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Abstract

The policymakers need research studies indicating the role of different pollutants with mor-

bidity for polluted cities to install a strategic air quality management system. This study criti-

cally assessed the air pollution of Delhi for 2016–18 to found out the role of air pollutants in

respiratory morbidity under the ICD-10, J00-J99. The critical assessment of Delhi air pollu-

tion was done using various approaches. The mean PM2.5 and PM10 concentrations during

the measurement period exceeded both national and international standards by a wide mar-

gin. Time series charts indicated the interdependence of PM2.5 and PM10 and connection

with hospital visits due to respiratory diseases. Violin plots showed that daily respiratory dis-

ease hospital visits increased during the winter and autumn seasons. The winter season

was the worst from the city’s air pollution point of view, as revealed by frequency analyses.

The single and multi-pollutant GAM models indicated that short-term exposure to PM10 and

SO2 led to increased hospital visits due to respiratory diseases. Per 10 units increase in con-

centrations of PM10 brought the highest increase in hospital visits of 0.21% (RR: 1.00, 95%

CI: 1.001, 1.002) at lag0-6 days. This study found the robust effect of SO2 persisted in Delhi

from lag0 to lag4 days and lag01 to lag06 days for single and cumulative lag day effects,

respectively. While every 10 μg m-3 increase of SO2 concentrations on the same day (lag0)

led to 32.59% (RR: 1.33, 95% CI: 1.09, 1.61) rise of hospital visits, the cumulative concen-

tration of lag0-1 led to 37.21% (RR: 1.37, 95% CI:1.11, 1.70) rise in hospital visits which fur-

ther increased to even 83.33% (RR: 1.83, 95% CI:1.35, 2.49) rise at a lag0-6 cumulative

concentration in Delhi. The role of SO2 in inducing respiratory diseases is worrying as India

is now the largest anthropogenic SO2 emitter in the world.

1. Introduction

Time and again, the policymakers felt the requirements of understanding the status of air pol-

lution in growing cities and association of short-term air pollution exposures spanning one or

a few days on morbidity. This is particularly more relevant for the world’s fast-growing cities

to accrue benefits of sustainable development. Epidemiological studies conducted in the past

in cities held air pollution responsible for inducing different health hazards. The quasi-poison

regression model within over-dispersed Generalized Additive Model (GAM) has been very
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handy for many researchers for exploring the association of air pollution with different mor-

bidity and mortality [1–6]. In a time series where the respondent variable depends on the non-

linear relationship of independent variables, GAM model finds its best applicability. In GAM,

the nonlinear confounders can be controlled using smooth functions to correctly estimate the

best connection between dependent and independent variables [7–12]. Accordingly, research-

ers used the GAM model extensively to indicate the role of air pollution in causing health

effects for US and European cities [13, 14].

Chinese and Indian cities frequently grabbed the world’s attention because of increasing air

pollution and reported health effects on city dwellers. Indian cities were in the limelight

because of the uncontrollable nature of air pollution in already declared polluted cities. Differ-

ent Chinese cities have been put under strict scanners by the researchers who continuously

reported or updated the policymakers on air pollution and health hazards so that policy-level

initiatives may defuse the situation. Recently Lu et al. [15] reported that research ably sup-

ported the polluted Chinese cities to progress in air pollution control and place the much-

needed strategic air quality management system. Another recent article indicated that out of

31 research papers published during 2010–2020 investigating the role of different air pollutants

on the health of city dwellers using the GAM model, the majority, i.e., 17 were in the backdrop

of Chinese cities and 3 for Indian cities [16]. GAM successfully explored the role of different

pollutants in establishing their relationships with different types of respiratory morbidity/mor-

tality for 21 cities of China, India, Iran, Brazil. Denmark and Kuwait (S1 Table). Zhao et al.

[17], using GAM, reported that Dongguan city dwellers in China faced the threat of enhanced

respiratory diseases due to short term exposure to CO. Song et al. [18] found respiratory dis-

eases amongst the children of Shijiazhuang city of China due to PM10, SO2, NO2 presence in

the air. Cai et al. [19], studied the total respiratory diseases mortality of Shenzhen, China, and

linked them with PM2.5 presence in ambient air through GAM modelling. Liang et al. [20]

used GAM model to indicate a direct relationship between pulmonary disease in Beijing with

air pollution. Very recently Wang et al. [21] confirmed the role of particulate matter (PM)

with pneumonia hospitalizations of children in Hefei, China.

Delhi, the capital city of India, is the second most populated and one of the most polluted

cities in the world and should be the obvious choice for pollution and health hazard research.

The recent air quality report of IQ Air has ranked Delhi first out of the air-polluted capital cit-

ies of 106 countries based on PM2.5 concentration [22]. According to WHO, Delhi is the sixth-

worst polluted city amongst 13 notable other Indian cities. Indeed, the city-dwellers had terri-

ble times when PM2.5 of Delhi stood at 440 μg m-3 during October 2019, i.e., 12 times the US

recommended level. Past studied blamed the huge transport sector with the largest vehicle

stock of the country as the critical emission source [23–27]. Chen et al. [28] demonstrated that

local transport emissions and neighboring states contributed dominantly to PM2.5 and O3 con-

centration strengthening in Delhi. Sreekanth et al. [29] found high PM2.5 pollution persists

across all the seasons in Delhi despite pollution control efforts in vogue. In the pan-Indian

context, air pollution significantly contributed to morbidity and premature mortality in India

for a long time [30]. Sharma et al. [31] reviewed 234 journal papers and noted the knowledge

gaps in connecting hospital admissions of patients with air pollution of Delhi. Balyan et al. [32]

also noted that a deeper understanding of ambient pollutants at the city level and their effect

on morbidity was lacking.

