
M A J O R A R T I C L E

Metabolic Signature Profiling as a Diagnostic and
Prognostic Tool in Pediatric Plasmodium
falciparum Malaria

Izabella Surowiec,1,a Judy Orikiiriza,4,5,a Elisabeth Karlsson,2 Maria Nelson,2 Mari Bonde,2 Patrick Kyamanwa,6

Ben Karenzi,7 Sven Bergström,2,8,9 Johan Trygg,1,a and Johan Normark3,4,8,9,a

1Computational Life Science Cluster, Department of Chemistry, 2Department of Molecular Biology, and 3Division of Infectious Diseases, Department
Clinical Microbiology, Umeå University, Sweden; 4Infectious Diseases Institute, School of Medicine and Health Sciences, Makerere University, Uganda;
5Department of Immunology, Trinity College, Dublin, Ireland; 6School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of
Rwanda, Butare; 7Rwanda Military Hospital, Kigali; 8Laboratory for Molecular Infection Medicine Sweden, Umeå University, and 9Umeå Center for
Microbial Research, Sweden

Background. Accuracy in malaria diagnosis and staging is vital to reduce mortality and post infectious sequelae.
In this study, we present a metabolomics approach to diagnostic staging of malaria infection, specifically Plasmodium
falciparum infection in children.
Methods. A group of 421 patients between 6 months and 6 years of age with mild and severe states of malaria

with age-matched controls were included in the study, 107, 192, and 122, individuals, respectively. A multivariate
design was used as basis for representative selection of 20 patients in each category. Patient plasma was subjected to
gas chromatography-mass spectrometry analysis, and a full metabolite profile was produced from each patient. In
addition, a proof-of-concept model was tested in a Plasmodium berghei in vivo model where metabolic profiles were
discernible over time of infection.
Results. A 2-component principal component analysis revealed that the patients could be separated into disease

categories according to metabolite profiles, independently of any clinical information. Furthermore, 2 subgroups
could be identified in the mild malaria cohort who we believe represent patients with divergent prognoses.
Conclusions. Metabolite signature profiling could be used both for decision support in disease staging and

prognostication.
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Malaria infection caused by Plasmodium falciparum is
one of the primary contributors to childhood mortality
and obstetric complications in the developing world [1].
The development of new diagnostic measures is an up-
hill climb mainly because of socioeconomic issues and
the lack of access to relevant technology in endemic

regions. During the course of an infection, the parasite
has to metabolically adapt through several developmen-
tal stages and also induce profound metabolic flux in
the host. Metabolomics in turn aims at the identifica-
tion and quantification of all metabolites present in spe-
cific biological sample, followed by characterization and
classification of samples in relation to the question of
study, with the final point being identification of bio-
markers or biomarker patterns indicative of the physi-
ological state (ie, disease). It has already been proven to
be a valid approach in clinical infection studies [2, 3]
and also in parasitology [4–6]. The erythrocytic stage
in the parasite life cycle includes massive conversion
of host molecules to energy and parasite constituents
[7]. As a consequence, patients’ blood will contain
both metabolites excreted by the infected red blood
cells, products of the erythrocyte lysis, products of par-
asite metabolism, and compounds that are produced by
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the host as a response to the parasite action. The wide exchange
of nutrients and waste products between the host and the par-
asite will create a unique metabolic milieu in the host.
The specific in vivo P falciparum metabolite response needs

to be differentiated from the response characteristic for all kinds
of infections and from the metabolic “noise” not related to in-
fection [3]. In vitro parasite growth induces a range of bias in
the metabolism of the parasite due to a range of factors such
as abundance of nutrients and the absence of an active immune
response. It is known that alternative parasite biological states
occur in the natural host that cannot be observed in in vitro-
cultivated parasites [8]. Metabolomics comparison between
rodent and human malaria may be of value, but they display
differences in certain key metabolic processes [9]. Therefore,
we reason that the metabolic profile of P falciparum is best as-
sessed in patient samples. The aim of this study is to gain insight
into the biochemical processes found in human P falciparum
infection, the ulterior goal being the advancement of diagnos-
tics and novel methods to assess disease progression and ther-
apeutic effects. We have applied a multivariate experimental
design to a select representative set of samples from a larger pa-
tient cohort of controls, mild and severe malaria patients. This
selection was followed by mass spectrometry profiling and mul-
tivariate data analysis of the samples. The methodology we ap-
plied enabled us to obtain metabolite profiles characteristic of
each studied groups of patients. The ability of the method to fol-
low disease progression over time was further confirmed in a
Plasmodium berghei murine model. Our findings clearly dem-
onstrate the use of metabolomics as a valuable tool to assess and
predict the course of acute P falciparum infection.

