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Effect of Inhibition or Deletion of Neutral Endopeptidase on
Neuropathic Endpoints in High Fat Fed/Low Dose

Streptozotocin-Treated Mice

Matthew S. Yorek, MS, Alexander Obrosov, BA, Bao Lu, MD, Craig Gerard, MD,
Randy H. Kardon, MD, PhD, and Mark A. Yorek, PhD

Abstract
Previously we demonstrated that a vasopeptidase inhibitor of an-

giotensin converting enzyme and neutral endopeptidase (NEP), a

protease that degrades vaso- and neuro-active peptides, improves

neural function in diabetic rodent models. The purpose of this study

was to determine whether inhibition or deletion of NEP provides

protection from neuropathy caused by diabetes with an emphasis on

morphology of corneal nerves as a primary endpoint. Diabetes,

modeling type 2, was induced in C57Bl/6J and NEP deficient mice

through a combination of a high fat diet and streptozotocin. To in-

hibit NEP activity, diabetic C57Bl/6J mice were treated with can-

doxatril using a prevention or intervention protocol. Twelve weeks

after the induction of diabetes in C57Bl/6J mice, the existence of

diabetic neuropathy was determined through multiple endpoints

including decrease in corneal nerves in the epithelium and sub-

epithelium layer. Treatment of diabetic C57Bl/6J mice with candox-

atril improved diabetic peripheral neuropathy and protected corneal

nerve morphology with the prevention protocol being more effica-

cious than intervention. Unlike C57Bl/6J, mice deficient in NEP

were protected from the development of neuropathologic alterations

and loss of corneal nerves upon induction of diabetes. These studies

suggest that NEP contributes to the development of diabetic neurop-

athy and may be a treatable target.

Key Words: Candoxatril, Corneal nerves, Diabetes, Diabetic

neuropathy, Neutral endopeptidase, Neprilysin.

INTRODUCTION
Peripheral neuropathy is the most common complication

of diabetes with no known treatment other than good glycemic
control, which only delays the onset and slows progression in
type 1 diabetes (1, 2). Failure to identify an effective treatment
is in part due to its complex etiology. Diabetic peripheral neu-
ropathy has been described by some investigators to be a dis-
ease of the vasculature leading to nerve ischemia and altered
nerve function (3–6). Other investigators have proposed that
diabetic peripheral neuropathy is caused by a combination of
metabolic defects associated with an increased flux of glucose
through the aldose reductase pathway leading to a defect in
Naþ/Kþ-ATPase activity and an alteration of signal transduc-
tion pathways in the nerve (7, 8). Additional pathologic con-
tributors to diabetic peripheral neuropathy have been reported
to include increased formation of advanced glycation endprod-
ucts, reduced neurotrophic support, and increased inflamma-
tory and oxidative stress (9, 10). Overall, these mechanisms
are all likely to cause damage to neurons, Schwann cells and
the vasculature. Ultimately, relentless damage to the nerve
complex and surrounding vasculature leads to diabetic pe-
ripheral neuropathy. Given the complex etiology of diabetic
peripheral neuropathy, a successful treatment will likely re-
quire a combination of early detection, life-style changes
and pharmaceutical interventions targeting the mechanisms
deemed most responsible for the pathogenesis. Before this
can occur, additional studies are needed to determine the
most relevant and targetable causes of diabetic peripheral
neuropathy.

Neutral endopeptidase (NEP), also known as neprily-
sin or CD10, degrades a number of vasoactive peptides in-
cluding natriuretic peptides, adrenomedullin, bradykinin,
and calcitonin gene-related peptide (CGRP) (11). NEP is
found in many tissues including vascular, liver and renal tis-
sue and its activity is increased by fatty acids and glucose in
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human microvascular cells (12–16). In the PNS, NEP is lo-
cated in Schwann cell membranes surrounding dorsal root
ganglion cells and nerve fibers (17, 18). In the CNS, NEP is
associated with neuronal tissue rather than astrocytes (17).
High levels of the enzyme are present in all neonatal and
early postnatal Schwann cells. As myelination proceeds, it is
gradually suppressed in the majority of cells that form mye-
lin but retained in non-myelin forming cells in the adult ani-
mal (18). Kioussi et al (18) found that following axonal
damage, NEP is re-expressed distal to the injury. These au-
thors suggest that NEP could play a role in axonal regenera-
tion (18).