Against the background above, the primary objective of this paper to explore the environ-

mental data of Delhi for confirming the poor air quality status of the city and, after that, assess

the role of air pollutants with morbidity (respiratory diseases) through the application of the

GAM model. A more profound grasp of the city air quality and influences of ambient air pollu-

tion on respiratory diseases is much needed. Such studies may provide all critical information
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for initiating actions to curb air pollution, health risk, developing public health policies, and

above all, a strategic environmental management system for Delhi.

2. Study location

As a highly populated and polluted city, Delhi provides an opportunity to apply the GAM

model for ascertaining how much the prevailing air pollution is responsible for respiratory dis-

eases of the city dwellers. Delhi has spread over 1,483 km2 and a population size of about 11

million per the 2011 census study. With time Delhi emerged as a significant city of the country

so far as commerce, industry, medical service, and education are concerned. As per Köppen’s

climate classification, Delhi’s climate is extreme with five seasons. The summer is scorching

(April–June), while winter is freezing (December-January). The average temperature range

during the summer is between 25˚C to 45˚C, while the winter temperature range is between

22˚C to 5˚C [33]. The comfortable season spring prevails from February to March, and

autumn runs from mid-September to late November. The rainy monsoon season spans almost

three months, starting from July. Air pollution varies across seasons due to the influence of cli-

matic conditions [34].

3. Materials and methods

3.1. Air pollution data

Daily average data for three years, January 2016 to December 2018, (1096 data points) of key

air pollutants were collected from the State Pollution Control Board (SPCB), Delhi. The pollut-

ants were sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), particulate

meter 10 micrometers or less (PM10), and particulate meter 2.5 micrometers or less (PM2.5) as

recorded by 11 NAMP (National Air Quality Monitoring Programme) stations of the city as

shown in Fig 1 and S2 Table.

Fig 1. Delhi city, air quality monitoring stations, and hospital location.

https://doi.org/10.1371/journal.pone.0274444.g001
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3.2. Meteorological data

Time series meteorological data for 1 January 2016–31 December 2018 were collected from

Regional Meteorological Department located in Delhi. The data were of a total of 1096 days

and included daily average temperature (T), daily average relative humidity (RH), daily aver-

age wind speed (WS), and daily rainfall (RF). The collected meteorological and air monitoring

data will be adequate to estimate the confounding effect of meteorological conditions on mor-

bidity related to respiratory diseases using GAM model.

3.3. Hospital visit data

We considered respiratory diseases covered by J00-J99 under the ICD-10 classification system.

Data related to daily hospital outpatient visits of patients for respiratory diseases under Inter-

national Classification of Diseases-10 (ICD-10), J00-J99 for 2016–2018 (1096 days) were col-

lected from Safdarjung Medical College and Hospital (SMCH) of Delhi. The SMCH had its

existence from pre-independence days of India and now functioning under the Ministry of

Health and Family Welfare, Government of India. SMCH has many different specialties and

super specialty departments, and Respiratory Medicine (RM) is one. Fig 1 shows that all the 11

air pollution monitoring stations considered in this study are located within a road distance of

12 km from SMCH. The hospital records contained information related visit date of patients,

age, gender, and final medical diagnosis for each patient. The patient data were grouped age-

wise under three categories (i) elderly people (more than or equal to 65 years), (ii) middle-

aged (45–64 years), and (iii) young (less than or equal to 44 years). For hospital data collection

formal request letter was submitted to the hospital authority. As the data were old data without

identifiers and not having any possibility of ascertaining the identities of the individuals to

whom the data belong, the hospital waived IRB approval.

3.4. Methods of analysis

3.4.1 Summary statistics and analysis of time series. Summary statistics of climatic vari-

ables, air pollutants, and hospital visits of the patients such as mean, standard deviation, maxi-

mum, minimum, and different quartiles were computed using the SPSS 25 version of the

software. Daily hospital visit counts for three years (2016–2018) in SMCH were structured

based on the patient’s age, sex, and visit dates. Violin plots were developed for three air pollut-

ants (PM10, PM2.5, and CO), two climatic variables (T, RH), and hospital visits of patients

regarding five seasons of Delhi, indicating the distribution of data prevailing in the city during

different seasons. Violin plots have been drawn with XLSTAT statistical software. Time series

plots were developed using the SPSS 25 version of the software with time dimensions on the

horizontal axis and hospital visits, pollutants and, meteorological variables on the vertical

coordinate axes to shed light on the data distribution for three years.

3.4.2 Frequency analysis. The seasonal distribution of PM2.5 and PM10 concentrations in

Delhi during 2016–18 has been done by frequency analysis [35]. Under frequency analysis,

first, the city level average concentrations of PM per day were calculated by averaging the con-

centration of 11 monitoring stations. Then, PM concentrations (both for PM10 and PM2.5),

i.e., number of per day observations for the period 2016–18 falling under six categories like

0–25, 25–50, 50–100, 100–200, 200–300, and more than 300 μg m-3 worked out. So, the three-

year period (2016–18) data or 1096 observations were segregated session-wise for each of the

six categories, and the frequency of their appearances was then expressed in percentage terms.

