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ABSTRACT

While brain imaging tools like functional magnetic resonance imaging (fMRI) afford
measurements of whole-brain activity, it remains unclear how best to interpret patterns found
amid the data’s apparent self-organization. To clarify how patterns of brain activity support
brain function, one might identify metric spaces that optimally distinguish brain states across
experimentally defined conditions. Therefore, the present study considers the relative capacities
of several metric spaces to disambiguate experimentally defined brain states. One fundamental
metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a
multivariate signal, changing with time. Another perspective compares the brain’s functional
connectivity, that is, the similarity matrix computed between signals from different brain regions.
More recently, metric spaces that consider the data’s topology have become available. Such
methods treat data as a sample drawn from an abstract geometric object. To recover the structure
of that object, topological data analysis detects features that are invariant under continuous
deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods
explicitly consider features that persist across multiple geometric scales. While, certainly, there
are strengths and weaknesses of each brain dynamics metric space, wefind that those that
track topological features optimally distinguish experimentally defined brain states.

AUTHOR SUMMARY

Time-varying functional connectivity interprets brain function as time-varying patterns of
coordinated brain activity. While many questions remain regarding how brain function
emerges from multiregional interactions, advances in the mathematics of topological data
analysis (TDA) may provide new insights. One tool from TDA, “persistent homology,”
observes the occurrence and persistence of n-dimensional holes in a sequence of simplicial
complexes extracted from a weighted graph. In the present study, we compare the use of
persistent homology versus more traditional metrics at the task of segmenting brain states that
differ across experimental conditions. We find that the structures identified by persistent
homology more accurately segment the stimuli, more accurately segment high versus low
performance levels under common stimuli, and generalize better across volunteers.
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Simplicial and topological descriptions of human brain dynamics

Topography:

The vector of a multivariate signal
measuring a system at a given
instant.

Geometry:
The study of distance functions.

Graph:
A finite set of nodes, equipped with a
finite set of edges.

Network:
A graph wherein edges convey
that the property “interacts with.”

Clique:
A set of k connected nodes.

Topological space:
A totality of two elements: a set of
points, and a topology on this set.

Simplex:
The k-dimensional convex hull of a
clique of k + 1 nodes.

Topology:
A collection of subsets of a set.

Simplicial complex:
A collection of multiple simplicies.

Homology:

A k-dimensional hole bounded by
cyclically connected (k + 1)-
dimensional simplices.

Filtration:

Varying the threshold parameter of a
weighted graph to resolve simplicial
complexes with altered homology.

Network Neuroscience

INTRODUCTION

One of the perennial questions in neuroscience concerns how neuronal signaling generates
time-varying experiences. One foundation from which to address this question asserts that
brain function emerges from neuronal communication within the context of multiscale neuro-
nal networks. Having access to high-quality whole-brain imaging data, the field of time-varying

functional connectivity (TVFC, or chronnectomics; ),
offers an empirical approach to characterizing time-varying patterns of mesoscopic neuronal
communication ( ; ).

Early computational analysis of brain imaging data observed changes in vectors describing
brain topography across conditions. FC instead defines a geometry among brain regions by com-
puting pairwise similarities from their long-term spontaneous activity measures (

). While the similarity between regions is often calculated using

the Pearson correlation among spontaneous neuroimaging signals ( ;
; ), in general,
the idea of brain connectivity can apply to other methods of computing pairwise edges between
nodes in the brain. For instance, the present study defines TVFC using instantaneous coherence.

But is the overt geometry of brain imaging data an optimal set of features through which to view
and compare brain dynamics? Or, does FC geometry tend to be an idiosyncratic and volunteer-
specific descriptor of the brain’s state ( )? An alternative perspective observes that
an FC graph may be treated as a network. From here, the analyst may compute graph-theoretic
summaries such as centrality, strength, small-worldness, and so forth ( ;

). However, it is not clear that network properties become
clearer when segmenting the brain into more parcels. Rather, the observation of important network
properties may require a precise parcellation schema ( ).

A more complete picture of neuronal dynamics should account for multiple scales of
functional connectivity. One way to gain this perspective is to consider data as an approximate
sampling of an underlying, typically low-dimensional, geometric object, that is, as a topological
space. In this framework, we may describe the potentially many-body interactions between
points or regions of interest using simplices. In the simplest and most abstract definition, a
k-simplex o = [po, p1, ..., pil is a set of (k + 1) points p; with an ordering. The topology of a space
is defined by collections of simplices, called simplicial complexes, that are closed under inter-
section (i.e., X is a simplicial complex if Vo, o’ € X; then also o N ¢’ € X). Disconnected holes
and cavities are described by the homology groups Hy of the simplicial complex: Hy de-
scribes connected components of the complex, H; its one-dimensional cycles, H, three-
dimensional cavities, and so on for higher ks.

Topological data analysis (TDA) attempts to reconstruct the data’s underlying abstract
topological space by quantifying the presence and persistence of homological features across
different scales (e.g., distances between points, or intensity of correlation between different
regions in FC graphs). Such features may include connected regions of a topological space,
and its holes in various dimensions, from one-dimensional cycles to higher dimensional cavities
( ; ). TDA has been described as
“exactly that branch of mathematics which deals with qualitative geometric information”
( , p- 2). In practice, one does not focus on a single complex X but rather on a
filtration X = [Xo, X1, X2, ..., X,], a sequence of nested simplicial complexes, such that X; € X;
+1, Which approximates the topological structure at different scales. In this case, the analogues of
homological groups are persistent homological groups, which capture not only the presence or
absence of a hole, but also at what scale it appears and at what scale—if any—it disappears. In
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Simplicial and topological descriptions of human brain dynamics

this way, persistent homology generates topological summaries, called persistence diagrams,
that can then be used to compute topologically informed distances between datasets (see
Methods).