METHODS

Study Approval
The in vivo murine model was approved by the Laboratory An-
imal Ethical Committee in Umeå (No: A44-11). Ethical clear-
ance for this study was obtained both from the Rwanda
National Ethics Committee (No: 279/RNEC/2010) as well as
the Regional Ethical Committee in Umeå (No: 09‐064). Written
informed consent was provided by the parent or legal guardian
of each participant.

Animals and Infectious Agents
Groups of 4 female BALB/c mice were given intravenous injec-
tions of 1 × 107 blood stage P berghei NK65. The mice were sac-
rificed early (day 1–2), mid (day 5), and late in infection (day
11). The mice were anesthetized and plasma was acquired via
heart bleed exsanguination.

Patients
A total of 421 patients between 6 months and 6 years of
age were enrolled from January 2011 to September 2013 at

Nyagatare Hospital in Nyagatare district, Kiziguro Hospital
and Ngarama Hospital in Gatsibo district or health centres in
the catchment areas of the 3 hospitals in the Eastern Province
of Rwanda. Written informed consent was provided by the par-
ent or legal guardian of each participant. The patients were as-
sessed on site by the attending pediatrician or study medical
officer, and biometric and clinical parameters were recorded,
as listed in Supplementary Tables 1–3. The patients were cate-
gorized according to the World Health Organization categories
of severe malaria as well as mild malaria with age-matched
healthy controls [10]. There were 107, 192, and 122 patients in-
cluded in each group, respectively. Patients with a known
human immunodeficiency virus positive status were excluded
from the study. Blood samples were drawn on site, and bright
field microscopy assessment of parasite presence was done in
the routine laboratory facilities coupled to each clinic. Parasite-
mia percentages were done by manual counting of Giemsa-
stained thin blood smears.

Patient Selection
Representative samples were chosen from the 421 samples,
based on the clinical information. We selected 20 samples
from each group of diagnostic categories (healthy controls,
mild and severe malaria), 10 of each sex using a full factorial de-
sign (see Results and Supplementary Material). The design was
applied to principal component analysis (PCA) plots of 2-
component models with clinical data as X variables, resulting
in a total of 60 samples selected for further investigation. Clin-
ical information for the patients selected for this study is given
in Supplementary Tables 1–3, and parameters of the models
used to select the samples are given in Supplementary Table 4.
Three cases warranted further attention after the initial analysis
(see Supplementary Methods).

Sample Preparation
Plasma was prepared on site in Rwanda, and it was transported
in liquid nitrogen to Sweden, thawed once for aliquoting, and
frozen again in −80°C. Extraction, derivatization, and gas chro-
matography-mass spectrometry (GC-MS) analysis of all sam-
ples were done as described previously [11].

Data Processing
Hierarchical multivariate curve resolution was performed in
MATLAB (MathWorks, Natick, MA) using custom scripts as
described previously [12]. Only identified metabolites (84, ex-
cluding drugs) were used in further modeling. Before the mul-
tivariate comparison of data, peak areas were normalized using
the peak areas of the 9 internal standards, which eluted across
the whole chromatographic time range.

Multivariate and Univariate Data Analysis
The SIMCA software version 13.0 from MKS Umetrics AB
(Umeå, Sweden) was used for all data modeling. The data was
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column mean centered, and the mean was divided by its stan-
dard deviation, ie, scaled to unit variance. We used PCA to in-
vestigate overall variability within the data and orthogonal
partial least square discriminant analysis (OPLS-DA) to
model between-class differences. Orthogonal partial least
square was used to find metabolites correlated with parasitemia.
A summary of the studied PCA and OPLS/OPLS-DA models is
given in Supplementary Table 5. An outline of the multivariate
analysis method can be found in Supplementary Methods.
Fold changes were calculated as the quotient of average values

of the metabolite levels in each group, with samples that had

missing values excluded from calculations. P values were calculat-
ed in Excel by performing 2-sample unequal variance t test with
2-tailed distribution. Receiver operatic characteristic (ROC)
curves were calculated in MATLAB (R2014a; MathWorks).