The calculations were done with the help of data analysis ’ToolPak’ of excel. As per the air

quality index (AQI) Of India, the range 0–100 is considered a good category, 100–200 as mod-

erate, 200–300 as poor, and above 300 as very poor or severe.
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3.4.3 Correlation analysis. To understand the interrelationship between climatic vari-

ables and air pollutants data for Delhi (2016–2018), we executed Pearson correlation analysis

using SPSS version 25.0 (SPSS Inc., Chicago, IL, USA) software. The coefficients of correla-

tions were established between daily meteorological variables and air pollutants for Delhi. The

correlation coefficients at p< .01 were accepted as statistically significant [36]. For better visu-

alization, correlation matrix plots have been drawn with R software’s ’corrplot’ package.

3.4.4 Generalized Additive Models (GAM). The nonlinear associations of various inde-

pendent variables (climatic variables and criteria pollutants) and the outcome variable (hospi-

tal visits due to respiratory diseases) of Delhi can be better explained by (GAM) model. GAM

explicitly allows the relationship between outcome variables independent variables to be devel-

oped based on the smooth functions fitted to some independent variables, thereby bringing

the flavor of parametric relationships of the covariates in a regression model [37, 38]. Accord-

ingly, in this study, the potential confounding effects of few independent variables that entered

the regression model were controlled with non-parametric smoothening splines. Smoothening

splines of 7 degrees of freedom (df) per year were fitted to calendar time (time since 1 January

1970) to control long-term trends and possible calendar effects [39, 40]. In line with Wei [41]

smoothening splines with 7 df were also applied to mean RH and mean temperature (T) to

control their respective confounding effects on the regression model. A linear term of mean

wind speed (WS) was allowed to prevail. A dummy variable as the day of the week (DOW) was

additionally introduced in the categorical form to control for week effects. As per Peng et al.

and Zheng et al. [39, 42], the dfs for smoothing splines were allowed to be determined by the

generalized cross-validation (GCV) scores. Finally, based on the description of the regression

model formation above, we formed the following GAM model (Eq 1) in our present study

with usual notations and applied.

Log½EðYiÞ� ¼ b x Xi þ sðtime; df1Þ þ sðtemperature; df2Þ þ sðhumidity; df3Þ þWind speed
þ DOW þ a ð1Þ

where i denotes the day of observation; E (Yi) denotes the daily hospital visits expected due to

respiratory diseases; β denotes regression coefficient; Xi denotes the daily mean concentration

of pollutants; s stands for the smoothing spline applied, and α is the intercept. Once the basic

GAM model is set with the smoothing splines for RH, T, and time variables, the independent

variables like PM2.5, PM10, NO2, SO2, and CO (per day concentrations) were added to the

basic model to make it the multi-pollutant GAM model. We also constructed two single pollut-

ant models for PM2.5 and PM10, respectively, to understand their respective sole effects on

respiratory diseases related to hospital visits in the city under study. In the single-pollutant

model, PM2.5 and PM10 concentrations, in turn, were entered as independent variables in the

base model. Generally, single pollutant models do not reflect the synergistic effect of pollutants

on morbidity, but in consideration with the multi-pollutant models, they provide crucial com-

plementary understanding.

The respective coefficients of pollutants of the multi-pollutant and single-pollutant GAM

models, found out as regression model output, were the inputs in deriving the relative risk

(RR) of hospital visits due to one unit rise of each modelled air pollutants in the ambient air.

Past studies have shown that the air pollutants remain in the ambient air and create linger-

ing effects on morbidity. Accordingly, we have considered pollutant concentrations for a single

day and multiple days in the study. We tested the lingering effects of air pollution for single-

day lags and cumulative lag days. Single-day lag (lag0) means air pollutant concentrations on

the same day of the hospital visit, while lag6 indicates air pollutant concentrations of 6 days

before the hospital visit. Similarly, for cumulative concentrations of pollutants lag0-1indicate
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the mean of pollutant concentration of the current day and previous day of the hospital visit

(i.e., 2 days mean). Similarly, lag 0–2 indicates the mean of current day pollutant concentra-

tion, 1 day before and 2 days before the visit (i.e. 3 days mean). In the same way, lag0-3, lag0-4,

lag0-5, and lag0-6 means 4 days, 5 days, 6 days, and 7 days mean pollutant concentrations,

respectively. We used single lags of 0, 1, 2, 3, 5, and 5 days (lag0–lag 5) and cumulative lags of

0–1, 0–2, 0–3, 0–4, 0–5, and 0–6 days (lag 0–1 to lag0-6) to explore the lag pattern of health

effects in the multi pollutants and single pollutant models. The R software with "mgcv" package

(version 4.0.2) was applied to construct the GAM models. For visualizations of GAM models

developed in this study, we have used visual tools of the mgcViz R package.

3.5. Relative Risk (RR)

Relative risk (RR), often used in epidemiological studies, helps understand the risk of the out-

come of an intervened event with non-intervened events. Thus, RR compares one group with

another group. In this study, the exposure-response coefficient β of pollutants obtained from

the GAM models under different lag conditions have been used to estimate RR and their 95%

confidence intervals (95% CIs). RR for the ith predictor variable and its confidence intervals

were calculated using the following Eqs 2, 3 and 4.

RRi ¼ exp ðDCi x biÞ ð2Þ

CI ¼ exp fDCi x ðbi � 1:96 x S:EiÞg lower limit ðLLÞ ð3Þ

CI ¼ exp fDCi x ðbi � 1:96 x S:EiÞg upper limit ðULÞ ð4Þ

where ΔCi is the rise of the ith pollutant concentration in air and S.Ei is the standard error of ith

pollutants. Here, ΔC will be 1 unit increase in CO and 10 units increase in all other pollutants.