Rethinking the more traditional brain dynamics metric spaces from the perspective of
topology, values for nodal activity, edge weight, degree strength, and so on are properties that
decorate k-simplices. Thus, we can consider more traditional metrics as adopting a “simplicial
approach,” while a “topological approach” focuses on topological features associated with
sequences of simplicial complexes. To compare simplicial and topological spaces of brain
dynamics, we leverage preexisting rest and task fMRI data from 18 volunteers (Conzalez-
Castillo et al., 2015). We compare instantaneous brain images using each of six metric
spaces—three simplicial metrics, and three topological metrics. Metric spaces are embedded
onto two dimensions to facilitate statistical tests relating clusters of brain images with common
experimental conditions (for more details, see Figure 1 and Methods). In part A of Figure 2, we
report an instance of the embeddings output from the six brain dynamics metrics spaces, that
is, the metric space from differential node topography, differential edge geometry, differential
degree strength, and also the three topological distances between homology groups in dimen-
sions 1, 2, and 3 (the homology groups Ho, H1, and H;). Points often form dense regions
associated with certain experimental stimuli. After 256 bootstrap samples of the embedding
process, we find that the topological approach excels at distinguishing experimentally distinct
brain states.

¢ [T(),N(ND] P

[T(0),N(0)]

- ~[T(TD, NQND]

Distances between Embedding and
instantaneous dynamics: clustering:
(T*N) [T* N/3 x 2],
2/p * Train UMAP

Time-varying
Prerocessed fMRI: connectivit rahs:

Shape: Px Ty x N _ (P
Wx(z)xTxN

* P = 328 brain parcels * W = Wavelet coherence

*T,=1017 BOLD images (11 scales, 0.01 - 0.12 Hz)

* N = 18 volunteers *W =1 mean coherence
*T = Middle 777 images

* Dt distance metric embedding with N/3
D: {edge weight, node * Train Watershed
activity, degree strength clustering with N/3
Ho, Hl, &Hz} * Test with N/3

Figure 1. Analysis pipeline. We present the analysis pipeline as aflow diagram in four steps. First, the pipeline accepts preprocessed and
spatially segmented BOLD fMRI data as inputs. Then, for each scan, we compute time-varying functional connectivity (TVFC) matrices as the
weighted mean of the wavelet coherence between all brain regions, across all time points. Because the wavelet kernel operates over a portion
of the time-frequency domain, we remove the outside temporal and spectral edges of the coherence matrix where data padding is required.
Next, we compare instantaneous brain dynamics using six metrics. Three metrics quantify the similarity among simplex decorations, while the
other three compare the lifetimes of persistent homological groups at different dimensions. Finally, we embed each brain dynamics metric
space onto two dimensions for visualization, clustering, and statistical analysis. To improve seperability among temporally adjacent time
points, and to ensure an unbiased clustering of embedded regions, we split volunteers into three groups: (a) an embedding training group,
(b) a clustering training group, and (c) a testing group. Statistical results are computed after 256 bootstrapped reinitializations of the
volunteer-wise split into the three groups.
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Figure 2. Brain dynamics embeddings for different underlying metrics. For each of the six metric spaces under investigation, we display one
realization of the data embedding as density maps. Utilizing a watershed transformation, dense regions of the embedding segment the space
into clusters. Clusters are color coded if the underlying points bear statistically significant associations with between one and six volunteers
(part A), or with each of the five experimental conditions (part B). (The label multi identifies regions independently associated with at least two

different stimuli).
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RESULTS

Volunteer-Wise Representation

As an initial test of the quality of each embedding space, we ask how well the clusters in each
embedding generalize across volunteers. To do so, we count the number of points falling into
clusters wherein between one and six volunteers contributed a not-insignificant number of
points to each cluster. Figure 3 displays the results of this count as percentages with respect to
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Figure 3. Volunteer specificity of watershed regions. We plot the percentage of time points lying
within each of six bins. Each bin presents the proportion of points belonging to embedding clusters
wherein between one and six volunteers possessed “not an insignificant number of points” in that
embedding cluster (inverse left-tail test). Data are presented as mean and 95% confidence interval
over 256 independent samples. Each sample comes from a randomly initialized embedding. Bin 6
is expanded along the abscissa for clarity.
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the total number of time points in the test embedding. Following the subsampling and bootstrap-
ing schema described in the section, volunteer-wise generalizability was assessed over
256 independently reinitialized embeddings. Bold lines in display the mean, while
shaded regions show the 95% confidence interval. A right-skewed distribution indicates in-
creased generalizability, because it means that the densest watershed regions are significantly
populated with many volunteers. A left-skewed distribution indicates that most watershed re-
gions are specific to one or few volunteers, that is, that observed brain dynamics are idiosyncrat-
ically related to specific volunteers.

Overall, topological metric spaces offer embeddings that generalize better across volun-
teers than the other metrics we consider. Not only does homology present right-skewed dis-
tributions in , this category of metrics also aggregates significantly more points into
embedding clusters that are general for all six volunteers.

It may be possible for metric spaces to generalize too well. For instance, the metric space
differing node activity agglomerates the largest percentage of time points into bins having be-
tween four and six represented volunteers. However, as will become clear in the next section,
this state generalizability comes at the cost of the capacity to distinguish between experimental
conditions. Indeed, it appears that the node metric space produces embeddings with a single
dense core, plus a few distant outliers.

Stimulus Segmentation

A central indicator of embedding quality is the degree to which time points colocalize when
belonging to the same stimulus condition. Part B of shows an example result of testing
watershed clusters against the hypothesis that a significant number of within-cluster points cor-
responds to any of the five experimental conditions. For each stimulus type, shows the
percentage of points from that stimulus residing in clusters significantly associated with that
stimulus (blue boxes). Here again, we report the result as a distribution after 256 independently
reinitialized embeddings. Larger percentages of significantly colocalizing points indicate in-
creased capacity to identify brainstates associated with experimental stimuli.