RESULTS

A Representative Set of Patients Was Selected for Analysis
We applied a multivariate design approach [13] to select sam-
ples representative for the whole cohort of patients. The multi-
dimensional clinical data were used as basis for representative
selection of the patients. Principal component analysis model-
ing was used to summarize clinical data into a low-dimensional
hyperplane, which was visualized as a score scatter plot. A full
factorial experimental design was applied for sample selection.
In each of the 4 corners of the scatter plot, 2 samples (patients)
were selected along with 2 center points. This procedure was re-
peated for each gender. In this way, we selected representative
samples of the multivariate space (defined as samples and clinical
variables related to them). The sample selection for severe malar-
ia cases was visualized in Figure 1; related plots for mild and se-
vere cases can be found on Supplementary Figures 1 and 2.

Separation of Patients Into Disease Categories According to
Metabolite Profiles
The primary objective of the study was to find archetypal pat-
terns in the metabolomics data that could be correlated to the
clinical data. In the PCA model presented herein, a clear sepa-
ration between controls and severe cases with mild malaria sam-
ples placed between them could be seen in the resulting score
plot (Figure 2). This shows that metabolite profiles themselves,
without any added clinical parameters, carry the information
about the state of the disease.

Figure 1. Principal component analysis score plots used for the selection
of samples. The DOE, Design of Experiment approach was used for severe
malaria patients with clinical data as X variables; samples selected for this
study are marked in gray (females) and black (males); (A) females, (B) males,
(C) all patients; x axis – t[1] first score, y axis – t[2], second score.

Figure 2. Principal component analysis score plot of identified metabo-
lites. These are shown as X variables with samples colored according to
their respective group: black dots signify severe malaria samples, gray dots
signify mild malaria, and white dots signify controls. The separation of clin-
ical groups according to their metabolic profiles is visualized in the plot:
x axis, t[1], first score; y axis, t[2], second score.
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Because the objective was to study the difference between 3
groups of samples, a more focused analysis method was re-
quired. Supervised modeling provided by OPLS-DA was used
to obtain better interpretability of the data. It allows separation
of systematic variation in the data into 2 components, one pre-
dictive (in this case, variation between groups) and the second
orthogonal (within-group variation). Thus, we used OPLS-DA
to elucidate which metabolite levels differ between the patient
categories by comparing mild versus controls, severe versus

controls, and severe versus mild for all samples. Significant
models with coefficient of variation-analysis of variation (CV-
ANOVA) values below 0.01 (Supplementary Table 5) were ob-
tained for all OPLS-DA models. Overall, good separation and
predictive capacity of each of the studied 2 groups were found
as visualized in the cross-validated OPLS-DA score plots
(Figure 3A–C), verifying applicability of this approach for
studying between-group differences.

Figure 3. Orthogonal partial least square discriminant analysis cross-
validated score plots. The identified metabolites are shown as X variables
for the following: (A) mild malaria vs controls, (B) severe malaria vs con-
trols, and (C) severe malaria vs mild. Black dots signify severe malaria sam-
ples, gray dots signify mild malaria, and white dots signify controls: x axis,
tcv[1], cross-validated predictive score; y axis, tocv[1], cross-validated
orthogonal score.

Figure 4. Receiver operatic characteristic curves calculated from the or-
thogonal partial least square discriminant analysis (OPLS-DA) models.
These were calculated from predicted values of the fitted Ys for observa-
tions in the dataset, computed from the cross-validation procedure: (A) mild
malaria vs controls (area under the curve [AUC] = 0.8442), (B) severe ma-
laria vs controls (AUC = 0.9165), and (C) severe malaria vs mild malaria
(AUC = 0.7367); false-positive rate at x axis and true positive rate at
y axis, using class-belonging values predicted by the OPLS-DA models.
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The Diagnostic Performance of the Metabolite Profile Models
Receiver operatic characteristic curve [14] is a common method
of choice for evaluating performance of diagnostics in clinical
studies. In our study, we decided to test ROC performance of
the OPLS-DA models, based on the predictions resulting
from the cross-validated procedure [15]. Receiver operatic char-
acteristic curves created for each model are shown in Figure 4.
The accuracy of each model was calculated by the area under
curve (AUC), which was: 0.8442 for mild versus control
model, 0.9165 for severe versus control model, and 0.7367 for
the severe versus mild model.
An orthogonal projections to latent structures (OPLS) model

was constructed with parasitemia index as the response variable,
an important variable in malaria diagnostics. The model pa-
rameters are outlined in Supplementary Table 5.
A list of 84 metabolites identified in the study is presented in

