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Abstract: Despite the mounting global burden of antimicrobial resistance (AMR), the generation
of new classes of effective antimicrobials still lags far behind. The interplay between multidrug
resistance and biofilm formation in Acinetobacter baumannii has drastically narrowed the available
therapeutic choices. The use of natural compounds holds promise as an alternate option for restoring
the activity of existing antibiotics and attenuating virulence traits through reduced biofilm formation.
This study aimed to evaluate the modulatory effect of combining cinnamic and gallic acids at 1

2 MIC
with various antibiotics against multidrug-resistant (MDR) A. baumannii clinical isolates as well as
study the effect on the expression of the biofilm-associated genes (bap, csuE, ompA) via quantitative,
real-time PCR. Combining cinnamic or gallic acid with imipenem, amikacin or doxycycline resulted in
significant reduction of resistance (p < 0.05). On the contrary, no effect was recorded when both acids
were combined with levofloxacin, and only cinnamic acid had a synergistic effect with colistin. The
transcriptomic changes of biofilm-related genes in the presence of gallic acid at 1

2 MIC were compared
with untreated control samples. The fold expression values proved that gallic acid substantially
down-regulated the respective genes in all five strong biofilm formers. Molecular docking studies of
gallic and cinnamic acids on target genes revealed good binding affinities and verified the proposed
mechanism of action. To the best of our knowledge, this is the first report on the effect of gallic acid on
the expression of bap, csuE and ompA genes in A. baumannii, which may permit its use as an adjunct
anti-virulence therapeutic strategy.

Keywords: Acinetobacter baumannii; resistance modulation; cinnamic acid; gallic acid; biofilm

1. Introduction

“The clinical pipeline of new antimicrobials is dry” reported the WHO in November
2021 [1]. Despite the desperate need for novel antimicrobials in response to the pressing
threat of antimicrobial resistance, none of the 43 antimicrobials presently being developed
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can face resistant bacteria topped by multidrug-resistant (MDR) Gram-negative bacteria
and carbapenem-resistant Acinetobacter baumannii (CRAB) [2,3]. Antimicrobial resistance is
reflected in longer hospitalization periods, elevated health care financial burdens, more
severe complications and higher mortality rates [4,5]. It also casts a shadow over medical
advancements such as chemotherapy, organ transplantation and other surgeries due to the
risk of sepsis with difficult management [6]. Moreover, the problem of antimicrobial resis-
tance is aggravated in resource-limited countries as well as in high-risk groups, including
neonates [7]. A little less than one third of neonates suffering from bacteremia secondary to
septic pneumonia die in spite of receiving antibiotic treatment [7].

Nearly all the antibiotics introduced in the past decades are mere variants of those
discovered in the 1980s [8,9]. Restoring the activity of currently used antibiotics against
bacterial pathogens is one of the futuristic approaches developed in the face of antimicro-
bial resistance [10]. A plethora of research is now dedicated to complementing antibiotics
with natural compounds to reverse resistance [11–16]. The combination of antibiotics with
natural products may not only circumvent resistance, but also decrease the dose used,
consequently, reducing side effects [17,18]. Plant-derived compounds are ideal candidates
due to their efficacy and considerably low side effects [19–22]. In phenolics, multiple mech-
anisms of antibacterial activity have been described; some compounds act by destabilizing
cell membranes, thus, helping the internalization of antibiotics [23–25]. Others act by
inhibiting efflux pumps or disrupting biofilms [26,27]. Biofilms are some of main players in
the development of resistance in all MDR pathogens, with A. baumannii, one of the most
notorious, nosocomial pathogens, being no exception [28,29]. Intriguingly, A. baumannii
forms biofilms at a rate approaching 90%, which is the highest among pathogens [30,31].
Numerous virulence factors contribute to A. baumannii biofilm formation, mainly biofilm-
associated protein (bap), the outer membrane protein A (ompA) and chaperon-usher pilus
(csu) [32]. Bap is a sizable cell surface protein essential for intercellular communication
and biofilm formation [33]. OmpA is humbler in size yet is A. baumannii’s main porin func-
tioning in adherence, invasion, cytotoxicity and biofilm formation [34]. Pakharukova et al.
reported that csuA deletion mutants are incapable of forming biofilms on abiotic surfaces,
signifying that csuA is essential for the initial steps of biofilm formation [35]. Research on
the antibiofilm properties of plant phenolics disclosed promising activities which affect
the bacterial regulatory mechanisms, leading to biofilm suppression without any effect
on bacterial growth [36]. Gallic and cinnamic acids are aromatic polyphenols present in
a variety of fruits, vegetables and herbs. They have become more alluring to biologists
by virtue of their myriad biological activities, and, on top of this, their antimicrobial and
immunomodulatory effects [37,38]. However, most studies investigated their antibacterial
activities against standard strains, food-borne pathogens and food-spoiling bacteria [39].
In light of this, the present study aims to investigate the resistance modulatory effect of
cinnamic and gallic acids combined with various antibiotics on MDR A. baumannii clinical
isolates as well as study the effect of gallic acid on the transcription of biofilm-related genes
(bap, csuE, ompA) and its verification with in silico studies.