RR provides information on the rise of hospital visits due to each unit increase of a pollutant’s

concentration level. To make the RR estimates of daily hospital visits due to air pollution more

expressive, we also calculated the percentage change (PC, %,) at 95% CI in the following way

(Eq 5).

PC = Percentage change of daily hospital visits due to air pollution

PC ¼ ðeb � 1Þx 100% ð5Þ

In all analyses p-value< 0.05 considered significant.

4. Results and discussion

4.1 Data distribution and time-series analyses

The distribution of criteria pollutants, climatic variables (T and RH), and daily counts of hos-

pital visits in Delhi are placed in Table 1 for 2016–18. Table 1 indicates that the mean value of

PM2.5 and PM10 concentrations exceeded the guidelines of NAAQS and WHO both by a wide

margin. They shoot to as high as 693.08 μg m-3 for PM10 and 478.25 μg m-3 for PM2.5 during

2016–2018. The mean RH value of 58.5% (range, 98.3% to 12.5%) in Delhi indicates the city’s

humid condition higher than the ideal level relative humidity for health and comfort of 30–

50%. The three years mean temperature of 25.63 ± 7.65 ˚C with a maximum as high as 45˚C

and a minimum of 0.5˚C along with a higher level of RH indicates the extreme climate of

Delhi. Daily mean hospital visits of patients for respiratory diseases during 2016–18 was 20

±23.52.
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Table 2 reveals that a total of 22,253 patients visited SMCH, Delhi, either for outpatient con-

sultation or admission for respiratory diseases during 2016–2018, as retrieved from hospital

records. The maximum number of people who visited the hospital for respiratory ailments for

a day was 176, and the minimum 0 patients. Out of the total patients, 63.5% were female, and

30% had�65 years of age. Similarly, out of male patients, 52% were aged�65 years, as shown

in Table 2.

Time series charts in (Fig 2A–2F) depict behaviors of meteorological variables (RH, tem-

perature), air pollutants (PM2.5, PM10, and CO), hospital visits, and their interrelationship dur-

ing 2016–2018 for Delhi. PM2.5 and PM10 were positively correlated in Delhi during 2016–18,

indicating the interdependency (Fig 2A) while maintaining a positive correlation with hospital

visits due to respiratory diseases (Fig 2B and 2C). Fig 2D–2E shows that hospital visits tended

to negatively correlate with RH and temperature. Fig 2(F) shows a positive correlation of hos-

pital visits with CO concentration too in the city’s environment.

Violin plots of three air pollutants (PM10, PM2.5, and CO), two meteorological variables (T,

RH), and hospital visits of patients were drawn for the five distinct seasons of Delhi have been

provided in (Fig 3A–3F) below. Fig 3A indicates that PM2.5 dominates the city environment

during winter and autumn. Fig 3B indicates that PM10 dominates the city air during the winter

and summer seasons, but the median value of PM10 concentrations was higher during winter.

The concentration of CO in the air remains high during winter and low during the monsoon

season (Fig 3C). Fig 3D clearly shows that the city experiences comparatively higher RH

Table 1. Summary distribution of criteria pollutants, climatic variables, and daily hospital visits (2016 to 2018), Delhi.

Variable Mean ± SD Maximum Minimum Percentile IQR

25th 50th 75th

Temperature (˚C) 25.63 ± 7.65 45.00 0.56 19.44 28.06 31.39 11.94

Relative humidity (%) 58.5 ± 18.76 98.3 12.5 45.98 60.5 72.3 26.33

PM2.5 (μg m-3) 107.32±71.06 478.25 18.53 54.83 85.93 142.80 87.97

PM10 (μg m-3) 210.61±95.90 693.08 38.65 140.79 203.28 262.57 121.78

NO2 (ppb) 44.60±14.82 101.15 18.13 32.19 43.82 53.93 21.74

SO2 (ppb) 14.65±4.35 32.26 6.84 11.43 13.76 16.86 5.43

CO (ppm) 1.40±0.54 5.96 0.54 1.03 1.285 1.62 0.59

Daily Hospital admission 20±23.52 176 0 6 11 28 22

https://doi.org/10.1371/journal.pone.0274444.t001

Table 2. Gender and age distribution patients of respiratory diseases, Delhi, 2016–2018 (N = 22253).

Variables Total (N) Mean Standard Deviation Minimum Maximum

Patients visited 22253 20.30 23.52 0 176

Gender distribution

Male 8125 7.41 12.04 0 103

Female 14128 12.89 17.37 0 175

Age distribution (Male)

�65 4218 72.15 5.15 65 91

45–64 3000 53.23 6.28 45 64

�44 907 37.61 6.50 4 44

Age female (Female)

�65 8009 73.23 6.12 65 93

45–64 5678 56.12 6.30 45 64

�44 441 37.33 6.23 7 44

https://doi.org/10.1371/journal.pone.0274444.t002
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during summer and monsoon, with the highest median value during monsoon. Fig 3E indi-

cates that the city experiences the hottest season during summer and autumn. From Fig 3F, it

can be observed that during the winter and autumn season’s daily hospital visits due to respira-

tory diseases increased. The rectangles within the violin plots indicate finishing points of the

first and third quartile of data distribution with central dots as medians. The upper and lower

whiskers show data spread.

4.2 Seasonal distribution of PM2.5 and PM10 in Delhi

The frequency distribution of PM2.5 and PM10 concentrations for five Delhi seasons are shown

in Fig 4. Fig 4 indicates that the winter season was terrible from the air pollution point of view

as almost 95.2% of the time, the ambient PM2.5 concentrations recorded to be more than

100 μg m-3. Alarmingly, 100% of the time, the ambient PM10 concentrations crossed the

100 μg m-3 benchmark during winter, indicating very harsh wintertime for the city dwellers.