Supplementary Table 6, together with their relative differences in
the multivariate models. Arrows show whether compounds were
present in higher or lower amounts in group-wise relationships
(mild in comparison to controls, severe in comparison to controls,
and severe in comparison to mild malaria patients) or whether
they were positively or negatively correlated to parasitemia.
Changes that were significant according to all studied OPLS mod-
els are marked in red, and significant P values between groups are
marked with asterisks (* for P value below .05 and ** for P value
below .01). Fold changes of metabolite levels when comparing
each of the 2 groups of patients were also added to Supplementary
Table 6 and are visualized in Figure 5. The levels of selected me-
tabolites discussed in the text are visualized in Figure 6.

Different States of Plasmodium falciparum Malaria Exhibited
Specific Metabolite Patterns
The majority of all metabolites assayed in this study have been
previously described in the context of malaria infection in hu-
mans. We can confirm numerous studies where the metabolite
levels in plasma correspond to the result we present herein. This
is true for lipids and lipid-related molecules [16–19], energy me-
tabolites [20–23], amino acids [24–28], and other miscellaneous
metabolite makers [29–31]. In short, we could observe the ad-
vent of acidosis and production of ketone bodies, consumption
of energy metabolites, kidney dysfunction, lipolysis, and redis-
tribution of protein biosynthesis during disease progression.
The metabolite patterns were analyzed in the Metabolite Set
Enrichment Analysis (MSEA) software [32], and the pathways
that were detected as significantly altered were as follows: protein
biosynthesis, ammonia recycling, urea cycle, and glutathione me-
tabolism (data not shown). In the case of lipids, we could observe
a consistent increase in the content of long-chain fatty acids and
lipid-related metabolites in the plasma of patients when moving
from the control to the severe malaria group (Supplemen-
tary Table 6 and Figure 5A–C). All long-chain fatty acids also
showed positive correlation to the parasitemia, although these

correlations were not significant according to the OPLS model.
No significant changes in the levels of compounds from the tri-
carboxylic acid cycle could be observed.
With a few exceptions, amino acid concentration differences

were not significant according to models nor based on P values
or fold changes between groups (Supplementary Table 6). How-
ever, clear trends for their changes could be observed between
studied groups of patients. Lower levels of practically all amino
acids were observed in mild malaria patients compared with
controls and compared with severe cases. In total, 11 amino
acids showed increased concentrations and 10 reduced concen-
trations in severe cases compared with controls.
Approximately half of the amino acids showed increased, and

the other half reduced amounts in relationship to high parasi-
temia values. A significant positive correlation with parasitemia
values was observed for urea, glutamine, histidine, and trypto-
phan, whereas significant negative correlations were found for
glutamic acid, pyroglutamic acid, erythritol, and serine.

Metabolomic Subgroups Were Revealed in Mild Malaria
Patients
The general PCA plots of all studied groups did not show any
clear subgrouping; however, investigation using a 2-group PCA re-
vealed clear subgroups in the mild category (Supplementary Fig-
ure 3). This could also be observed in the PCA plots of all samples
as an overlap between the mild and the severe malaria samples
(Supplementary Figure 4). This subgroup was named mild(se-
vere), whereas other mild samples were named mild(mild).
There were 7 patients that could be classified in the mild(severe)
subgroup, and they are marked bold in Supplementary Table 2.
All patients in this group showed consistent behavior in their met-
abolic profiles compared with other mild patients and compared
with other classes of patients (Supplementary Table 7). Parameters
of the OPLS-DA models that were focused on the comparison of
the new malaria subgroups with each other and with other groups
are shown in Supplementary Table 8. Significant CV-ANOVAval-
ues were obtained when comparing the mild(severe) subgroup to
themild(mild) counterpart and to the controls and when compar-
ing severe malaria patients to the mild(mild) subgroup.
Primarily long-chain fatty acids, steroids, glycerol as well as