Previously, in studies using diabetic rodents we have
demonstrated that expression of NEP is increased in vascular
tissue and that inhibiting NEP pharmacologically or through
deletion improved diabetic neuropathic endpoints, and in-
creased vascular relaxation by epineurial arterioles that provide
circulation to the sciatic nerve (19–24). Changes in cornea
nerve density have been proposed as an early marker of dia-
betic peripheral neuropathy (25). In this study using a mouse
model of type 2 diabetes, we sought to determine whether in-
hibiting NEP activity at the onset of hyperglycemia (prevention
protocol) or 6 weeks after hyperglycemia (intervention proto-
col) preserves cornea nerve fiber density and other diabetic
neuropathic endpoints. We also examined the effect of diabetes
and inhibition/deletion of NEP on the expression of CGRP in
corneal nerves. Because CGRP is an important neurotransmit-
ter and potent vasodilator and is associated with nerve regener-
ation, preserving its expression could improve diabetic neural
dysfunction (26–30).

MATERIALS AND METHODS

Materials
Unless stated otherwise all chemicals used in these stud-

ies were obtained from Sigma Aldrich Chemical Co. (St.
Louis, MO).

Animals
C57Bl/6J wild type mice were purchased from Jackson

Laboratories. Breeding pairs of NEP-deficient (NEP�/�) mice
were provided by Drs. Lu and Gerard and are on the C57Bl/6
background (31). These mice have been bred and a colony cre-
ated at the Veterans Affairs Medical Center, Iowa City, IO. The
C57Bl/6J and NEP�/� mice were age-matched for the studies.
Deficiency of NEP activity was confirmed in the NEP�/� mice
by measuring the specific activity of NEP in liver homogenates,
as described by Ayoub and Melzig (32), with modification (33).
Activity of NEP in liver from C57Bl/6 was 0.44 6 0.01 and
was reduced in NEP�/� mice to 0.08 6 0.01 nM 7-amido-3-
methylcoumarin (AMC)/minute/mg protein (p < 0.001). Mice
were housed in a certified animal care facility and food and wa-
ter were provided ad libitum. Adequate measures were taken to
minimize pain or discomfort and all of the experiments were
conducted in accordance with international standards on animal
welfare and were compliant with all institutional and National
Research Council’s guidelines for use of animals (ACURF
protocol 1212258).

Male C57Bl/6J and NEP�/� mice at 12 weeks of age
were used for these studies. The studies were performed as 2
separate experiments with 10–11 mice in each group. Experi-
ment 1 was done using a group of control and diabetic C57Bl/6J
and NEP�/� mice. Experiment 2 was done using control and
diabetic C57Bl/6J mice with 2 groups of diabetic mice treated
with or without candoxatril (NEP inhibitor). The data were
combined for presentation. Two diabetic C57Bl/6J mice were
lost during the study. To induce diabetes C57Bl/6J and NEP�/�

mice were placed on a high fat diet containing 60% kcal as
fat (D12492; Research Diets, New Brunswick, NJ). After 8
weeks on the high fat diet mice were treated with 75 mg/kg
streptozotocin (EMD Chemicals, San Diego, CA) followed
3 days later with a second dose of streptozotocin (50 mg/kg).
Mice with blood glucose �13.8 mM (250 mg/dl) were consid-
ered diabetic. Diabetic mice remained on the high fat diet for
the 12-week duration of the study. For the candoxatril study 2
of the 3 groups of C57Bl/6J diabetic mice were treated with
candoxatril in the diet (300 mg/kg, D15071301 prepared by
Research Diets) using a prevention or intervention protocol
(Pfizer, New York, NY). The dose of candoxatril used was
based on previous studies (19). For the prevention protocol,
treatment was started immediately after verification of diabetes.
For the intervention protocol treatment was started after 6
weeks of hyperglycemia. The third group of diabetic C57Bl/6J
mice served as the untreated diabetic group. The non-diabetic
group of C57Bl/6J and NEP�/� mice was maintained on a
normal diet for the entire period (Harlan Teklad, no. 7001,
Madison, WI).