2. Results
2.1. Antimicrobial Synergistic Activity of Cinnamic and Gallic Acids

Gallic and cinnamic acids at 1
2MIC showed variable modulatory effects on resistance

to the tested antibiotics. Combining cinnamic acid with colistin, imipenem, amikacin or
doxycycline resulted in a significant reduction of resistance (p-value = 0.0059, 0.0088, <0.0001
and <0.0001, respectively; Figure 1). On the other hand, although all 30 tested MDR A.
baumannii isolates were resistant to levofloxacin, no significant modulation of resistance was
reported with either gallic or cinnamic acids. It is worth noting that the combination of
colistin with cinnamic acid reversed the resistance of five test isolates to sensitive (MICs
ranging from 0.25 to 1 µg/mL) and one to intermediate (MIC = 2 µg/mL; Supplementary
Table S1). Likewise, the doxycycline resistance in 12 out of the 27 isolates was reversed to
sensitive (MICs ranging from 0.25 to 4 µg/mL) and in 6 to intermediate (MIC = 8 µg/mL).
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Two imipenem-resistant isolates became sensitive (MICs = 1–2 µg/mL), and two became
intermediate (MIC= 4 µg/mL) after adding cinnamic acid, while only one amikacin-resistant
isolate became intermediate when combined with cinnamic acid (MIC = 32 µg/mL).
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2 MIC of gallic acid, it reverted 14 of the 27 doxycycline-resistant isolates

to sensitive (MICs ranging from 0.25 to 4 µg/mL) and three of them to intermediate
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(MICs = 8 µg/mL). Likewise, reversion occurred in 7 of the 28 imipenem-resistant isolates,
causing them to become sensitive (MICs ranging from 0.5 to 2 µg/mL), and 11 became
intermediate (MICs = 4 µg/mL). Nevertheless, no significant effect was observed on any of
the colistin-resistant and levofloxacin-resistant isolates (Figure 1).

Comparing the synergistic effects of the two phenolic acids showed that, though
neither of them modulated resistance to levofloxacin, gallic acid had a superlative effect on
imipenem resistance compared to cinnamic acid, with a statistically significant difference
(p = 0.0007), while cinnamic acid had a superlative effect on colistin resistance with a
statistically significant difference (p = 0.0059). In contrast, a non-statistically significant
difference was detected between the modulatory effects of cinnamic and gallic acids on
doxycycline (p ≥ 0.9999) and amikacin (p = 0.4002).

2.2. Effect of Gallic Acid ( 1
2 MIC) on Expression of Biofilm-Related Genes

RT-qPCR was used to evaluate the transcriptomic changes of biofilm-related genes (bap,
csuE, ompA) in the presence of gallic acid at 1

2 MIC compared with untreated control samples.
The fold expression values proved that gallic acid substantially down-regulated

biofilm-forming genes (bap, csuE, ompA) in all five strong biofilm formers. As shown
in Figure 2A, the expression of the bap gene was significantly down-regulated by the effect
of the 1

2 MIC of gallic acid (p = 0.0078). While the fold expression fell to very low levels
in isolates 1 and 5 (0.12 and 0.16, respectively), it dropped by only 20% in isolate 3. The
expression of the csuE gene was also significantly affected by treatment with gallic acid
(p = 0.0125; Figure 2B). The gene was almost unexpressed in isolates 1, 4 and 5 and was
expressed at less than half its value in untreated samples by isolate 2; however, minimal
effect was observed in isolate 3. Figure 2C shows that the treatment nearly inhibited the
expression of the ompA gene in isolates 4 and 5 and had a variable inhibitory effect in the
other three isolates (p = 0.006).
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Looking at isolate 1, treatment with gallic acid nearly silenced the expression of bap and
csuE genes and lowered that of the ompA gene by approximately 80%. The expression of bap
and csuE genes by isolate 2 fell to half its value in treated samples as compared to untreated
ones; however, the expression of the ompA gene decreased to only 75%. Nevertheless,
expression of bap and csuE genes by isolate 3 was least affected by gallic acid treatment,
while the expression of ompA fell to almost one third. The highest inhibition of csuE and
ompA genes was observed in isolates 4 and 5, which also showed a reduction in expression
of the bap gene to 0.39- and 0.16-fold, respectively.