For comparison, we offer two null models computed from randomly permuted point labels.
The first null distribution (yellow boxes) permutes point labels among the significant clusters
defined previously. It reflects the expected number of points that would randomly collect into
the preidentified set of significant clusters. The inclusion of this null model is motivated by the
fact that some embeddings clump more points than others into the same watershed region, and
would thus hold a larger percentage of points from any experimental condition by default. The
effect size (Cohen’s d) between this null distribution and the real distribution provides an in-
dication of how well each embedding isolates brain states induced by distinct experimental
stimuli. The second null distribution simply permutes point labels before attempting to find
watershed clusters having a significant number of points from any of the five experimental
conditions (black boxes). This second null distribution provides a good check on the rate of
false positives.

Here again, the homology-based embeddings perform very well compared with embed-
dings constructed from simplicial overlap. This is especially the case for the Hy metric space
which tends to present, over all stimuli, the highest effect sizes. The second-highest effect size
is found from the H; metric space, and the third from the strength metric space.

It is interesting to note that, of all the homology-based metrics, the embeddings using
Wasserstein distances in H, provide the worst segmentation over stimuli. While this may

553



Simplicial and topological descriptions of human brain dynamics

stimulus = Instruction stimulus = Rest stimulus = Memory
- 0.296 0.683 0.971 1.2 1.18 0.414 124 146 153 152 115 q.332 L11 142 153 144 127
2 807 - . S ] N
2 ¢
L 704+ - 4 | . 1 3 o .
S 60 1 s ! 1 )
E ; , | *
o 504 § 0 : . b )
< ' 0 ! 5
o = 11 | ' :
] | o ] | 1 i 1
£ 30 e ¢ i H ' [
.g 204 [l L ; [ N ﬁ 1 i i n
¢
© 10-* " g A T l ! ! ye ! i 1 R 1!.
o | ¢ B
= 0 1 ¥ S SR SN W S a1t o2t RS _ Yt e . 4
T T T T T T T T T T T G T T T T T
Y N, A A A,
odes O'gss (}.@/79[77 4 2 2
stimulus = Video stimulus = Math metric
q.319 »1 1.39 1.32 0.318 11 156 162 1.5 1.33
g 80 ¢ T " 3 °
$ 70 : ¢ ¢ |
= ’ ?
Q 60 1 T ¢
g 50 1 ¢ . ! . . o ¢ ;
[} L . ¢
% 40 H i . u 4 - No randomization.
] Rl H i [ ’ I i “ Identify any significant clusters,
-g 20 - = i B e ﬁ B =3 and then randomize labels.
< 101 i ML B ! ] L L | ! .
() ) H N Te N Randomize labels, and then
X 04 SN S Ol B Ol B SR 2 | o 4 o0 4o Yoo . 4. - identify any significant clusters.
4/0' 4(;)‘l Str, I ’SI’ 4/0' ’SO'I U I "I/ '<I/ /SI’
%s  9es & N RCNEIEEN e,,g{ % o ? °?
metric

Figure 4. Comparison of task specificity for watershed regions across different metrics. We report the percentage of time points (calculated on
a per-experiment basis) assigned to watershed clusters having a significant amount of points from each experimental condition (blue boxplots).
Referencing those same clusters, we report the percentage of points from each experimental condition found therein after randomly permuting
point labels (yellow boxplots). Additionally, we report the effect size (Cohen’s d) between these two distributions (values above boxes). A third
distribution (black boxplots) shows false positive rates. False positives are calculated by first randomizing point labels, then calculating whether
any watershed cluster contains a significant number of points from any experiment.
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indicate that aspects of TVFC topology are restricted to very low dimensions, the computation-
ally motivated coarsening of voxelwise information into 328 brain regions also limits the ap-
pearance of high-dimensional homologies.

The embeddings over nodes produce states that are highly generalizable across volunteers,
but that are very poor at distinguishing experimental conditions. In direct contrast, the embed-
dings over edges are the least generalizable across volunteers, but produce embeddings
wherein many time points are found in watershed clusters with correctly labeled experimental
conditions.

Task Performance

Assuming that differences in performance should be detectable as different brain states under
common stimuli, we expect to see large differences between measures of brain dynamics
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during task time points in which volunteers made fewer or more correct responses. We can test
this because the experimental design includes performance metrics for each task, especially
the percentage of correct responses for each task block. To do this we computed “mean per-
formance graphs” for each task and each valenced performance level (see Methods). Within
each task, performance was valenced as having either more correct responses, or fewer correct
responses with respect to a mean split of the performance characteristics for that task from the
entire dataset.

Part B of Figure 5 displays distances between pairs of mean graphs (across metric spaces
and performance levels). Of particular note are the distances computed across the valenced
performance levels, but within the same category of metric space (Figure 5, white annota-
tions). These values directly measure the sensitivity of each metric space to distinguishing
different brain states under common stimuli. Overall, the distance between valenced mean
graphs is largest with respect to the topological metric spaces. This is especially true from
the perspective of the Jaccard distance (part B of Figure 5, lower triangles). From the perspec-
tive of the Wasserstein distance in Hy (upper triangles), the strength metric also demonstrates
strong cross-valence differences.

A Memory max||min Video max||min Math max||min
Jacc_RMS 0.28||0.28 0.28]]0.27 0.28]]0.27
Wass_RMS - 29||28 29]|27 1 29|28
Jacc_std 0.02]]0.018 0.021]]0.02 4 0.023||0.019
Wass_std - 6]|5.6 5.9]|5.2 . 6.4]|5.4
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t 0
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Jaccard distance Jaccard distance Jaccard distance