Glucose Clearance
Prior to behavioral and nerve conduction studies, mice

were fasted overnight for study of glucose utilization. Mice
were injected i.p. with a saline solution containing 2 g/kg glu-
cose. Immediately prior to the glucose injection and for 120
minutes afterwards blood samples were taken to measure cir-
culating glucose levels (34).

Behavioral Tests
Thermal nociceptive responses in hind paws were mea-

sured using the Hargreaves method with instrumentation pro-
vided by IITC Life Science (Woodland Hills, CA, model
390G), as previously described in (34).

Motor and Sensory Nerve Conduction Velocity
Mice were anesthetized with Nembutal (75 mg/kg, i.p.,

Abbott Laboratories, North Chicago, IL) and motor and sen-
sory nerve conduction velocities (m/s) were determined as
previously described in (34).

Corneal Innervation
Sub-epithelial corneal nerves were imaged in vivo using

the Rostock cornea module of the Heidelberg Retina Tomo-
graph (Heidelberg Engineering, Vista, CA) confocal micro-
scope as previously described in (35). Corneal nerve fiber
length, defined as the total length of all nerve fibers and

J Neuropathol Exp Neurol • Volume 75, Number 11, November 2016 NEP and Diabetic Neuropathy

1073

Deleted Text:  (18)
Deleted Text: calcitonin <?A3B2 thyc=10?>gene-related<?thyc?> peptide
Deleted Text: calcitonin <?A3B2 thyc=10?>gene-related<?thyc?> peptide
Deleted Text: M
Deleted Text: M
Deleted Text: neutral endopeptidase
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: Iowa
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: &thinsp;&plusmn;&thinsp;
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: &thinsp;&plusmn;&thinsp;
Deleted Text: &thinsp;<&thinsp;
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: &thinsp;&ge;
Deleted Text: <sup>&ndash;/&ndash;</sup>
Deleted Text: #
Deleted Text: utes
Deleted Text: ec


branches (in mm) present in the acquired images standardized
for area of the image (in mm2), was determined for each image
by tracing the length of each nerve in the image, summing the
total length and dividing by the image area. The corneal fiber
length for each mouse was the mean value obtained from the
acquired images and expressed as mm/mm2. Based on re-
ceiver operating characteristic curve analysis, corneal nerve fi-
ber length is the optimal morphological parameter of corneal
nerves for diagnosing patients with diabetic neuropathy and
has the lowest coefficient of variation (36, 37).