2.3. Effect of Gallic Acid ( 1
2 MIC) on Growth Rate

Only slight growth pattern differences were observed between the control and some of
the treated isolates, showing that sub-MIC gallic acid generally does not affect the viability
of the tested strains during biofilm formation (Figure 3). This shows that the difference in
gene expression is not due to the effect of gallic acid on isolates’ growth rate.
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2.4. In Silico Molecular Docking Study on the Target Proteins

The promising synergistic role of gallic and cinnamic acids in inhibiting the biofilm
formation of A. baumannii encouraged us to conduct a docking study. The study aimed
to identify the potential binding modes by which gallic and cinnamic exert their action.
Therefore, the two acids were docked into the 3D coordinates of CsuE and OmpA proteins
using the following PDB IDs: 6fjy and 3td3, respectively. The active site of the CsuE protein
was determined using the MOE site finder, while the active site of OmpA was constructed
as 4.5 Å surrounding the bound, co-crystalized glycine in the active site. The docking of the
two acids (gallic and cinnamic) with the two proteins resulted in good, acceptable scores
and strong binding modes. Interestingly, gallic and cinnamic achieved docking scores of
−12.8 and −9.9 Kcal/mole with CsuE, while they achieved docking scores of −9.7 and
−8.1 Kcal/mole with OmpA, respectively. As shown in Figure 4, gallic acid was found to
interact with CsuE through hydrogen-bond interactions with Ser13, Thr19, Ala20 and Trp22,
while it engaged in hydrophobic interactions with Pro7 and Leu178; similarly, cinnamic
acid interacted with Ser117 and Pro118 through hydrogen bonds and with Asn213 and
Lys230 through hydrophobic interactions. As depicted by Figure 5, the two compounds
strongly interacted with the OmpA protein, in which gallic acid formed three hydrogen
bonds with Asn237, Ser239 and Arg281 and two hydrophobic interactions with Leu278
and Leu282, while cinnamic acid formed two hydrogen bond interactions with Arg329 and
Asn237 in addition to one hydrophobic interaction with Asn237.
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3. Discussion

Antimicrobial resistance is the menace of twenty-first-century medical care. MDR
A. baumannii displays extensive resistance to nearly all antibiotic classes, which made
the WHO place it at the top of its agenda for research [40]. Accordingly, in this study
we investigated the combinatory effect of the natural phenolic acids gallic and cinnamic
acid and five antibiotics with distinct modes of action: two protein synthesis inhibitors
(doxycycline and amikacin), an inhibitor of cell wall synthesis (imipenem), an inhibitor of
cell proliferation through inhibition of DNA synthesis (levofloxacin) and colistin, which
causes outer cell membrane disruption [41].

An intriguing finding of our binary combination study was that although combining
cinnamic acid with colistin resulted in the restoration of the sensitivity of almost all resistant
isolates, adding gallic acid to colistin-resistant isolates did not affect resistance. This may
be attributed to the difference in mechanism of action. Colistin interacts with membrane
lipopolysaccharides through replacing the Ca2+ and Mg2+ ions responsible for stabilizing
the membrane. This results in loss of membrane integrity and cytoplasmic leakage followed
by cell death [42]. A similar mechanism was proposed for gallic acid [43,44]. Functioning
through similar mechanisms might be the reason for the lack of synergic effect [45]. Another
explanation may be related to the antioxidant activity of gallic acid. Reactive oxygen species
(ROS) are an important mechanism of killing by colistin; hence, co-administration of an
antioxidant that quenches ROS increases persistent cells, as described by [46]. Collectively,
the lack of change in the MICs of colistin with gallic acid may be attributed to the inverse
mechanisms of action of gallic acid. Gallic acid may enhance permeability of colistin;
however, its antioxidant activity may decrease the killing effect of colistin.

