 3B) with Glycyrrhiza Uralensis.
3.3.2. Prescription Exploration
When treating diseases using TCM, a prescription or herbal formula

containing various herbs is usually applied. To better understand the
molecular mechanism of action of TCM prescription or herbal formulas,
YaTCM can explore a TCM prescription or herbal formulas from a net-
work and pathways perspective. Firstly, the common therapeutic tar-
gets (Fig. 4A) and diseases (Fig. 4C) between any two herbs are
identified and rendered as an interactive network graph. Secondly, the
herb-herb interactingpairswere constructed based on a certain number

http://cadd.pharmacy.nankai.edu.cn
Image of Fig. 2


Fig. 3.Herb-herb network. User can obtain functionally similar herb pairs by adjusting the number of shared TTD target (A) or diseases (B). Double clicking the edge between two nodes
will all lead to comprehensive pathway analysis and network analysis page between the two herbs.

604 B. Li et al. / Computational and Structural Biotechnology Journal 16 (2018) 600–610
of common therapeutic targets, which are ether involved in the same
KEGG pathway (Fig. 4D) or share a certain number of diseases (Fig.
4B). Clicking the edge between two nodes reveals three links, a list of
common KEGG pathways (Fig. 4D,2), a list of shared therapeutic targets
(Fig. 4D,1) and a list of therapeutic targets that appeared only in the
common KEGG pathway (Fig. 4D,3). More detailed information is pre-
sented in the Case Study section.

4. Implementation and Application

4.1. Searching and Browsing

Firstly, YaTCM can be accessed through web browsers. Users can
browse the entire database containing information about herbs, pre-
scriptions, pathways, targets and diseases, and retrieve their preferred
information from the server. Secondly, users are also allowed to retrieve
category specific information by entering their preferred query. Thirdly,
four analysis tools were incorporated in YaTCM, which are structure re-
trieval, MV-SEA, pathway analysis and network analysis.

In structure retrieval module, using JSME [62] (a JavaScript-based
molecular editor) sketcher, users can build or import a molecular struc-
ture and perform a similarity or substructure search from YaTCM data-
base. For instance, one can retrieve a set of compounds in database
containing specific groups like aromatic rings, fused rings, heterocyclic
or polycyclic rings and so on, combining with similarity degree. As
shown in Fig. 5, seven commonly used query fields are supported, in-
cluding structure, prescription, herb, molecule, target, pathway, disease.
After drawing amolecular structure and setting other parameters, users
can submit the task (Fig. 5A), and then the candidate molecules list will
be loaded in the consequent page for inspection (Fig. 5B). Fig. 5C shows
the base information page of Ephedrine, including English name, Chi-
nese name, smiles, CID, CAS, category, compoundMS, and related herbs.

The related information of Ephedrine located at the bottom of the
details page (Fig. 5D), includes related prescription (Fig. 5D,2), related
herbs (Fig. 5D,7), protein targets (Fig. 5D,4), pathways (Fig. 5D,6),
diseases (Fig. 5D,3), MV-SEA predicted targets (Fig. 5D,5), related
molecules (same or similar to ChEMBL molecules) (Fig. 5D,1). The
network button on the result page can be used to render a ‘Force’
dynamic network graph or ‘Circle’ static network graph. Users can fil-
ter superabundant no-drug molecular nodes and links through setting
four vital ADMET parameters and Tao's drug-likeness parameter
[16]. The four ADMET parameters, include stars (default value is 0–
4), QPlogBB (default is −3.0–1.2), RuleOfFive (default is 0–4),
PercentHumanOralAbsorption (default is 0.0–100.0) (see Table S3 in
Supporting information). The default value of drug-likeness parameter
is N0.18. Networks can be exported in Portable Network Graphic
(PNG) format. (Fig. 5D,8).

4.2. Web API

The website was built with Django framework (V. 1.10.3) (https://
www.djangoproject.com/) as back-end, Angular framework as front-
end, and deployed using Nginx (http://nginx.org). YaTCM uses JSME
[62] for structure sketch and it displays in a web browser. RDKit
(http://rdkit.org) was used for small molecule manipulation (such as
fingerprint generation and similarity calculation). EChart (https://
echarts.baidu.com/index.html) and NetworkX (https://networkx.
github.io) were used for rendering the network visualization.

5. Case Study

Yu Ping Feng is an ancient and popular Chinese prescription that
has proven to be useful in the treatment of respiratory tract diseases,
such as chronic bronchitis and pulmonary fibrosis [63,64]. There are
three herbal medicines (Astragalus Membranaceus–AM, Atractylodes
Macrocephala–RA, Saposhnikovia Divaricata–SD). According to Chinese
medicine theory, each herb has a different role and AM is thought to
play a pivotal role, and is sometimes named “King herb” or “principle
medicine.” [48] It is evident from the results in Table 2 that AMhave po-
tential effects on more pathways, targets, and diseases overall, which is

https://www.djangoproject.com
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Fig. 4. Prescription exploration. Clicking the edge between any two herbs reveals three function links, a list of shared therapeutic targets (arrow D-1), a list of common KEGG pathways
(arrow D-2), and a list of therapeutic targets that were present only in the common KEGG pathway (arrow D-3).
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in strong agreement with the Chinese medicine theory. This informa-
tion was obtained only from statistical analysis and evaluation and not
through experimental validation. Users can obtain the detailed informa-
tion in respective pages. However, highly complex chemical ingredients
and mechanism of action makes deeper understanding of Yu Ping Feng
challenging. Here, we show a step-by-step process to deep mining the
biological basis of pharmacology of Yu Ping Feng.