After completion of all in vivo analyses, including cor-
neal confocal microscopy, corneas were dissected from the
eyes and trimmed around the scleral-limbal region. The cornea
was fixed for 30 minutes in Zamboni’s fixative, blocked using
phosphate-buffered saline (PBS) with 0.2% Triton X-100, 2%
goat serum, and 1% bovine serum albumin for 2 hours, and
then incubated in the same buffer with anti-neuronal class III
b-tubulin mouse monoclonal antibody (Covance, Dedham,
MA) and anti-CGRP rabbit polyclonal antibody (Sigma), both
at a concentration of 1:1000 overnight at 4 �C. After washing
with incubation buffer, the tissue was incubated with Alexa
Fluor 488 goat anti-mouse IgG2a and Alexa Fluor 546 goat
anti-rabbit IgG (Invitrogen, Eugene, OR) at 1:500 in incuba-
tion buffer for 2 hours at room temperature. After washing, the
cornea was placed epithelium side up on a microscope slide.
Four radial cuts were made and the tissue was carefully cov-
ered with a cover slip, mounted with ProLong Gold antifade
reagent (Life Technologies, Carlsbad, CA), and sealed with
clear nail polish. Images were collected using a Zeiss LSM710
confocal microscope with ZEN Black software and comprised
multiple images (Carl Zeiss, Oberkochen, Germany). To im-
age the nerve structure of the entire cornea, neuronal class III
b-tubulin was imaged with a 20� objective (Plan-Apochro-
mat 20�/0.8) to make 8 � 8 tile scan z-stacks (3400 � 3400
� 30 mm; 4096 � 4096 � 30 pixel) that were further pro-
cessed to make maximum projection intensity images. With
Imaris version 7.6.4 X64 software (Bitplane, Zurich, Switzer-
land), the surface option (parameters: smoothing enabled, sur-
face grain size ¼ 0.833 mm per pixel, no background elimina-
tion, diameter of the largest sphere ¼ 6.23 mm, thresholding
was automatic) was used to determine the total surface area
covered by nerves; this is represented as a percentage of the to-
tal cornea surface area, as determined by manually tracing the
cornea with a closed poly-line, as in previous experiments (28,
29). Further, bIII-tubulin was imaged using a 63� objective
(Plan-Apochromat 63�/1.4), a 3 � 3 tile scan z-stack (405 �
405� 30.11 mm; 1536 � 1536 � 78 pixel), with optimum ax-
ial resolution to image the epithelial nerves of the cornea.
These images were cropped to include only the epithelial
nerves and subjected to volume analysis using Imaris version
7.6.4 X64 software (Bitplane) (parameters: smooth was en-
abled, surface grain size ¼ 0.187 mm, no background elimina-
tion was used, diameter of the largest sphere was 0.701 mm,
thresholding was automatic). The nerve volume is represented
as a percentage of total volume as used for previous experi-
ments (35, 38, 39). To scrutinize the percentage of CGRP in
class III b-tubulin labeled nerves of the sub-basal nerves a
40� objective (EC-Plan-Neofluar 40x/1.30 oil) was used to
make 3 x 3 tile scan confocal z-stacks (637 � 637 � 30 mm;

1536 � 1536 � 38 pixel). A maximum projection intensity
image was used for image analysis (parameters: smooth was
enabled; surface grain size ¼ 0.134 mm; no background elimi-
nation was used; diameter of the largest sphere ¼ 1.23 mm,
thresholding was automatic). Finally, CGRP content in bIII-
tubulin was assessed in epithelial nerves using the 63� objec-
tive (Plan-Apochromat 63�/1.4) where 2 � 2 tile scan confo-
cal z-stacks (269.77� 269.77� 26.66 mm; 2048� 2048� 73
pixel). Three-dimensional representations of confocal stacks
were reconstructed by volume rendering, where a volume of
tissue was defined over the fluorescent staining of both class
III b-tubulin and CGRP and used for quantifying percentage
of CGRP in corneal epithelial nerves (parameters: smooth was
enabled, surface grain size ¼ 0.134 mm, no background elimi-
nation was used, diameter of the largest sphere ¼ 1.23 mm,
thresholding was manual; bIII-tubulin was 28; CGRP was
112). For presentation purposes, images were adjusted using
Imaris and scale bars inserted with Fiji (40).

Skin Intra-Epidermal Nerve Fiber Density
Footpads were fixed in ice-cold Zamboni’s fixative for

3 hours, washed in 100 mM PBS overnight, and then in PBS
containing increasing amounts of sucrose ie 10%, 15%, and
20%, 3 hours in each solution (41). After washing, the samples
were snap frozen in O.C.T. (Sakura Finetek USA, Torrance,
CA) and stored at �80 �C. Three longitudinal 30-mm-thick
footpad sections were cut using a Reichert-Jung Cryocut 1800
(Leica Microsystems, Nussloch, Germany). Non-specific
binding was blocked by 3% goat serum containing 0.5% por-
cine gelatin and 0.5% Triton X-100 in SuperBlock blocking
buffer (Thermo Scientific, Rockford, IL), at room temperature
for 2 hours. The sections were then incubated overnight with
PGP 9.5 antiserum (UltraClone, Isle of Wight, UK) in 1:400
dilution at 4 �C, after which secondary Alexa Fluor 488 conju-
gated goat anti-rabbit antibody (Invitrogen) in 1:1000 dilution
was applied at room temperature for 1 hour. Sections were
then coverslipped with VectaShield mounting medium (Vec-
tor Laboratories, Burlingame, CA). Profiles were imaged us-
ing a Zeiss LSM710 confocal microscope with a 40� objec-
tive and were counted by 2 individual investigators who were
masked to the sample identity. All immunoreactive profiles
within the epidermis were counted and normalized to epider-
mal length. Length of the epidermis was determined by draw-
ing a polyline along the contour of the epidermis and record-
ing its length in mm. The number of intra-epidermal nerve
fiber profiles was reported per mm length.