The spring season brought some relief for the city dwellers when 42.2% of the time PM2.5 con-

centrations crossed 100 μg m-3 benchmark, but PM10 remained very strong with 99.4% of the

time crossing the 100 μg m-3 benchmark. During summer, about 76.9% of the time PM2.5 con-

centrations were under the ’good’ category, and 15.8% of the time PM2.5 concentrations were

more than the 100 μg m-3 benchmark. During summer PM2.5 concentrations improved con-

siderably with only 15.8% of the time, its concentrations were more than the 100 μg m-3 bench-

mark, but PM10 remained razing with 97.8% time crossing 100 μg m-3 benchmark. However,

two and half months of monsoon (July, August, and mid-September) brought relief from

PM2.5 pollution. Almost 100% of the time, PM2.5 concentrations remained under the ’good’

Fig 2. The time series of Delhi from 2016–2018 (A) PM2.5 Vs Hospital visit, (B) PM10 Vs Hospital visit, (C) RH Vs Hospital visit, (D) T Vs Hospital visit, (E) CO Vs

Hospital visit, (F) PM2.5 Vs PM10.

https://doi.org/10.1371/journal.pone.0274444.g002
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Fig 3. Violin plots of three air pollutants, two metrological variables, and hospital visits in five seasons of Delhi. (A) PM2.5, (B) PM10,

(C) CO, (D) RH, (E) Temperature, (F) Hospital visit.

https://doi.org/10.1371/journal.pone.0274444.g003
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Fig 4. Frequency distribution of PM concentrations across five seasons, Delhi.

https://doi.org/10.1371/journal.pone.0274444.g004
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category, but PM10 remained 51.1% crossing the 100 μg m-3 benchmark during monsoon.

From autumn (mid-September to late November), PM pollution built up with 97.8% of the

time PM2.5 concentrations crossing 100 μg m-3 benchmark, as shown in Fig 4. In summary,

the frequency distribution of PM2.5 and PM10 concentrations indicates that except winter, the

PM concentrations remained very high, which could be a possible cause of health hazards for

the city dwellers.

4.3 Correlation between pollutants and meteorological variables

Positive correlation existed between two important gaseous pollutants SO2 and NO2

(r = 0.341), while PM10 maintained a mild positive correlation with SO2 (r = 0.281). PM10

almost had linear positive correlation both with NO2 (r = 0.783) and CO (r = 0.733) as shown

in Table 3 and Fig 5. PM2.5 also had positive correlation with SO2 (r = 0.137), and positive lin-

ear correlation with NO2 (r = 0.673) and CO (r = 0.757). Also, PM10 and PM2.5 maintained

positive linear correlation.

4.4 Association of criteria pollutants with respiratory diseases, Delhi

Multi-pollutant and single pollutant GAM models were formed for Delhi to understand the

impact of air pollutants on hospital visits due to respiratory diseases. Multi pollutant models

indicate combined effects of the involved pollutants on the hospital visits, whereas single pol-

lutant GAM models cast light on the sole effect of pollutants. The models were tested with dif-

ferent lag concentrations to comprehensively understand the impact of short-term exposure of

pollutants on hospital visit counts due to respiratory diseases.

4.4.1. Association of criteria pollutants with respiratory diseases in Delhi (multi-pollut-

ant models). In the multi-pollutant model, criteria pollutants for 2016–18 were included in

the base GAM model. Table 4 and Fig 6 indicate the relative risks (RR) of hospital visits due to

a rise of 1 unit increase in CO and 10 units for all other pollutant concentrations for different

single lag days. The RR patterns in Table 4 indicate synergistic effects of criteria pollutants on

respiratory diseases related hospital visits in the city. Table 4 reveals that both PM2.5 and PM10

concentrations of all the 6 single lag days had no significant effect on respiratory disease-

related hospital visits. The effect of NO2 on hospital visits was there during lag1 day concentra-

tions only but without any positive acceleration. The effect of SO2 on respiratory diseases-

related hospital visits was found to be robust instantaneously, i.e., the increase of every 10 ppb

Table 3. Pearson correlation analysis of variables, 2016–2018, Delhi.

Variables RF T DP RH WS PM2.5 NO2 SO2 CO PM10

RF 1

T .097�� 1

DP .342�� .556�� 1

RH .299�� -.351�� .482�� 1

WS 0.047 .347�� .220�� -.154�� 1

PM2.5 -.240�� -.612�� -.600�� 0.024 -.438�� 1

NO2 -.227�� -.348�� -.626�� -.299�� -.262�� .673�� 1

SO2 -.185�� 0.031 -.540�� -.647�� .106�� .137�� .341�� 1

CO -.173�� -.418�� -.501�� -.064� -.391�� .757�� .721�� .150�� 1

PM10 -.285�� -.412�� -.611�� -.225�� -.289�� .897�� .738�� .281�� .733�� 1

��. Correlation is significant at the 0.01 level (2-tailed).

�. Correlation is significant at the 0.05 level (2-tailed).

https://doi.org/10.1371/journal.pone.0274444.t003
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SO2 on the same day (lag 0) resulted in a 32.6% (RR: 1.326, 95% CI: 1.089, 1.614) rise in hospi-

tal visits. The effect of SO2 on hospital visits persisted throughout the lag days from lag0 up

lag4. The increase in CO on hospital visits throughout the different lag days (lag0 to lag6) was

found to be non-significant for respiratory diseases.