Figure 5. Distances between mean graphs from different performance levels. Mean performance graphs are calculated by taking the mean
edge weights for all time points (from any volunteer or condition, and across all embedding reinitializations) located in watershed clusters that
are both significantly populated by a given task, and also wherein significantly more, or fewer, correct responses (with respect to a mean split)
were also found for that task (see Methods). Part A of the figure shows the RMS and standard deviations for distances computed between each
mean graph versus the set of graphs from which each mean graph was drawn. An annotation is given for the maximum and minimum values in
each row. Separate colormaps depict the values in each row. The minimum value is set to O for all colormaps. Part B shows distances between
the mean performance graphs themselves. Annotations are provided for distances computed within each metric space, but between
high-performance and low-performance mean graphs. For the sake of comparison, distances between mean graphs are calculated with both
the weighted Jaccard distance between edges (lower triangle of part B), and also with the sliced-Wasserstein distances between Hy persistence
diagrams (upper triangle). The lower colorbar references the lower triangle, and the right colorbar references the upper triangle.
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Table 1.  Primary statistics, over all distances between pairs of instantaneous brain dynamics

Min Mean Max
Nodes 5.7 38 82
Edges 0.0034 0.36 0.55
Strength 0.0013 0.20 0.54
Ho 0.12 8.1 31
H, 0.14 2.8 9.0
H, 0.04 1.7 6.3

The values in part B of the figure should be compared against summary statistics in part A,
and to Table 1. Displaying the root mean square (RMS) and standard deviation of the set of
distances between each mean graph and their component TVFC graphs provides some indi-
cation of the diversity of brain dynamics at times with common stimuli and response charac-
teristics. Compared with Table 1, the RMS edge distance between mean graphs and
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Figure 6. lllustrative examples of persistent homology in Hy and H;. While persistent homology operates over a multiscale filtration over

internode distances, parts A and B of the figure illustrate some of what the algorithm is observing by representing the Hy and H; homology
groups at a single scale. The image in part A was computed from the mean graph of more correct memory task responses, as observed by
the Ho metric space. The image in part B represents a single time point consistently identified as a member of the mean graph from part A.
The threshold corresponds to the first appearance of a cocycle in H;. The variegated (cubehelix colormap) lines in the brain images display the
edges involved the cocycle. The red numbers indicate the nodes connected by cocycle edges. Dotted gray lines indicate all edges below this
threshold that connect nodes involved in the indicated cocycle. The black dashed line indicates the edge born on or above the threshold that
fills in the cocycle. Brain regions are color coded with respect to their clustering via an agglomerative clustering using the “single” linkage
distance. Light colored lines point between brain regions sharing the same cluster. Colored dots represent the brain region having the largest
weighted degree strength of the cluster. Black dots represent the other brain regions of the cluster having less than the maximum weighted
degree. For reference, part C of the figure displays the persistence diagrams associated with the graphs from parts A and B. The threshold for
the brain images in parts A and B are shown as large x markers in part C. The birth time of all Hy connected components is at zero coherence
distance, however, the data are shifted in the x-axis for clarity.
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component TVFC graphs is below the average edge distance between all TVFC graphs. By
contrast, the RMS Wasserstein distance in Hy between mean graphs and component TVFC
graphs approaches the maximum Hy distance across all TVFC graphs. Through the lens of a
simplicial approach, mean graphs localize centrally among all TVFC graphs. By contrast,
through the lens of the Wasserstein distance in Ho, mean graphs are very different from all
other TVFC graphs. This observation confirms that the simplicial approach and the topological
approach are observing very different features of the same dataset.

Visualization of Homological Information

Finally, having identified the high utility of brain dynamics metric spaces developed from
homology to disambiguate group-general brain states, we wanted to gain some insights into
the features of TVFC that homology resolves. Owing to the optimal performance of the Hy
metric space, in , we present a visualization of topological features of a mean perfor-
mance graph, and also of an instantaneous TVFC graph. Parts A and B of the figure display the
Ho and H; homology groups at a single threshold. However, we would like to emphesize that
persistent homology considers the topology of point clouds over a complete filtration across
thresholds. Part C of the figure gives a sense of the multiscale properties of the topological lens.
Each point in the persistence diagram represents that the homology groups of the point cloud
differ at that threshold. Interestingly, the observed homology groups in the mean performance
graph are shifted to less coherent birth distances compared with the homology groups from the
sample TVFC graph. Both distributions of birth and death times are above the threshold for
significant wavelet coherence distance, 0.6, as defined relative to an AR1 model of the input
data (see part B of ). This shift indicates the loss of highly coherent
edges among mean graphs.

DISCUSSION

Whereas brain function is believed to emerge from extensive coordination among brain re-
gions, what quantifiable features best typify state-specific brain organization remains a subject
of intense and ongoing research ( ; ). To better un-
derstand the correspondence between the methods used to describe brain dynamics, and the
quality of the eventual descriptions, we compared the performance of two broad classes of
TVFC metric spaces: one based upon overlap distances between decorated k-simplices, and
the other based upon k-dimensional homological structures. The results of the present study
provide evidence that the homology of coherence-based TVFC effectively disambiguates ex-
perimentally defined brain states in the population-general brain. By contrast, the performance
of approaches based on network and simplicial overlap generally performed worse at distin-
guishing population-general and experimentally relevant brain states (see and 4).

Mapping Brain Dynamics

Given a good space for representing brain dynamics, it is possible to map relationships be-
tween stereotypical brain states and subtly different conditions. Utilizing the same dataset
as the present study, computed distances between node activities to visu-
alize two-dimensional mappings of within-volunteer temporal similarity. In the majority of
cases, the visualization depicts smooth transitions across time points. Smooth transitions over
short distances are clearly depicted during the resting state. Smooth transitions are also a
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feature of most temporally adjacent transitions during task states. However, for some volun-
teers, the mapping depicts disjoint transitions within the context of a single experiment.

Using a complementary dataset, also computed maps of node activity
distances. Distances were mapped across a population of volunteers. Even at the group level, a
general trend was observed of variable activity punctuated by moments of clear transitions
between focal brain states. Similarly, a sample of the nodes embedding shown in
contains a single densely populated region, with several peripheral clusters.

It is interesting to note that, whereas all three simplicial approaches depict embeddings
having several disjoint clusters, embeddings utilizing topology depict a more continuously
varying state space. Given the improved capacity of the topological approach to segment ex-
perimentally defined states, it is interesting to consider that the topology-based embeddings
may establish maps of brain states wherein transitions across the embedding space relate di-
rectly to trajectories through a latent space of brain dynamics.