On the other hand, cinnamic acid, having three hydroxyl groups fewer, has been
proposed to induce its membrane-damaging effect through altering the membrane lipid
profile of Gram-negative bacteria, resulting in membrane acidification and protein denatu-
ration [47].
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Cinnamic and gallic acids have significantly modulated resistance to amikacin, imipenem
and doxycycline. The acids’ effect on bacterial outer membranes might aid the penetra-
tion of the antibiotic molecules, elevating their intracellular concentrations in the face of
resistance mechanisms [12,48]. Their inhibitory effect on efflux pumps might also be part
of it [49,50]. Another proposed mechanism for the synergistic effect of phenolic acids on
A. baumannii depends on their prooxidant potential. Being redox cyclers, phenolic acids
increase production of reactive oxygen species assisting in cell death [51]. Several studies
previously evaluated the synergism and modulatory effect of cinnamic and gallic acids
with beta lactams and imipenem [52–56]. To the best of our knowledge, this is the first
study that evaluates the modulatory effect of cinnamic acid with doxycycline; however,
previous studies showed modulatory and synergistic effect between gallic acid and tetra-
cycline against Staphylococcus (S.) aureus and Escherichia (E.) coli [57]. Additionally, gallic
acid exhibited inhibitory effect on tetR and tetM efflux pumps that mediate tetracycline
resistance in Streptococcus sp. [49]. Gallic acid, alkyl gallates and chitosan-based formula-
tions of gallic acid can potentiate the antimicrobial activity of other antibiotics, including
erythromycin, gentamicin, norfloxacin, ciprofloxacin, ampicillin, penicillin and oxacillin,
via synergism [58]. The synergistic effect of cinnamic acid with amikacin against Mycobac-
terium tuberculosis and Mycobacterium avium was described by [59]. Similarly, [60] described
the synergistic effect between cinnamic acid and amikacin against E. coli and S. aureus;
however, there was no effect against Pseudomonas (P.) aeruginosa. On the other hand, gallic
acid enhanced gentamycin activity against S. aureus and showed synergistic effect with
amikacin against E. coli, as described by [61] and [62], respectively. It is noteworthy that
sub-MICs of gallic acid showed a superlative modulatory effect with imipenem compared
to cinnamic acid. We hypothesize that the divalent cation chelation activity of gallic acid
may affect the activity of metallo-β-lactamases (MBLs) by zinc chelation, leading to the
MBLs’ inactivation [63,64].

Although all the test A. baumannii isolates were resistant to levofloxacin, resistance was
not affected by gallic or cinnamic acid at the tested concentrations. In the same vein, Lima
et al. investigated the effect of gallic acid, caffeic acid and pyrogallol on the antibacterial
activity of norfloxacin against Gram-negative (E. coli and P. aeruginosa) and Gram-positive
(S. aureus) clinical isolates [61]. They reported that gallic acid enhanced antibacterial effect
only against S. aureus [61].

Biofilm formation is one of the pivotal virulence factors and resistance enhancers in
A. baumannii [65,66]. Hence, it has become imperative to develop entities with antibiofilm
activities [67]. In our previously published work [68], we investigated the antibiofilm
activities of cinnamic and gallic acids at 1

4 MIC and 1
2 MIC concentrations, and results

showed that gallic acid had a superlative antibiofilm effect against strong, biofilm-forming
A. baumannii isolates. Consequently, in this study we investigated the effect of gallic acid at
1
2 MIC on the expression of biofilm-related genes (bap, csuE, ompA). In order to rule out the
effect of gallic acid on the growth rate of the isolates, a growth rate analysis in the absence
and presence of 1

2 MIC of gallic acid was conducted; results showed that gallic acid at this
sub-MIC concentration generally did not affect the viability of the tested strains during
biofilm formation.

Our results showed that gallic acid at 1
2 MIC significantly down-regulated the expres-

sion of three of the key genes involved in biofilm formation by A. baumannii which are bap,
csuE and ompA. This can be postulated as one of the factors contributing to its antibiofilm
activity. Different natural products down-regulated expression of critical genes for biofilm
formation in Listeria monocytogenes and Pseudomonas aeruginosa, as described by [69]. Ad-
ditionally, melittin significantly down-regulated bap gene expression in A. baumannii [70].
Likewise, Kang et al. observed that the expression of the mdoH gene by Shigella flexneri
was inhibited by the effect of gallic acid and concluded that gallic acid inhibited biofilm
formation in Shigella flexneri through influencing the expression of the gene [71].

Computational studies of natural products have become indispensable for identifying
possible mechanisms of action [72–74]. Based upon the performed in silico study, gallic
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and cinnamic acids showed the ability to strongly interact with the two selected proteins,
CsuE and OmpA, achieving acceptable docking scores and a strong interaction pattern.
These acceptable scores were achieved through the establishment of many hydrophobic
and hydrogen-bond interactions. Thus, the observed strong binding interactions validated
their activities and suggested possible mechanisms of action.