Data Analysis
The results are presented as mean 6 SE. Comparisons

between the groups for body weight, blood glucose, motor and
sensory nerve conduction velocities, thermal nociception and
intra-epidermal nerve fiber profiles were conducted using a
1-way ANOVA and Bonferroni’s pairwise test for multiple
comparisons (Prism software; GraphPad, San Diego, CA).
A p value of less 0.05 was considered significant.
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RESULTS
Data reported in the Table were derived from 2 separate

studies, which accounts for the higher number of mice in the
C57Bl/6J control and untreated diabetic groups. In the first
study there were 4 groups of mice; control and untreated
diabetic for C57Bl/6J and NEP�/� mice. The second study
consisted of 4 groups of C57Bl/6J mice; control, untreated dia-
betic and diabetic mice treated with candoxatril using a pre-
vention or intervention protocol, as described in “Materials
and Methods” section. Once diabetes was verified, the experi-
mental period was 12 weeks. Experiments were started when
the mice were 12 weeks of age. The mean weights of the mice
at the beginning of the studies were the same for all groups
(Table). At the end of the study period all mice had gained
weight. C57Bl/6J untreated diabetic mice and diabetic mice
treated with candoxatril in the intervention protocol weighed
significantly more than C57Bl/6J control mice. NEP�/�

untreated diabetic mice weighed significantly more than
NEP�/� control mice. Control and untreated diabetic NEP�/�

mice tended to weigh less than control and untreated diabetic
C57Bl/6J mice, respectively, but the difference was not statis-
tically significant. Blood glucose levels were increased in
C57Bl/6J and NEP�/� diabetic mice compared with their re-
spective control groups and treatment with candoxatril did not
influence blood glucose levels.

We have previously reported that inducing diabetes in
mice by feeding them a high fat diet followed by streptozoto-
cin caused impaired glucose clearance (38, 39). Data in
Figure 1 confirm this finding in diabetic C57Bl/6J and NEP�/

� mice and demonstrate that inhibition of NEP with candoxa-
tril or through genetic manipulation did not improve glucose
clearance. Glucose clearance was similar for control C57Bl/6J
and NEP�/�mice.

Data in the Table show that both motor and sensory
nerve conduction velocities, thermal nociception and intra-
epidermal nerve fiber density were significantly impacted by
diabetes in C57Bl/6J mice. The changes in these endpoints are
indicative of diabetic neuropathy. Treating C57Bl/6J diabetic
mice with candoxatril significantly improved each of these
neuropathic endpoints with the exception of sensory nerve
conduction velocity in the candoxatril intervention treatment
group. Generally, the candoxatril prevention protocol was
more effective than the intervention protocol. Likewise, reduc-
ing NEP activity through genetic manipulation prevented the
development of diabetic neuropathy in NEP�/� mice as deter-
mined by diabetic NEP�/�mice having normal motor and sen-
sory nerve conduction velocity and intra-epidermal nerve fiber
density (Table). Thermal nociception in diabetic NEP�/�mice
was significantly impaired vs control C57Bl/6J and NEP�/�

mice but significantly improved compared with diabetic
C57Bl/6J mice (Table).