Towards a Topological View

While studies implementing simplicial metrics evidence that brains select conserved dynam-
ical patterns towards the production of brain function, the empirical and theoretical support for
emphasizing homological and other topological descriptors has prompted several authors to
reinterpret neuronal dynamics from a topological perspective ( ;

; ). A. E. evidence that
cliques and homological cavities in the mesoscopic space of structural brain images reflect
known brain networks. Further evidence that cliques and homologies encode microscopic in-
teractions among neuronal circuits has been discovered within the hippocampal placefield
( ; ;

) and in the somatomotor representation of the head (
). The present results provide further support for
the utility of the topological approach to discern the evolution of brain states through time,
thus to possibly improve our comprehension of the brain’s multiscale self-organization.

As a quantitative tool, persistent homology is tailor-made for defining topological similar-
ities among metric spaces ( ). Indeed, fMRI studies have implemented persistent
homology to discern group-level FC differences in task performance (

), and with respect to pharmacological

treatments ( ). Similar findings are observed in MEG data ( ).
Stateful segmentation was also achieved from homological features in Hy for eight-channel
EEG TVFC as volunteers engaged in a visuo-motor task ( ).

Visualizing Topology

Certainly, functional connectivity describes a multiscale process. And while there are ongoing
questions regarding the pathways through which otherwise structurally distributed brain net-
works form TVFC networks ( ), the development of data-driven
functions that operate over spectral and spatial features of complex networks may drive new
insights. The view from homology may be especially useful when topological features are ex-
pected to be important, that is, when one expects multiple scales of patterned connectivity
among clusters in Ho, and/or higher order (dis)connected cycles in H; and above. The present
observation of meaningful homology in Hy may relate to the standard description of brains as
functioning through (clustered) functional brain networks. Given the theoretical significance of
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homology in Hy (e.g., multiscale clustering), and its computational speed increases relative to
computing homology in Hy and above, it appears to be worthwhile to use persistent homology
in Hy as a general tool for describing and comparing brain states.

Limitations and Future Directions

Future research should strive to make a more detailed catalogue of the homologies that com-
monly appear among brain regions. While the present study resorted to a very coarse brain
parcellation, it is not clear that 333 parcels provide a maximal resolution of brain dynamics.
In theory, a more fine-grained sampling of brain signals from different brain regions should
enhance the capacity for persistent homology to distinguish brain states, albeit up to some
plateau. By contrast, element-wise operations over simplicial decorations benefit from clus-
tering ( ; ) and unmixing ( ;

). Future work should utilize TDA’s capacity to make good use of the
intrinsically fine-grained information contained in fMRI data to catalogue the stability of
topological features across multiple scales of parcellation. Similar comments could be made
regarding the use of the data’s intrinsically multispectral coherence in place of the power-
weighted coherence (see ).

Another limitation of the present study is the reliance on clustering in a low-dimensional
embedding space. Even while low-dimensional embeddings provide an efficient means for
visualizing data, there is always some loss of information. For instance, the UMAP (Uniform
Manifold Approximation and Projection) method for embedding point cloud data transduces
an explicit nearest neighbor approximation of the high-dimensional simplicial complex into
the low-dimensional space. This nearest neighbor approximation may run into problems when
temporally adjacent brain states are much more similar to themselves than to states from other
volunteers (see, e.g., ). And while there is some evidence to suggest
that metric spaces utilizing an edge distance depict volunteer-specific “fingerprints” (

), the present study pursues extensive subsampling to avoid idiosyncratic and auto-
correlated similarities. Partial alleviation of idiosyncratic information might also be achieved
by deconvolving each scan with a volunteer-specific hemodynamic response function.
Moreover, future work that biases the low-dimensional embedding in a more appropriate
way—perhaps by learning a transductive vector embedding as in —may offer
some additional improvements. In any case, approaches that circumvent dimensionality re-
duction entirely by operating in the native high-dimensional space may offer the most general
solution to the loss of information during low-dimensional embedding.

Finally, it is always interesting to consider more concise multispectral decompositions than
those provided by Morlet wavelet kernels. Perhaps kernels that imitate the canonical hemo-
dynamic response function would offer a more compact representation of fMRI data. Also,
while the Morlet wavelet is roughly symmetric, it may be useful to implement asymmetric
filters that place more emphasis on information from more recent time points.

In Conclusion

To understand the dynamic self-organization of complex systems like the brain, it helps to view
system dynamics through lenses that highlight the presence and the structure of complexes. And
whereas TDA understands data in terms of complexes of simplices, it makes sense to utilize TDA
to understand brain function. Given the kinds of weighted graphs typical of TVFC analysis,
persistent homology is well suited for interpreting complexes of brain regions. The view from
homology outperforms more traditional graph metrics—like the activity measures of zero-
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dimensional nodes, and like the weights of one-dimensional edges—at the task of segmenting
experimentally defined brain states into features that generalize well across multiple volunteers.
The observed utility of the topological approach presents a novel and enticing lens through
which to understand the complex network architecture of human brain dynamics.

METHODS

As described in , our procedure unfolds across four steps:

1. Acquire task and resting-state BOLD fMRI data from a group. Apply minimal
preprocessing.

2. Compute TVFC as instantaneous coherence.

3. Differentiate instantaneous brain dynamics via each of six metrics.

(@) Euclidean distance between node topographies,

(b) weighted Jaccard distance between edge geometries,

(c) weighted Jaccard distance between the weighted degree strength of networks,
(d) sliced-Wasserstein distance between topographic persistence diagrams in Hy,

(e) sliced-Wasserstein distance between topographic persistence diagrams in Hy, and
(f) sliced-Wasserstein distance between topographic persistence diagrams in H,.