other organic acids were present in higher concentrations in
the mild(severe) subgroup compared with the mild(mild)
group. When the severe group was compared with the mild(se-
vere) group, increased levels of fatty acids and other organic acids
were observed in mild(severe) subgroup, but these changes were
not statistically significant. No clear differences could be observed
in other groups of compounds in this comparison. In addition,
CV-ANOVA value for the OPLS-DA model between these 2
groups was not significant, which indicates that the groups are
not clearly distinguishable based on the metabolomics profiles.
The mild(mild) subgroup in comparison to the severe malaria

patient group showed lower levels of long-chain fatty acids,

Metabolic Signature Profiles and Malaria Staging • OFID • 5

http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1
http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv062/-/DC1


Figure 5. Fold changes differences of metabolite levels in different disease states. (A) Differences between mild malaria compared with controls,
(B) severe malaria compared with controls, and (C) severe malaria compared with mild cases; in black changes above 1.0; redirection of metabolism between
studied groups of samples can be observed; metabolites are represented at the x axis and their fold change values in respective group comparisons at y axis.

6 • OFID • Surowiec et al



glycerol, most amino acids, and other organic acids. The mild
(mild) subgroup also showed reduced amino acid content, in-
creased sugar levels, and no consistent change in lipid content
compared with controls. Metabolic changes characteristic for the
mild malaria subgroups in comparison to each other and other
classes of samples are summarized in Supplementary Table 7.

Metabolite Level Alterations Can Be Followed Over Time in an
In Vivo Model
To test metabolic signature profiling as a possible tool to ob-
serve malaria disease progression, we performed GC-MS on

plasma from BALB/c mice infected with P berghei parasites.
Fifty metabolites could be identified. One sample was lost
during analysis, day 11. A multivariate PCA analysis was per-
formed on the metabolite data, and the resulting 2-component
model was visualized as a sample scatterplot (Figure 7). The
individual samples aggregated in a time-wise manner, and
the mid and late infection animals were discernible from
each other and also from early infection. The corresponding
metabolite profiles of these samples over time can be found
in Supplementary Table 9, showing that although there are
some similarities between human samples and murine

Figure 6. Group distribution of the levels of the most significant metabolites. Metabolite peak areas were normalized to the peak areas of the 9 internal
standards, which were eluted across the whole chromatographic time range. The values are displayed on the y axis for each respective patient category. (A)
glycerol, (B) palmitoleic acid, (C) hexadecanoic acid, (D) linoleic acid, (E) oleic acid, (F) stearic acid, (G) 3-hydroxybutyric acid, (H) alanine, (I) serine, (J) pyruvic
acid, (K) valine.
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model (eg, increase in phenylalanine levels and increased lactic
acidosis with time of infection), the general profiles are not
fully comparable. This again proves that malaria infection is
best studied in humans.

DISCUSSION

In this study, we were able to subcategorize malaria patients into
distinct disease categories by the use of metabolite levels. To our
knowledge, this is the first study that utilizes both a Design of
Experiment DOE approach for sample selection and global GC-
MS analysis to explore metabolic alterations in pediatric malaria
patients. Our study shows that the strategy applied by us to se-
lect subset of samples from the bigger pool enabled us to obtain
relevant results. In other words, good to excellent accuracy of
the described approach based on OPLS-DA modeling of meta-
bolic profiles could be observed from the ROC curves.
We also found distinct metabolic subgroups in the mild cat-

egory of patients. These groups do not correspond to any sub-
grouping in the clinical data. We postulate the presence of 2
mild-malaria subcategories—one with the metabolic profile re-
sembling the profile of the severe malaria group (increased pres-
ence of long-chain fatty acids and other organic acids compared
with controls) and the other, with a “true” mild profile, signify-
ing a reduction of most of amino acids and increased levels of
sugars compared with controls. This profile could be interpret-
ed as a scenario in which an organism starts to convert amino
acids to sugars to acquire energy for fighting the infection. De-
tection of the severe subgroup in the mild malaria patients
could be used as an early diagnostic marker for the severity of
the disease, before the onset of clinical symptoms. In such a
case, markers that differentiate this subgroup from other mild
patients would be of crucial importance in clinical diagnostics.