Fig 5. Pearson correlation matrix, 2016–2018, Delhi generated using R program. Blue, red, and while indicate

positive, negative, and no correlation respectively.

https://doi.org/10.1371/journal.pone.0274444.g005

Table 4. Relative risks of hospital visit due to the rise in concentrations of criteria pollutants in Delhi (multi-pollutant models, single-day lags) �.

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6

PM2.5 0.978 (-2.17) 0.993 (-0.71) 0.989 (-1.11) 0.990 (-1.02) 0.993 (-0.66) 0.996 (-0.43) 0.988 (-1.21)

CI 0.957 1.000 0.971 1.015 0.968 1.010 0.968 1.012 0.973 1.014 0.975 1.017 0.967 1.009

p value 0.05 0.52 0.31 0.36 0.53 0.70 0.26

PM10 1.012 (1.21) 1.007 (0.71) 1.007 (0.707) 1.007 (0.736) 1.006 (0.628) 1.008 (0.806) 1.008 (0.847)

CI 0.997 1.027 0.992 1.022 0.992 1.022 0.992 1.023 0.992 1.021 0.993 1.023 0.994 1.023

p value 0.12 0.36 0.35 0.34 0.40 0.28 0.26

NO2 0.958 (-4.213) 0.920 (-8.045) 0.946 (-5.401) 0.993 (-0.660) 1.007 (0.696) 0.986 (-1.386) 1.004 (0.429)

CI 0.904 1.015 0.866 0.977 0.892 1.003 0.937 1.054 0.949 1.069 0.929 1.047 0.946 1.067

p value 0.15 <0.001 0.63 0.83 0.82 0.65 0.89

SO2 1.326 (32.60) 1.278 (27.77) 1.384 (38.42) 1.371 (37.14) 1.296 (29.57) 1.119 (11.87) 1.180 (18.03)

CI 1.089 1.614 1.048 1.558 1.142 1.677 1.130 1.665 1.069 1.571 0.919 1.362 0.970 1.437

p value <0.001 < 0.01 <0.01 <0.01 <0.01 0.26 0.10

CO 0.971 (-2.85) 1.286 (28.58) 2.521 (152.13) 0.493 (-50.73) 0.191 (-80.93) 0.267 (-73.31) 0.467 (-53.25)

CI 0.273 3.456 0.318 5.200 0.657 9.680 0.125 1.947 0.047 0.779 0.066 1.079 0.114 1.923

p value 0.96 0.72 0.18 0.31 0.02 0.06 0.29

�Figs. in the brackets indicates PC (% change in hospital visits)

Note: p < 0.05, p < 0.01, and p < 0.001 considered significant

https://doi.org/10.1371/journal.pone.0274444.t004

PLOS ONE Health effects of air pollution in Delhi, India

PLOS ONE | https://doi.org/10.1371/journal.pone.0274444 September 20, 2022 12 / 20

https://doi.org/10.1371/journal.pone.0274444.g005
https://doi.org/10.1371/journal.pone.0274444.t004
https://doi.org/10.1371/journal.pone.0274444


Table 5 and Fig 6 below indicate the relative risks (RR) pattern of change in hospital visits

due to a rise of 1 unit increase in CO and 10 units for all other pollutant concentrations for dif-

ferent cumulative concentrations of pollutants. Both for PM2.5 and PM10, in terms of cumula-

tive days effect of air pollution, no significant effect could be found. NO2 and CO were also not

significantly responsible for enhancing respiratory diseases in the city. However, per 10 ppb

rise in cumulative lag days, concentrations of SO2 led to a comparatively more robust effect on

respiratory diseases than single-day lag effects. At lag0-1 per 10 ppb, rise in concentrations of

SO2 was associated with the percentage change in hospital visits of 37.21% (RR: 1.372, 95% CI:

Table 5. Relative risks of hospital visit due to the rise in concentrations of criteria pollutants in Delhi (multi-pollutant models, cumulative lag days) �.

Lag 0–1 Lag 0–2 Lag 0–3 Lag 0–4 Lag 0–5 Lag 0–6

PM2.5 0.986 (-1.44) 0.981 (-1.93) 0.984 (-1.59) 0.984 (-1.56) 0.978 (-2.16) 0.976 (-2.36)

CI 0.963 1.009 0.957 1.005 0.958 1.011 0.957 1.012 0.951 1.007 0.947 1.006

p value 0.22 0.12 0.24 0.27 0.14 0.12

PM10 1.009 (0.92) 1.010 (1.03) 1.010 (0.96) 1.012 (1.24) 1.016 (1.61) 1.017 (1.67)

CI 0.993 1.025 0.993 1.028 0.991 1.028 0.993 1.032 0.996 1.037 0.995 1.039

p value 0.25 0.23 0.30 0.21 0.13 0.14

NO2 0.928 (-7.20) 0.955 (-4.52) 0.960 (-3.95) 0.956 (-4.40) 0.962 (-3.82) 0.963 (-3.74)

CI 0.871 0.989 0.893 1.021 0.895 1.031 0.888 1.030 0.890 1.040 0.887 1.045

p value 0.02 0.18 0.27 0.23 0.33 0.36

SO2 1.372 (37.21) 1.429 (42.87) 1.553 (55.27) 1.573 (57.34) 1.684 (68.44) 1.833 (83.34)

CI 1.107 1.701 1.130 1.806 1.206 1.999 1.201 2.061 1.262 2.248 1.351 2.489

p value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

CO 2.447 (144.68) 1.577 (57.68) 1.038 (3.79) 0.671 (-2.86) 0.543 (-5.70) 0.814 (-8.61)

CI 0.541 11.068 0.296 8.413 0.168 6.415 0.094 4.787 0.064 4.603 0.081 8.197

p value 0.25 0.59 0.97 0.69 0.58 0.86

�Figs. in the brackets indicates PC (% change in hospital visits)

Note: p < 0.05, p < 0.01, and p < 0.001 considered significant.

https://doi.org/10.1371/journal.pone.0274444.t005

Fig 6. Relative risk pattern (95% CIs) of respiratory diseases related hospital visits in multi-pollutant models,

Delhi.

https://doi.org/10.1371/journal.pone.0274444.g006
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1.107, 1.701), which increased to 83.34% (RR: 1.833, 95% CI: 1.351, 2.489) during the lag0-6

day. The result indicates the robust effect of pollutants SO2 on respiratory disease-related hos-

pital visits in Delhi.