To the best of our knowledge, this is the first report on the effect of gallic acid on
expression of bap, csuE and ompA genes in A. baumannii.

4. Materials and Methods
4.1. Antibiotics, Plant-Derived Compounds and Media

Amikacin was purchased from Eipico Co., Tenth of Ramadan City, Egypt; imipenem
from Merck & Co., Kenilworth, NJ, USA; colistin, doxycyclin and levofloxacin from Sedico
Co., Giza, Egypt. Cinnamic and gallic acids were obtained from Loba Chemie, Boisar,
India, and dissolved in dimethyl sulfoxide DMSO (Fisher Scientific, Fair Lawn, NJ, USA)
and distilled water, respectively. Cation-adjusted Mueller Hinton broth (CAMHB) and
trypticase soy broth (TSB) were from Hi-Media, Mumbai, India.

4.2. Acinetobacter baumannii Clinical Isolates

In this study, we used thirty clinical MDR Acinetobacter baumannii isolates fully charac-
terized in our previous work [68]. Their resistance profile is described in Table 1.

Table 1. Resistance profiles of the 30 MDR clinical Acinetobacter baumannii isolates.

Antibiotic Number of Resistant Isolates (%)

Levofloxacin 30 (100)
Imipenem 28 (93.3)
Amikacin 28 (93.3)

Doxycycline 27 (90)
Colistin 6 (20)

4.3. Antibiotic-Resistance-Modulating Effect of Cinnamic and Gallic Acids

MICs of five test antibiotics with different mechanisms of action, amikacin, imipenem,
colistin, doxycycline and levofloxacin, were evaluated in the absence and presence of a
sub-inhibitory concentration of cinnamic or gallic acids ( 1

2 MIC determined in our previous
work [68]) via broth microdilution technique [75]. Briefly, serial dilutions of the test
antibiotics were prepared in cation-adjusted Mueller Hinton broth, cinnamic acid or gallic
acid was added at its sub-inhibitory concentration ( 1

2 MIC), then the plates were incubated.
The MICs of the antibiotics were determined from rows containing only antibiotics. The
modulatory effect was expressed in terms of the modulation factor. Modulation factors
were evaluated as specified by [76] where a modulation factor value of 2 or higher indicates
a biologically significant modulatory effect.

Modulation factor = MIC of antibiotic/MIC of antibiotic in presence of
gallic or cinnamic acid

(1)

4.4. Quantitative, Real-Time PCR

The effect of gallic acid at 1
2 MIC on the expression of biofilm-associated genes (bap,

csuE, ompA) was evaluated in five A. baumannii strong biofilm producers from our pre-
vious study [68]. All 5 isolates were resistant to imipenem, amikacin, doxycycline and
levofloxacin, and only 2 exhibited reduced susceptibility to colistin. RT-qPCR was con-
ducted as follow: First, the isolates were inoculated into TSB with or without gallic acid
( 1

2 MIC) in 96-well, polystyrene, flat-bottom microtiter plates. The plates were incubated at
37 ◦C for 24 h. Cells were recovered by centrifugation at 3000 rpm for 5 min. Total RNA of
biofilms in cell pellets was extracted by using Absolutely RNA Miniprep kit (Agilent, Santa
Clara, CA, USA). Next, total RNA was reverse transcribed into cDNA by using TOPscript™
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cDNA synthesis kit (Enzynomics, Republic of Korea). Gene expression was quantified via
real-time PCR by using TOPreal™ qPCR 2X PreMIX SYBR Green with low ROX (Enzy-
nomics, Republic of Korea) and the primers which were previously reported by [77]. In
both gallic-acid-treated and untreated samples, 16S rRNA was used as a housekeeping
gene [69]. Primer sequences are demonstrated in Table 2.

Table 2. Primer sequences for the genes evaluated.