4. Embed brain dynamics metric spaces onto two dimensions for visualization and statis-
tical analysis.

Data Acquisition and Preprocessing

To discern the relative capacities of a range of distance metrics to disambiguate dynamical
brain states induced by stimuli, for the present study, we adopt a dataset acquired during
the presentation of multiple experimentally defined tasks. Study methods benefit from scans
acquired continuously over relatively long time spans as the process of spectral filtration
requires complete overlap between the signal and the filtration kernel so as to avoid effects
at the undefined edges of the time series. And, whereas we are interested in signals in the low-
frequency fluctuation range (1/100 seconds®), we require scans to be longer than 200 s.

The data acquired by met these criteria. These data were
publicized as an open-access dataset through the XNAT neuroimaging database (

; project ID: FCStateClassif). Here, we briefly summarize the dataset as fol-
lows: 18 volunteers were scanned continuously over 25.5 min (7 Tesla, 32-element coil,
gre-EPI, TR = 1.5 s, TE = 25 ms, 2 mm isotropic). Preprocessing was performed to transform
individual datasets into a common MNI space and to remove artifacts from slice timing, mo-
tion, linear trends, quadratic trends, white matter signals, and CSF signals. Data were spatially
smoothed using a 4-mm FWHM Gaussian filter. They were temporally band-pass filtered to
between 0.009 Hz and 0.08 Hz. Finally, images were downsampled to 3 mm isotropic, and
normalized to common (MNI) coordinates. Data were acquired in compliance with a protocol
approved by the Institutional Review Board of the National Institute of Mental Health in
Bethesda, Maryland. For complete preprocessing details, please refer to .
In addition to the aforementioned steps, voxelwise data were spatially aggregated onto an atlas
of 333 brain regions ( ). Up to five brain regions contained no information
from some volunteers, and were excluded from all datasets for the remainder of the analysis
(numbers 133,296, 299, 302, and 304, indexed from 0. See also the missing patches in ,
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part A). Thus, the finest granularity of study results are over 333 — 5 = 328 brain regions.
During the scan, volunteers interacted with three block-design tasks and one rest stimulus.
Each task was presented twice. Each task presentation lasted 3 min, and was proceeded
by a 12-s instruction block. Tasks included “video,” watching videos of a fish tank while re-
sponding to a visual target; “math,” computing algebra problems; and “memory,” a two-back
memory task with abstract shapes. A “rest” stimulus was also included, and entailed the
presentation of a fixation cross for 3 min. Stimuli were randomly ordered in a fixed sequence
for all volunteers. For each task block, performance metrics were collected, including the
percentage of correct responses.

Time-Varying Connectivity

Considering that individual frequency bands develop significantly different FC parcellations
( ) and different connectivity hubs ( ), and that
neuroelectric activity is intrinsically rate coded, the delayed and (hemodynamic response
function) band-passfiltered version of neuroelectric activity that is the BOLD signal is likely
to retain some rate-coded information. Given these observations, the present study recasts
the BOLD signal from each brain parcel in terms of time-frequency spectrograms generated
through the use of the continuous wavelet transform (CWT),

Wi(s) fTX_:lf(t)l (29

t$) = i s ll’ S )

where -* indicates the complex conjugate. By adjusting the time localization parameter u and
the scale parameter s for the wavelet kernel s, the CWT affects a multiscale decomposition of
input signal f(t) for all times t € T. For the present study, the filterbank comprised 15 scales log-
distributed between 0.007 and 0.15 Hz.

Following , symmetric wavelets will produce similar coher-
ence values. And without strong support for any particular wavelet kernel, we adopt the com-
plex Morlet wavelet as the CWT kernel. The filter is a plane wave modified by a Gaussian, { =
e o525 \We set the base frequency to wy = 6. Following , an wp = 6 ensures
that the function’s nonzero average is outside machine precision. Spectral selectivity increases
with increasing wy, at the expense of decreased temporal selectivity (e.g., sharper filters require
more temporal support). Thus, a base frequency of wy = 6 ensures maximal temporal
resolution.

A complex valued kernel computes instantaneous amplitude and phase information. From
there, it is possible to compute wavelet coherence as follows. For a pair of complex-valued
spectrograms, W* and W, the quantity WX(s) = WX(s)W,"*(s) is the cross-wavelet spectrum. Its
absolute value, [W/¥(s)|, is the cross-wavelet power that represents the shared power between
signals at scale s and time t. Coordinated changes in amplitude may be computed in terms of
the wavelet squared coherence,

SR (Gl /U0)]
(sHWEOF ) (s W O )

The functional (-) indicates smoothing in both time and scale. The factor s~
to scale-dependent energy densities. The wavelet squared coherence is an instantaneous and
multispectral analogue of the Pearson correlation ( ;

; ). Its values range between 0 (completely

RZ

Vis used to convert
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incoherent) and 1 (completely coherent). While it is theoretically possible to treat TVFC as a
multilayer graph having as many layers as spectral scales, practical computational concerns
prompt us to concatenate multispectral coherence into a single broadband average. To do so,
we take the weighted mean of the wavelet squared coherence with respect to the normalized
cross-wavelet power:

s WXY(5)|
TVFCY =1- “7/%25. 1
t Z mZLXS‘WtXY(S)‘ t( ) ( )
Normalizing the cross-wavelet power ensures that the mean coherence remains bounded
between 0 and 1. The peak of the mean cross-wavelet power occurs in the frequency range
between 0.01 and 0.02 Hz (see part A of ). TVFC graph edges are
1 minus the power-weighted coherence to represent coherence distances between brain

regions.

To account for the cone of influence at the temporal edges of the wavelet filtration, as well
as the loss of precision at the temporal and spectral edges of the smoothed coherence data, the
outside 120 time points and the outside 2 scales are dropped before taking the summation in
Equation 1. The removed time points include one whole “rest” block, and one whole “video”
block. Coherence graphs are thus available for the middle 777 images of the scan, and for 11
spectral scales between 0.0095 and 0.1 Hz.