Figs 7 and 8 below, drawn with the "mgcViz" R software package (Fasiolo et al., [43], pro-

vide the visual representation of the smoothing applied to the non-parametric terms and per-

formance of the GAM model at lag0 respectively.

4.4.2. Association of criteria pollutants with respiratory diseases in Delhi (Single-pollut-

ant models). Two single-pollutant models were developed with pollutants PM2.5 and PM10,

respectively, to understand the sole effect of PM pollution on respiratory diseases. We fitted

different single lag days and cumulative lag days to express the association of daily hospital vis-

its for respiratory diseases with a 10μg m-3 increase in PM10 or PM2.5 in Delhi. Both PM2.5 and

PM10 did not show any significant association with the number of respiratory disease-related

hospital visits in Delhi for all the single lag days considered here, as revealed by the p values

(Table 6 and Fig 9). In other words, the association of PM2.5 and PM10 with the respiratory dis-

ease was negligible as RR was found to be less than the baseline (RR<1).

However, in cumulative exposure single-pollutant models, PM10 was found to have persis-

tently enhanced hospital visits of patients with the respiratory disease excepting lag 0–2 days,

as shown in Table 6. Table 6 shows that per 10 units increase in concentrations of PM10

brought the highest increase in hospital visits of 0.21% (RR: 1.002, 95% CI: 1.001, 1.002) at

lag0-6 days. PM2.5 association with respiratory disease-related hospital visits found to be non-

significant during all the cumulative lag days considered.

5. Conclusion and discussion

The study investigated first the level of air pollution in Delhi and then assessed the impact of

air pollution on respiratory diseases. The result suggests that Delhi has been struggling to cope

up with the increasing nature of criteria pollutants in the first place. A total of 22,253 patients

visited the Delhi hospital either for outpatient consultation or admission for respiratory dis-

eases for 2016–2018. The study found that the mean value of PM2.5 and PM10 concentrations

for the period 2016–2018 were 107.32±71.06 μg m-3 and 210.61±95.90 μg m-3 for Delhi,

respectively, which were substantially higher than the NAAQS and WHO standards. Out of

Fig 7. Exploratory variables with confidence bands and smoothers for Delhi city.

https://doi.org/10.1371/journal.pone.0274444.g007
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the five seasons in Delhi, the winter season is hugely dominated by PM2.5 and PM10 pollution,

as revealed by frequency analyses. Initial time series analysis revealed that PM2.5 maintained a

positive correlation with PM10 have while PM2.5, PM10, and CO maintained a positive correla-

tion with hospital visits during 2016–18 in Delhi. Pearson correlation analysis confirmed that

PM10 in Delhi had almost positive linear correlations with NO2 and CO while PM10 main-

tained a strong positive correlation with PM2.5. Interestingly, SO2 too maintained a significant

positive correlation with PM2.5, PM10, NO2, and CO. Previous studies in the Indian city of

Mumbai highlighted the strong positive correlation of PM2.5 with NO2 and referred to them as

a dummy indicator of air pollution due to transport-related emissions in the city [44]. In the

same line, significant positive correlations between PM concentrations and gaseous pollutants,

shown by air pollution data, point towards transport-related pollution, solvent evaporation,

and waste disposal as sources [45, 46].

Fig 8. GAM model performance for Delhi city.

https://doi.org/10.1371/journal.pone.0274444.g008

Table 6. Relative risks of hospital visit due to rise in concentrations of PM (PM2.5 and PM10) pollutants in Delhi, India (single-pollutant models) �.

Lag days Pollutants and RR PC (%) LL UL p value Lag days Pollutants and RR PC (%) LL UL p value

Lag 0 PM2.5 0.993 -0.74 0.984 1.001 0.08 Lag 0–1 PM2.5 0.999 -0.11 0.990 1.008 0.81

PM10 0.997 -0.31 0.991 1.003 0.30 PM10 1.001 0.08 0.995 1.007 <0.05

Lag1 PM2.5 0.998 -0.24 0.989 1.006 0.60 Lag 0–2 PM2.5 0.996 -0.36 0.987 1.006 0.46

PM10 0.999 -0.05 0.993 1.006 0.86 PM10 0.999 -0.07 0.993 1.006 0.84

Lag 2 PM2.5 1.001 0.12 0.993 1.010 0.79 Lag 0–3 PM2.5 0.998 -0.21 0.988 1.008 0.69

PM10 1.002 0.21 0.996 1.008 0.50 PM10 1.000 0.02 0.993 1.007 <0.01

Lag 3 PM2.5 0.998 -0.19 0.989 1.007 0.67 Lag 0–4 PM2.5 0.999 -0.06 0.989 1.010 0.92