Decrease in the density of corneal nerves has recently
garnered interest as an early marker for diabetic peripheral
neuropathy (42–45). In our studies, we focused on whether in-
hibiting NEP activity with candoxatril or through genetic ma-
nipulation would protect corneal nerve morphology in diabetic
mice. Using corneal confocal microscopy, a non-invasive ap-
proach for imaging corneal nerves in vivo, data in the

Table demonstrate that corneal fiber lengths are significantly
decreased in diabetic C57Bl/6J mice. Inhibiting NEP activity
with candoxatril through prevention and, more importantly, an
intervention protocol prevented a significant loss of corneal
nerves in diabetic C57Bl/6J mice. Disrupting NEP activity
through genetic manipulation also prevented the loss of cor-
neal nerves when NEP�/� were induced with diabetes (Table).

We also investigated the density of corneal nerves in the
sub-epithelial and epithelial layers using immunohistochemis-
try with antibodies to tubulin III and CGRP. Early loss of cor-
neal nerves in the sub-epithelial layer occurs in the region of
the whorl in rodents and humans (46–48). Immunostaining for
tubulin III or CGRP was decreased in the sub-epithelial layer
of diabetic C57Bl/6J mice compared with C57Bl/6J control
mice whereas there is no loss of corneal nerves in the sub-
epithelial layer of diabetic NEP�/� mice vs control NEP�/�

mice (Fig. 2).
Analysis of the entire mouse corneal sub-epithelial layer

by immunohistochemical staining for tubulin III revealed that
treating diabetic C57Bl/6J mice with candoxatril using a pre-
vention protocol significantly preserved corneal nerves in the
sub-epithelial layer in diabetes (Fig. 3). Treating diabetic
C57Bl/6J mice with candoxatril using an intervention protocol
was less effective than the prevention protocol. The same
analyses performed with control and diabetic NEP�/� mice
demonstrated that deletion of NEP activity prevented the
diabetes-induced decrease in sub-epithelial corneal nerves
(Fig. 3).

We previously reported that initial loss of corneal nerves
in diabetes occurs in the epithelial layer (49). Figure 4 depicts
immunostaining of the distal portion of corneal nerves pene-
trating the epithelium in the central region of the cornea in-
cluding the whorl. This figure shows that treating diabetic
C57Bl/6J mice with candoxatril protects from distal nerve loss

0

2 0 0

4 0 0

6 0 0

8 0 0

T im e  (m in )

B
lo

o
d

 g
lu

co
se

 (
m

g
/d

l)

C o n tro l
H F + S T Z
N E P  -  C o n tro l

0 1 5 3 0 4 5 6 0 9 0 1 2 0

N E P  -  H F + S T Z
In te rv e n tio n
P re v e n tio n

FIGURE 1. Effect on glucose tolerance of high fat/
streptozotocin (HF þ STZ) induced-diabetes in C57Bl/6J mice
with or without treatment of candoxatril (Intervention or
Prevention) and NEP�/� mice. Data are presented as mean
blood glucose levels in mg/dl 6 SE. The area under the curve
was significantly different for all diabetic mice vs their
respective controls. The number of mice in each group was
the same as shown in the Table.
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FIGURE 2. The region of the whorl of the sub-epithelial layer of the cornea was examined to determine the effect of high fat/strepto
zotocin (HF 6 STZ)-induced diabetes in C57Bl/6J or NEP�/� mice on tubulin III and CGRP immunohistochemical staining. Immuno
histochemical staining of the corneas in vitro was performed as described in “Materials and Methods” section. Representative images
are shown for each condition. Imaging was obtained using a 40�/1.3 oil objective (scale bar ¼ 50 mm). Data are presented as the
mean 6 SE of the surface area covered by nerve staining. Numbers of mice in each group were as shown in the Table. *p < 0.05 vs
control; ***p< 0.001 vs control; ns, not significant.

FIGURE 3. The sub-epithelial layers of whole mouse corneas were examined to determine the effect on tubulin III immunohistochemical
staining of high fat/streptozotocin (HF þ STZ)-induced diabetes in C57Bl/6J with or without treatment of candoxatril and in NEP�/�

mice. Representative images are shown for each condition. Imaging was obtained using a 20�/0.8 objective (scale bar ¼ 500 mm). Data
are presented as mean 6 SE of the surface area covered by nerve staining. Numbers of mice in each group were as shown in the Table.
**p < 0.01 vs control; ****p < 0.0001 vs control;þp < 0.05 vs untreated diabetic. Diabetes does not impact the sizes of the corneas
(Control and Diabetic, 8.53 6 0.013 and 8.65 6 0.12� 106 mm2, respectively).
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within the epithelial layer. Diabetic NEP�/� were also pro-
tected from nerve loss.