To draw conclusions from metabolic parasite-host interac-
tions, it is essential to understand the host response to acute in-
fections. Microbial invasion induces a constellation of host
responses collectively referred to as the acute-phase response
[33],which is characterized by immunological, neuroendocrine,
metabolic, and behavioral alternations [34]. As seen in Figure 6,
metabolite levels generally increased with the severity of the dis-
ease. This indicates a general increase of metabolite deposition
in the host compartment with the progression of Plasmodium
infection. The majority of studies performed by metabolomics
profiling in the malaria field has focused on in vitro-adapted
P falciparum strains [35, 36] or on murine malaria models
[16, 37–40]. To our knowledge, so far, only 2 studies have
been focused on malaria infection in humans [41, 42], although
there are currently several groups at work using this methodol-
ogy for human and primate malaria studies.
The most striking metabolic effects we can show are the in-

creased levels of fatty acids and lipid-related compounds in se-
vere malaria patients. This effect is most likely related to the
catabolic host response to infection, but it may also be induced
by the parasite to meet its demand. The rapid growth rate
throughout the erythrocytic stage requires intense membrane
neogenesis, and hence lipids are crucial for parasite growth
[43]. A meta study [44] concluded that cholesterol, high-density
lipoproteins, and low-density lipoproteins concentrations are
lower in malaria patients compared to both healthy controls
and patients suffering from other febrile diseases. Triglycerides
were shown to be elevated during malaria infection compared
with healthy controls but not statistically significant compared
with symptomatic controls. Although the quantity of lipid
changes seems to be related to the severity of malaria in some
studies [19, 45], others found no correlation [46, 47]. In our
study, we identified a positive correlation of lipid-related mole-
cules to parasitemia, reinforcing the finding.
The malaria parasite depends on glucose supplied by the host

to meet its energy requirements. Alanine is a gluconeogenic
precursor; its elevation together with higher lactate levels and
hypoglycemia suggest an impairment of gluconeogenesis—
hepatic use of alanine and its conversion to glucose is impaired
in severe malaria [20, 23]. The lactate peak was not assessable in
our study because of the chromatographic overload; however,
alanine and pyruvate levels were lower in severe malaria patients
compared with other groups (Supplementary Table 6, Figure 6H
and J), making alanine the only metabolite in our study found
to differ from previous literature. Alanine and pyruvic acid were
also negatively correlated to parasitemia values. Relative hypo-
pyruvatemia has been associated to poor outcome in severe ma-
laria as a consequence of lactic acidosis expressed as an increase
in lactate/pyruvate ratio in whole blood [48]. In our study, the
levels of 3-hydroxybutyric acid were higher in the severe cases,
reinforcing a situation of ketoacidosis and hypoglycaemia in the
severe category (Supplementary Table 6, Figure 6G) [49]. The

Figure 7. Principal component analysis score plot of metabolites from
BALB/c mice. The graph shows the separation of samples according to the
day of infection (number of mice, N = 3–4 in each group). Gray circles in-
dicate day 1, gray squares indicate day 2, black triangles indicate day 5,
and inverted gray triangles indicate day 11.
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levels of valine, previously not explored in a malaria context,
were also raised in severe disease, presumably related to hemo-
globin digestion (Supplementary Table 6, Figure 6K). We also
observed a depletion of serine (Supplementary Table 6, Fig-
ure 6I) associated to disease severity. This may be a result of
uptake by the parasite and subsequent synthesis of phosphati-
dylcholine, which is the most abundant membrane phospholip-
id in P falciparum [50].

CONCLUSIONS

Taken together, these results show that metabolite profiling has
the potential to be used as diagnostic tool and perhaps also to
identify risk patients, assess disease progression, and even assess
the evaluation of therapy. Further work includes identification
of subsets of metabolites and subsequent transition to biochem-
ical assays or point-of-care kits as a first route into clinical
practice.

Supplementary Material

Supplementary material is available online at Open Forum Infectious Diseas-
es (http://OpenForumInfectiousDiseases.oxfordjournals.org/).
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