Gene Primer

bap Forward
Reverse

TGCTGACAGTGACGTAGAACCACA
TGCAACTAGTGGAATAGCAGCCCA

csuE Forward
Reverse

CATCTTCTATTTCGGTCCC
CGGTCTGAGCATTGGTAA

ompA Forward
Reverse

GTTAAAGGCGACGTAGACG
CCAGTGTTATCTGTGTGACC

16S rRNA Forward
Reverse

ACCGTCAAGGGACAAGCA
GGGAGGCAGCAGTAGGGA

Relative fold gene expression method was used to analyze the expression of the biofilm
genes s according to the melting curve [69]. Cycle threshold (CT) values were estimated
by real-time PCR Applied Biosystems StepOne™ instrument (Foster City, CA, USA), then
relative fold gene expression was calculated as follows:

∆ CT (Sample or Control) = CT (sample or control) − CT (housekeeping gene) (2)

∆∆ CT = ∆ Ct Sample − ∆ CT control (3)

Relative fold gene expression = 2−∆∆Ct (4)

The relative fold gene expression is the fold change compared to the untreated isolates
which are assigned a value of 1. A change in gene expression is considered significant
when there is a minimum of two-fold change [78].

4.5. Effect of Gallic Acid ( 1
2 MIC) on Growth Rate

To confirm that gallic acid at 1
2 MIC has no inhibitory effect on isolates’ growth, the 5

selected biofilm formers were subjected to a growth rate analysis in the presence of gallic
acid at 1

2 MIC [79]. In brief, 20 µL of an 18 h culture of each isolate was adjusted to 0.5
McFarland standard, then diluted to 200 µL with tryptic soy broth (TSB) in 96-well plates.
Incubation was performed at 37 ◦C for 24 h. Growth was observed turbidimetrically by
measuring the OD600 using ELx800, Biotek (Winooski, VT, USA) every 4 h for 48 h. Gallic
acid was added at 1

2 MIC, and measurements of growth inhibitory activity were performed
as triplicates using untreated growth controls.

4.6. In Silico Molecular Docking Study

The docking study was conducted to demonstrate the binding affinities of the tested
compounds to the active sites of the protein [80,81]. The study was performed using
Molecular Operating Environment (MOE 2019.02) software [82,83]. The X-ray crystal
structures of CsuE and OmpA proteins were downloaded from the protein data bank using
the PDB IDs 6fjy and 3td3, respectively. At the beginning, the hydrogens and charges of the
receptors were optimized using AMBER10: EHT embedded in MOE software. The active
site of CsuE protein was determined using MOE site finder, while the active site of OmpA
was constructed as 4.5 Å surrounding the bound, co-crystalized glycine in the active site.
Gallic and cinnamic acids were sketched using the 2D builder of MOE 2019 and converted
to 3D structures using the same software. After that, they were docked in the binding site
of CsuE and OmpA proteins using triangular matcher and London dg as a placement and
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scoring methods, respectively. At last, 2D and 3D interaction diagrams were generated by
MOE to analyze the docking results.

4.7. Statistical Analysis

All analyses were carried out using R statistical platform (https://www.r-project.org,
accessed on 30 April 2022) in R-studio, version 1.4.1106. In quantitative variables, normality
assumption was tested using chi-squared goodness-of-fit test. For normally distributed
data, t-test and ANOVA were used to compare the means of two groups and multiple
groups, respectively. Kruskal–Wallis (KW) test was used to compare the medians for non-
normally distributed data. Mann–Whitney and Tukey’s HSD tests were applied as post hoc
tests using Bonferroni correction method for multiple comparisons in the Kruskal–Wallis
and ANOVA tests, respectively. For all statistical analyses, p-values < 0.05 were considered
statistically significant.

4.8. Ethical Approval

The protocol of this study was approved to be compliant with the regulations of the
ethical committee of the Faculty of Pharmacy, Ahram Canadian University. The collected
isolates were obtained as such from the microbial isolate depository of El Demerdash
Hospital, Cairo, Egypt, without any interaction with patients; thus, informed consents were
inessential.

5. Conclusions

In this study we described the complementary effect of cinnamic and gallic acids
combined with various antibiotics on MDR A. baumannii clinical isolates. A statistically
significant reduction in resistance was attained by the combination of cinnamic or gallic
acid with imipenem, amikacin or doxycycline. Conversely, no effect was recorded when
both acids were combined with levofloxacin, and only cinnamic acid had a synergistic
effect with colistin. Moreover, our results showed that gallic acid at 1

2 MIC significantly
down-regulated the expression of three of the key genes involved in biofilm formation
by A. baumannii, which are bap, csuE and ompA. This was further verified by the in silico
molecular docking study, in which gallic and cinnamic acids achieved acceptable docking
scores and a strong interaction pattern with the two selected proteins CsuE and OmpA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11070870/s1, Table S1: MICs of the selected 30 MDR
isolates against colistin (CL), imipenem (IPM), doxycycline (DOX), amikacin (AMK) and levofloxacin
(LVX) in presence/absence of cinnamic or gallic acids.
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