Distance Metrics Comparing Brain Dynamics

Theory. Having constructed TVFC graphs for all included time points and for all volunteers,
we pursue two broad alternatives for comparing brain dynamics. The first is related to element-
wise differences between the decorations (e.g., weights) applied to graphs. The second relates
to shared topological structure. To describe in detail these two views, it is useful to supply
some definitions.

A graph G = (V, E) represents a set of V nodes interconnected by £ edges. Nodes and edges
may be decorated with properties such as value, weight, directionality, sign, layer, degree cen-
trality, degree strength, and so on. A collection of k completely interconnected nodes forms a
clique, C. In the following, we identify cliques with geometric primitives called “simplices” in
standard fashion ( ; ); that'is, to a
clique of k + 1 nodes we associate the corresponding k-simplex, ox. For instance, two con-
nected nodes form a 2-clique. The surface enclosing a 2-clique is a 1-simplex, that is, an
“edge.” A 2-simplex formed by a clique of three connected nodes is a “filled triangle,” and
so forth for higher order simplices.

Formally, a simplicial complex is a topological space, K, composed of all o, and their sub-
faces. Along the same lines, a clique complex, C/(C), is a simplicial complex formed from an
unweighted graph G by promoting every k-clique into a (k — 1)-simplex. Holes in dimension k
may develop within the boundaries established by closed chains of (k — 1)-simplices. Such
holes are called homologies.

The topological approach, TDA, includes methods for identifying topological features of an
abstract geometric object represented by a data sampling. By contrast, the more traditional
approach to comparing brain dynamics constitutes a simplicial approach that directly com-
pares the decorations applied to sets of simplices.

Homology. The boundary of a homology is termed a “homological cycle” or “generator.” To
illustrate the concept, consider the case of four nodes connected in a cycle such that each
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node has exactly two edges. The nodes form neither a 4-clique nor a 3-dimensional simplex
because there are two missing edges. Rather, these nodes form a connected cycle that is the
boundary of a two-dimensional hole. This void space is also called a homology in dimension 1
(i.e., formed by a set of 1-d edges). The kth homology group, H,(K), describes the (k + 1)-
dimensional holes bounded by chains of k-simplices. For example, the H; homology group
are the holes bounded by edges in I, H, are the voids bounded by filled triangles, and so on.

The term homology follows from the Greek homo, the same, and logos, relation, to indicate
that the hole belongs to an equivalence class that is categorically the same across continuous
deformations that neither break the boundary nor create new simplices spanning the boundary
(e.g., inflation, compression, rotation, and translation). Different representative cycles may
therefore exist that describe the same homological cycle. For instance, a very elastic coffee
cup could be continuously contracted into the shape of a donut, as they share the same to-
roidal topology. For the sake of convenience, a homological cycle is often represented as the
minimal representative cycle ( ;

).

|//

Simplicial distances. The first approach, which we will denote as “simplicial,” computes an
average of the element-wise differences between the decorations applied to each k-simplex
in the complex. For example, in the present study, we compute the weighted Jaccard overlap
distance between the weights of TVFC edges as

2 eccMin (et ets)
Dece max(ef,e,)’

where e is the weight of the eth edge in graph C.

D)(G1,G2) =1

Further, we compute distances between the explicit O-dimensional values decorating each
node; for example, with respect to the signal activity of each node. Specifically, for each point
in time, we treat the absolute values of multispectral wavelet coefficients from all brain regions
as an ordered vector. We then compute the Euclidean distance between vectors from different
points in time.

The third distance is inspired by previous work on relations between graph networks and
homological cycles. demonstrate that the nodes’ weighted degree (also
called strength) is significantly correlated with the frequency and the intensity with which
nodes participate in the shortest representatives of homological cycles. The third distance is
thus the weighted Jaccard distance between vectors of the node-wise weighted degree, also
called the strength, of each TVFC graph.

Homological distances. While many TVFC studies regard only the graph’s connectivity as the
feature of primary import, TDA provides a suite of tools to further develop network properties
into conserved higher order structures in point cloud data ( ;
; ) and in weighted networks
( ; ;
).

Homology is defined on simplicial complexes. In the case of persistent homology of
weighted graphs, simplices are added to the complex incrementally, and appear at and
beyond some threshold. Varying this threshold allows us to track how homological features
appear and persist across thresholds ( ). A complete representation of homo-
locial features within some range of thresholds is called a filtration. By observing topological
features over a filtration, “persistent homology” allows us to take a multiscale view of the data
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that accounts for both the explicit connectivity structure of the system, as well as the relative
importance of ensembles of connections that emerge over some range of scales.

Formally, we define the Vietoris-Rips simplicial complex K, = Rips(G(E < r)) as the clique-
complex of the weighted graph G composed after removing all edges, E, longer than r. From
this, we may recover the complex’s k-dimensional homology group, H(C,). Within the
boundaries of thresholds a and b, let [r,, ..., r — ¢, r, ..., rp] be the longest series wherein
any H(KC,) and H(IC, — ¢) are not identical. The ordered set [H,(C)] defines a filtration over
G. A homology class o € Hy is said to be born at radius u if a class of homotopy equivalent
homologies are not supported in IC, for any r < u. The homology class « is said to die going
into K, if v is the lowest index wherein at least one (k + 1) — clique is established within the
boundary of the homology. Persistent homology was computed using version 0.4.1 of the
Ripser package as bundled with the Scikit-TDA toolbox for python (

). Ripser finds it is faster to compute cohomology, the covariant functor of homology.
Thus the algorithm computes cocycles in Hy that track the disappearance of oy, along the
reversed filtration ( ).

The persistent homology of a filtration over G is summarized by collecting the birth/death
pairs of k-dimensional homology classes as points (u, v) in a “persistence diagram.” It is naturally
possible to compute a persistence diagram for each simplicial dimension up to the maximum
dimension of the simplicial complex. But because the computational load to calculate persis-
tence homology increases exponentially with the homology dimension, we limit the present
study to the investigation of persistence homology in dimensions 0, 1, and 2. The case of
0-dimensional persistence diagrams—corresponding to O-dimensional holes, that is, disjoint
sets of connected nodes—is particularly interesting as the homological classes are slices
through an agglomerative clustering among nodes when using the “simple” linkage distance.