PM10 1.000 0.00 0.994 1.006 0.99 PM10 1.001 0.15 0.994 1.009 <0.01

Lag 4 PM2.5 0.996 -0.42 0.987 1.004 0.34 Lag 0–5 PM2.5 0.999 -0.14 0.987 1.010 0.80

PM10 0.998 -0.20 0.992 1.004 0.53 PM10 1.001 0.12 0.993 1.009 <0.05

Lag 5 PM2.5 0.999 -0.12 0.990 1.008 0.79 Lag 0–6 PM2.5 1.000 -0.03 0.988 1.012 0.96

PM10 1.000 0.03 0.994 1.006 0.93 PM10 1.002 0.21 1.001 1.003 <0.05

Lag 6 PM2.5 0.997 -0.29 0.989 1.006 0.51

PM10 0.999 -0.06 0.993 1.005 0.84

�Note: p < 0.05, p < 0.01, and p < 0.001 considered significant

https://doi.org/10.1371/journal.pone.0274444.t006
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This study shows PM10 to have persistent enhancing effects on the number of hospital visits

with the respiratory disease during all the cumulative lag days excepting lag 0–2 days. Luong

et al. [47] reported PM10 and respiratory disease-related hospital admission in polluted Hanoi

city of Vietnam. Past studies confirmed the role of PM in inducing oxidative stress in the

human respiratory system [48]. PM10 impact on respiratory diseases in Delhi may be aggra-

vated due to the road dust fraction of PM10 that has significant oxidative potential [49]. It was

interesting to note that in multi-pollutant models, the role of PM10 causing respiratory diseases

got subdued due to the combined presence of other pollutants in Delhi city.

This study found that short-term exposure to SO2 and PM10 led to increased hospital visits

of the city dwellers due to respiratory diseases under (ICD-10) J00-J99. The present study

reports the mean SO2 in ambient air for three years (2016–18) as 14.65 ppb or 38.25 μg m-3.

SO2 is a very critical gaseous pollutant connected with public health [50]. Past studies reported

that an ordinary person could withstand only 2.62 μg m-3 of SO2 in the ambient air without

any respiratory problem [51]. However, short but higher concentration exposure to SO2 gas

can cause persistent pulmonary problems [52]. Orellano et al. [53], in a more recent and exten-

sive review and metadata analysis, confirmed that short-term exposure to SO2, varying from

few hours to days, can lead to an increased risk of respiratory morbidity/mortality. Our find-

ings agree with that and found a robust effect of SO2 on respiratory diseases hospital visits in

Delhi. This study shows the robust effect of SO2 persisted in Delhi throughout the single lag

days (from lag0 up lag4) and had an instantaneous (same day, lag 0) increase of 32.6% (RR:

1.326, 95% CI: 1.089, 1.614) of hospital visits. The cumulative concentrations of SO2 were

more robust than the single lag day concentration in Delhi. While every 10 μg m-3 SO2 concen-

trations on the same day (lag0) showing 32.59% (RR: 1.326, 95% CI: 1.089, 1.614) rise of hospi-

tal visits, the cumulative concentration on the day and its previous day (lag0-1) showing

37.21% (RR: 1.372, 95% CI: 1.107, 1.701) rise in hospital visits which further increased to even

83.33% (RR: 1.833, 95% CI: 1.351, 2.489) rise at a lag0-6 cumulative concentration of the pol-

lutant in Delhi. Ren et al. [54], using the GAM model, confirmed the SO2 effect on respiratory

diseases in the fast-industrializing Chinese city of Wuhan and found that a 10 μg m-3 rise in

SO2 concentrations led to a rise of RR for respiratory disease mortality by 1.9% at lag0 day or

same day. More recently, another two highly industrializing cities of Zhoushan and Hangzhou

Fig 9. Relative risk pattern (95% CIs) of respiratory diseases related hospital visits in single pollutant models,

Delhi.

https://doi.org/10.1371/journal.pone.0274444.g009
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of China with the comparatively lesser presence of average SO2 of 6.12 μg m-3 and 17.25 μg m-

3 in ambient air, respectively, confirmed the active role of SO2 in enhancing hospital visits of

the patient for respiratory diseases [55]. Phosri et al. [56] also reported the effect of SO2 for

hospital admissions for respiratory diseases in industrializing Bangkok city of Thailand.

Recent COVID-19 and air pollution studies in Delhi indicated that even during the rigor-

ous ’lockdown’ period, there was only a marginal decrease of mean SO2 in the ambient air

than in the regular times [33, 57]. Therefore, it proves that a significant portion of ambient

SO2 in Delhi is likely to be from non-local origins like distant transfer, fossil fuel-fired thermal

power plants in the bordering areas of Delhi, and biomass burning in the neighboring states.

India’s recognition as the largest anthropogenic SO2 emitter replacing China in recent times

will be much more worrisome in the context of this study’s findings [58, 59].

Suneja et al. [60], through an experimental study in Delhi, reported the seven-year (2011–

2018) mean value of SO2 level was 2.26 ppb, while this study found a much higher three-year

average (2016–18) of 14.65 ppb, indicating the rise of SO concentrations in Delhi in the more

recent years. The association of respiratory diseases with PM10 and SO2 was found stable in

different lag days analyses, indicating the problem’s depth for the city dwellers. The robust and

instantaneous nature of the relationship between SO2 and respiratory morbidity indicated in

this study and evidence of similar relationships found in the previous studies highlight the

necessity of taking policy-level measures to reduce SO2 in the ambient air. Limited GAM

model application in Indian cities to link air pollution and health effects is not a limitation of

the present study findings but rather a call for more sponsored research in the area.
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