Finally, we examined immunostaining with tubulin III
and CGRP of the corresponding corneal nerve bundles of con-
trol and diabetic C57Bl/6J mice. Data in Figure 5 demonstrate
that diabetes induces a significant loss of tubulin III nerves
and that they are protected by inhibiting NEP activity with
candoxatril. Furthermore, the loss of CGRP-containing nerves
follows a similar trend as tubulin III; however, the loss was
not significant.

DISCUSSION
The purpose of these studies was to determine the indi-

vidual role of NEP on nerve complications that occur in high
fat fed/low dose streptozotocin-diabetic mice, a model of late
stage type 2 diabetes (38, 39). Because loss of corneal nerves
has recently been promoted to be a possible marker of develop-
ment of diabetic peripheral neuropathy we focused on changes
in the morphology of these nerves in the cornea epithelium
and sub-epithelial layer as a primary endpoint (25, 42–45). We
had previously demonstrated that inhibition of NEP activity
in diabetic rodents improved neuropathy, as determined by
evaluation of nerve conduction velocity (20, 23, 50). However,
little is known whether inhibition of NEP can protect cor-
neal nerves from diabetes. In addition to the potential role

of NEP inhibition singularly or in combination with angioten-
sin activity blockade as a treatment of diabetic neuropathy,
other investigations have implicated inhibition of NEP as a
treatment for heart failure, hypertension, chronic renal disease
and wound healing (51–56). Thus, increasing our understand-
ing of the impact of NEP activity in chronic diseases may lead
to improved treatments.

The major findings of this study were that pharmacolog-
ical inhibition of NEP or silencing NEP activity by genetic
manipulation reduced the impact of 12 weeks of diabetes on
endpoints associated with neuropathy including motor and to a
lesser extent sensory nerve conduction velocity, intra-
epidermal nerve fiber density and density of corneal nerves in
the epithelium and sub-epithelial layer. The lone exception
was that in this study using a mouse model of type 2 diabetes
we found that hypoalgesia was significantly improved in dia-
betic NEP�/� mice compared with diabetic C57Bl/6J mice;
thermal nociception remained significantly impaired com-
pared with control C57Bl/6J and NEP�/� mice. This result
differs from our previous studies using type 1 diabetic or diet-
induced obesity C57Bl/6J and NEP�/� mice (19, 33, 34). This
occurred even though the intra-epidermal nerve fiber density
was not decreased by diabetes in NEP�/�mice. The reason for
this is not entirely clear but could be due to signaling pathways
responsible for thermal sensitivity that are impaired to a
greater extent by type 2 diabetes than type 1 diabetes and are

FIGURE 4. The epithelial nerves in the region of the whorl of the cornea were examined to determine the effect on tubulin
III immunohistochemical staining of high fat/streptozotocin (HF þ STZ)-induced diabetes in C57Bl/6J with or without treatment
of candoxatril and NEP�/� mice. Representative images are shown for each condition. Scale bar ¼ 50 mm. Data are presented
as the mean 6 SE of the volume occupied by nerve staining. The numbers of mice in each group were as shown in the Table.
****p < 0.0001 vs control;þp < 0.05 vs untreated diabetic; þþþp < 0.001 vs untreated diabetic.
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independent of NEP activity. Inhibition of NEP activity by
candoxatril in diabetic C57Bl/6J mice also did not completely
prevent latency in thermal sensitivity or the decrease in nerve
conduction velocity. Not surprisingly, treating diabetic C57Bl/
6J mice with candoxatril using the prevention protocol was
generally more effective in protecting diabetic mice from neu-
ropathy than the intervention protocol. However, the 6-week
intervention protocol was effective in slowing progression or
reversing some diabetic neuropathic endpoints when treatment
was initiated after 6 weeks of untreated diabetes. The benefi-
cial effects of inhibiting NEP activity or genetic modifica-
tion of NEP activity on diabetic neuropathy occurred even
though blood glucose levels and glucose utilization were not
improved.