Persistence diagrams can, themselves, be endowed with a metric structure. This means that
it is possible to measure distances between persistence diagrams. Such distances encode how
different the homological structures of two TVFC graphs are. One such distance is a multidi-
mensional analogue of the earth-mover distance, known as the sliced-Wasserstein distance

( ). The sliced-Wasserstein distance between persistence dia-
grams is bounded from above by the total distance between the associated topological spaces
( ). In the present study, for each pair of persistence dia-

grams of a given dimension, we calculate the average Wasserstein distance, over 20 slices (see
for details). That is, for all pairs G' = G/ we compute d(H(K'), H(K)).

Visualization/Output

Having developed metric spaces to compare simplicial and homological brain dynamics, we
want to assess their relative capacities to represent apparent brain states. To this end, we embed
each metric space onto a two-dimensional manifold using the Uniform Manifold Approximation
and Projection (UMAP) algorithm ( ). As illustrated in ,
the embedding process facilitates state-space visualization and segmentation. UMAP approxi-
mates a metric space’s n-dimensional manifold in three steps. First, the algorithm calculates the
k-nearest neighbors of each point. Second, each neighborhood is promoted to a local simplicial
complex. Third, the algorithm searches for the n-dimensional distribution of points that best
approximates the original simplicial complex. This search is conducted over successive itera-
tions, with the initial position of low-dimensional points derived from a random distribution.

To better understand the distribution of points in the resulting embedding spaces, we trans-
formed point clouds into a Gaussian distribution and estimated clusters via a watershed
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transform. An illustration of watershed clustering is found in part B of . The Gaussian
grid size was initially set to 256 x 256. The number of grid points in the dimension having the
smaller range was trimmed to maintain the aspect ratio of the embedding. The Gaussian kernel
bandwidth factor was set to 0.08. The watershed transform marks the local densities as cluster
centers, then grows clusters by adding adjacent pixels whose directed gradient is maximal in
the direction of the cluster center.

Subsampling and Bootstrapping

In the present study, we were concerned with resolving two-dimensional embeddings that
generalize across volunteers, while also segmenting experimental stimuli. One challenge in
the way of resolving this ideal embedding is that brain states tend to change slowly through
time. An example of this issue is shown in for the metric between
TVFC edges. Temporal similarities draw the distance between adjacent time points closer than
the distance between two different volunteers experiencing the same stimuli. For
dimensionality-reduction algorithms like UMAP and tSNE that leverage nearest neighbor
approximations, the attractive force between temporally adjacent time points can force the
embedding to overemphasize information about the order of the scanning sessions when
attempting to resolve population-wise brain states (see, e.g., ).

To help disentangle graphs representing intrinsically similar brain states from those that
are simply autocorrelated, we subsampled our dataset in several ways. Statistics over the re-
sults could then be generated via bootstrapping, with 256 random permutations of data
subsamplings.

Volunteer-wise scans were split into three equal groups. The first group supplied data to
train the UMAP embedding. The second group supplied data to segment the space of the em-
bedding into watershed clusters. The third group supplied data to test how metric spaces seg-
ment brain states during contrasting experimental conditions.

The data were also split in time. To balance the number of time points from each experi-
mental condition, during each permutation, one of each of the repeated mathematics and
memory tasks was removed, at random, from each volunteer’s dataset. In addition, embed-
dings were trained using a subsample of 6*100 time points from the remaining 6*537 time
points from each of the six volunteers. Each batch of the six batches of 100 training points
were selected to emphasize maximal temporal separation within each scan.

Statistical Analysis

Watershed clusters provide a data-driven basis for hypothesis testing over the likelihood that
certain metadata labels—that is, volunteer number, stimulus type, and valenced performance
level—were more or less likely to be found in a given embedding region. For all statistical
tests, we generated null distributions by randomly permuting the labels of cluster points
(e.g., volunteer number, experimental condition) 300 times. This procedure obtained a mean
and standard deviation that indicate the labels we should expect to find by chance in any given
watershed cluster. The significance threshold was always set to an o = 0.05. Bonferroni cor-
rection was applied relative to the number of simultaneous tests performed. The total number
of clusters was O(100) in each embedding.

Tests related to volunteer colocalization calculated significant volunteer-wise underrepre-
sentation in each cluster (left-tail test, Bonferroni correction equal to the number of volunteers
[six] times the number of clusters per embedding (O(100))). Tests related to stimulus
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colocalization identified clusters that were more than likely to contain time periods during
each stimulus condition (right-tail test, Bonferroni correction equal to the number of stimulus
conditions [five] times the number of clusters in each embedding (O(100))). Tests related to
task performance were conducted for each task condition independently, and were confined
only to the clusters that were significantly more likely to contain points from the task being
tested (two-tailed test, null distribution is the mean and standard deviation of task performance,
Bonferroni correction equal to the number of clusters showing significantly many within-
condition time points (O(10))).

Secondary Statistics Over Mean Graphs

It is possible to generate mean FC matrices from select time points of TVFC graphs. For in-
stance, the mean TVFC graph over all time points reveals the average coherence between re-
gions. Condition-dependent mean graphs such as that over all rest conditions may also be
calculated. In the present study, we were particularly interested in mean graphs calculated
with respect to within-task performance levels.

Given the identification of clusters significantly associated with task performance, for each task,
and for each cluster associated with the task, we tested whether the task-specific points within that
cluster contained significantly more or fewer correct responses than the mean percentage of
correct responses for all of that task’s time points (no Bonferroni correction). For each task, every
time point from clusters having significantly more correct responses is stored into a task-specific
list. The same process occurs for clusters showing fewer correct responses. The mean TVFC graph
from each list constitutes a “mean performance graph.” Mean performance graphs may be com-
pared with one another to measure a difference between apparent brain states.
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