By searching using a query “yupingfeng power,” the detailed infor-
mation page of the prescription canbe retrieved. Besides the description
of the prescription (Fig. 6), the page consists of seven fields, namely 3
herbs, 497 molecules, 5502 targets, 379 pathways,1102 diseases,net-
work,and graph. All moleculesweremapped to KEGG humanmetabolic
pathway by calculating structural similarity of TCM-metabolite pairs.
Related therapeutic targets are also mapped to KEGG human signal
transduction pathways in ‘Pathway’ toggle. A commonly used gene-
ontology enrichment analysis [59] was applied to rank the score of
mapped pathways. By setting the parameter p-value b0.05, 183 of 379
pathways can be ranked by their statistical significance indicators of

Image of Fig. 4


Fig. 5. The search page for compounds that involves drawing a molecule in JSME sketcher. When drawing themolecule Ephedrine, various information is displayed. Users can specify the
preferred information to be displayed. They can explore the mechanism of action through MV-SEA, pathway analysis and network pharmacology analysis.
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Table 2
Data statistic of Yu Ping Feng in YaTCM.

English name Chinese name Molecules Pathways Targets Disease

Astragalus membranaceus 黄芪 199 376 4921 1081
Atractylodes macrocephala 白术 100 314 1068 738
Saposhnikovia divaricata 防风 220 322 1748 907
Total 3 497 379 5502 1102

Fig. 6. The search page of prescription category as seen by submitting different names.When Yu Ping Feng is queried, a variety of information is presented. Users can select their preferred
information to display and further explore the mechanism of action through variable tools, such as pathway analysis and network pharmacology analysis.
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enrichment information including p-value, q-value, bg-ratio, gene-
ratio and p-adjust. However, the remaining 196 pathways could
not be ranked by this analysis owing to their low statistical signifi-
cant enrichment information. These two complementary parts were
listed on the web page http://cadd.pharmacy.nankai.edu.cn/yatcm/
prescription/71/prescription-pathway. For a better view of all layers,
prescription-herb-molecule-target-pathway-disease network was
created. The network visualizations can be downloaded as PNG
format.

To investigate effect of three different herbal medicines,and ex-
plore the commonalities among herbs, we obtained four interactive
networks using ‘Graph’ toggle switch (Supplementary Figs. S1–S4).
Users can retrieve the shared targets, pathways or diseases between
any two or any more herbs. For instance, when submitting the
Saposhnikovia Divaricata and Atractylodes Macrocephala, we can get
Fig. 7. The mechanism of Yu Ping Feng. The mapping relationships generated are consistent w
fibrosis.
425 shared targets (Supplementary Fig. S1) (297 vital targets located
in pathways Supplementary Fig. S2), 258 shared pathways, 733 shared
diseases (Supplementary Fig. S3, Supplementary Fig. S4), which are
critical for understanding the pharmacological mechanism of Yu Ping
Feng. For example, TGF-β1 (Transforming Growth Factor β1) is one
of the cytokines involved in regulating inflammation, and tissue fibro-
sis [65], which plays a vital role in the propagation of lung fibroblasts.
Furthermore, ERK [a member of Mitogen-activated protein kinase
(MAPK)] can regulate the expression of inflammatory mediators and
cytokines (including TGF-β1) [66]. Baicalin (obtained from AM) can
down-regulate TGF-β1-induced ERK signaling pathway [67]. The map-
ping relationships generated from YaTCM (Fig. 7) are consistent with
the experimental results and provide novel insights into the mecha-
nism of pulmonary fibrosis and the underlying mechanism may be-
come the theoretical foundation for clinical use of Yu Ping Feng.
ith the experimental results and provide novel insights into the mechanism of pulmonary

http://cadd.pharmacy.nankai.edu.cn/yatcm/prescription/71/prescription-pathway
http://cadd.pharmacy.nankai.edu.cn/yatcm/prescription/71/prescription-pathway
Image of Fig. 7


609B. Li et al. / Computational and Structural Biotechnology Journal 16 (2018) 600–610
6. Conclusion

The YaTCM database is a freely available resource that provides a
comprehensive relationship network of TCM components, including
prescriptions, herbs, ingredients, definite or putative protein targets,
pathways and diseases. In addition, it offers an analysis toolkit that al-
lows the user to perform similarity and substructure searches for poten-
tial structures, MV-SEA for predicting protein targets, network analysis,
pathway analysis, and identification of functionally similar herb pairs.
YaTCM can potentially contribute to unravel the mechanism of action
of TCM at systematic level, validate TCM anecdotal evidence, facilitate
drug discovery and design processes, and last but not least, accelerate
themodernization and popularization of TCM. However, muchwork re-
mains to be done; for example, refining ingredient structures with cor-
rect chirality. Particularly, we are planning to implement deep-learning
based method to provide a reasonable depiction of the drug-likeness of
TCM ingredients.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2018.11.002.

Availability of data and material

YaTCM is freely accessible at http://cadd.pharmacy.nankai.edu.cn/
yatcm/home. It will be updated continually.
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