We employed multiple approaches to examine the im-
pact of diabetes and inhibition of NEP activity on corneal
nerve fiber loss. Corneal confocal microscopy is a non-
invasive procedure to examine corneal fiber morphology in
the sub-epithelial layer that is being used in both human and
animal research. However, in vivo corneal confocal micros-
copy is unable to image corneal nerves that penetrate the epi-
thelium and probably only visualizes a subset of sub-epithelial
nerves. The distal portion of corneal nerves within the epithe-
lium is most likely affected the earliest in diabetic neuropathy.
At this time, corneal nerves within the epithelium can only be
visualized in vitro using immunohistochemical staining of the
fibers. In this study, we used immunohistochemistry for tubu-
lin III and CGRP to examine corneal nerves. In the corneal
nerves of the mouse, CGRP and substance P are the most abun-
dant neuropeptides and both are degraded by NEP (57–61). In
vitro analysis of tubulin III immunoreactivity in corneal
nerves from control and diabetic C57Bl/6J and NEP–/– mice

generally supported the results obtained with corneal confocal
microscopy. Comparing density of corneal nerves in non-
diabetic C57Bl/6J and NEP–/– mice there was a trend for
NEP–/– mice to have an increased corneal nerve density
whether analyzed by corneal confocal microscopy or immuno-
histochemically although the difference was not statistically
significant. We attribute this to the increase in levels of calci-
tonin gene-related peptide that is apparent in corneal nerves
from NEP–/– mice vs C57Bl/6J mice. As discussed below cal-
citonin gene-related peptide could promote an increase nerve
generation/elongation.

Diabetes in C57Bl/6J mice reduced tubulin III immunore-
activity in both the epithelium and sub-epithelial layer, which
was partially protected by treating diabetic mice with candoxa-
tril. Immunoreactivity of tubulin III in both the epithelium and
sub-epithelial layer was not reduced by diabetes in NEP–/–

mice. A similar result was obtained for immunoreactivity for
calcitonin gene-related peptide in control and diabetic C57Bl/6J
and NEP–/– mice. Immunoreactivity for calcitonin gene-related
peptide was decreased in the sub-epithelial layer of diabetic
C57Bl/6J mice but not in diabetic NEP–/– mice. Calcitonin
gene-related peptide is a major neurotransmitter found in nerves
within the CNS and PNS (62). It is primarily synthesized in
the cell bodies of dorsal root and trigeminal ganglion and
transported axonally to the nerve fibers and has been recognized
as a nerve regeneration-promoting peptide (30, 63–66). It has
been shown that expression of the neuropeptides calcitonin
gene-related peptide and substance P increase in the early stages
of sciatic or sural nerve injury (27, 67, 68). Together, these
data suggest that preservation of calcitonin gene-related pep-
tide levels could be beneficial for maintaining nerve integ-
rity and regeneration properties. Thus, one possible role for

FIGURE 5. Cornea peripheral nerve bundles were examined to determine the effect on tubulin III and CGRP immunohistochemical
staining of high fat/streptozotocin (HF þ STZ)-induced diabetes in C57Bl/6J with or without treatment of candoxatril. Representative
images are shown for each condition. Scale bar ¼ 50 mm. Data are presented as the mean 6 SE of the volume occupied by nerve
staining. The numbers of mice in each group were as shown in the Table. **p < 0.01 vs control;þp < 0.05 vs untreated diabetic; þþp
< 0.01 vs untreated diabetic.
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inhibitors of NEP in the protection of nerve morphology and ac-
tivity in diabetes is through preventing the degradation of calci-
tonin gene-related peptide.

In summary, we have demonstrated that attenuating the
activity of NEP serves as a potential treatment of diabetic neu-
ropathy perhaps through preservation of important neuropep-
tides such as CGRP and substance P.
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