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Predictive coding has recently been proposed as a mechanistic approach to explain

human perception and behavior based on the integration of perceptual stimuli (bottom-

up information) and the predictions about the world based on previous experience

(top-down information). However, the gap between the computational accounts of

cognition and evidence of behavioral studies remains large. In this study, we used

a computational model of drawing based on the mechanisms of predictive coding

to systematically investigate the effects of the precision of top-down and bottom-up

information when performing a drawing completion task. The results indicated that

sufficient precision of both signals was required for the successful completion of the

stimuli and that a reduced precision in either sensory or prediction (i.e., prior) information

led to different types of atypical drawing behavior. We compared the drawings produced

by our model to a dataset of drawings created by children aged between 2 and 8 years

old who drew on incomplete drawings. This comparison revealed that a gradual increase

in children’s precision of top-down and bottom-up information as they develop effectively

explains the observed change of drawing style from scribbling toward representational

drawing. Furthermore, individual differences that are prevalent in children’s drawings,

might arise from different developmental pathways regarding the precision of these two

signals. Based on these findings we propose a theory of how both general and individual

development of drawing could be explained in a unified manner within the framework of

predictive coding.

Keywords: computational modeling, predictive coding, representational drawing, child development, recurrent

neural network

1. INTRODUCTION

An understanding of children’s cognitive development and individual differences is pivotal in the
cognitive sciences. However, considerable insights into the thinking processes of young children are
still limited, because children often lack the linguistic and cognitive ability to explain their actions
and decision-making processes. By observing and modeling children’s natural behavior, it may be
possible to propose hypotheses regarding how their behavior could be explained by underlying
cognitive and perceptual mechanisms.
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Drawing behavior is a widely used tool to gain insights
into developmental processes (Thomas and Silk, 1990; Adi-
Japha et al., 2010). It has been demonstrated that the drawings
created by children reflect their developmental maturation
(Thomas and Silk, 1990; Adi-Japha et al., 2010; Saito et al.,
2014) and can aid in assessing how children perceive their
environment (Chappell and Steitz, 1993; Barraza, 1999). Of
particular interest is the emergence of representational drawings,
which are drawings that depict objects or concepts (Saito et al.,
2014). The development of representational drawing ability in
children might reflect general cognitive maturation processes.
However, the fundamental mechanism of its development, and
the changes in perception and behavior that it involves are not
well-understood.

The predictive coding idea has been proposed as a
fundamental mechanistic account to explain how we integrate
perceptual information with our prior experience in order to
interpret the world around us and act in it (Rao and Ballard, 1999;
Friston, 2009; Ciria et al., 2021). The theory suggests that the
brain maintains an internal model of the world and constantly
attempts to make predictions about what is occurring in the
environment. If these top-down predictions differ from the actual
bottom-up sensory sensations1, a prediction error arises.

This error, in turn, drives adaptation of the internal model,
leading to learning or to the execution of actions that mitigate
the prediction error (e.g., changing the perspective to resolve a
visual illusion, or drawing the completion of a figure based on
the expectations of the internal model). A key mechanism of this
active inference or enactive predictive coding (Friston et al., 2010,
2011) is the integration of top-down and bottom-up information
into posterior perception. It is assumed that the brain performs
this integration using a Bayesian-optimal method, whereby how
strongly prior information and current sensory information are
taken into account depends on the precision of these two signals.
Signals that are believed to be more precise would more strongly
affect the resulting behavior, following the rules of Bayesian
inference (Knill and Richards, 1996).

In recent years, computational studies have demonstrated
that prediction could constitute a fundamental mechanism of
cognition and an important driving factor during development
(Nagai, 2019): Young children constantly face behavioral and
perceptual challenges that require them to learn and update
internal models of the environment (Cox et al., 2020).
Experimental studies indicate that prediction errors, measurable
as differential responses to more or less expected events
(Kouider et al., 2015; Kayhan et al., 2019; Zhang et al.,
2019), contribute to infants’ learning from an early stage of
development (Trainor, 2012; Ylinen et al., 2017). Additionally,
the theory has also been applied to the study of individual
differences, for example, to explain atypical perception and
behavior in the context of developmental or psychiatric disorders

1There is an ongoing discussion about the roles of top-down and bottom-up

signals and how they should be formalized (Rauss and Pourtois, 2013). Here, we

adopt the view that top-down signals contain information that has been acquired

beforehand, for example, through experience or via training (Barlow, 1997; Rauss

and Pourtois, 2013).

(Gonzalez-Gadea et al., 2015; Sterzer et al., 2018; Lanillos
et al., 2020; Angeletos Chrysaitis et al., 2021), or to provide a
mechanistic explanation of individual differences of the precision
of interoceptive perception (Ainley et al., 2016).

In this study, we used a computational model to address
how the integration of top-down and bottom-up information
might change as children develop by systematically modifying
the two parameters expressing the precision of prior and current
sensory information, respectively. Subsequently, we compared
the drawings made by the model to drawings created by children
in a drawing completion task where children could freely
draw on partially drawn objects. Such a spontaneous drawing
completion task was recently used to investigate the emergence
of representational drawing ability in a systematic manner (Saito
et al., 2014). Here, the drawing completion task is chosen because
it can be considered as a prediction task: in order to decide
what to draw, children use, on the one hand, the provided
visual information which activates bottom-up processes. On the
other hand, top-down processes are involved because previous
experiences of the child or the model also influence drawing.

The computational model uses the ideas of predictive coding
and is able to complete partial drawings based on the experience
acquired during training. This model, first introduced in the
study of Oliva et al. (2019), integrates the predictive learning
of trajectories using a recurrent neural network with a module
performing Bayesian inference to integrate the sensory input with
the predictions of the network. This integration is performed
flexibly depending on the precision of the sensory input and
the network predictions. In our previous studies (Philippsen
and Nagai, 2019, 2020b), we used this model to test how the
strength of prior reliance affects drawing. The results indicated
that adequate reliance on the prior was important for the
successful completion of the stimuli. A weak reliance on prior
information (if prior information was imprecise) was associated
with scribbling behavior by the model. In contrast, an overly
strong reliance on prior information (if prior information was
highly precise) sometimes caused the model to misinterpret the
presented pattern as a different pattern. Thus, imprecise prior
information, causing a weak reliance on priors, might be the
underlying reason why young children and non-human primates
show scribbling behavior but do not create representational
drawings as observed by Saito et al. (2014). One limitation of
the previous study was that it took only the relative reliance on
sensory and prior information into account: a stronger influence
of prior information entailed a weaker influence on sensory
information, and vice versa. However, not only the relative but
also the absolute precision of the signals can be considered as
crucial for explaining the resulting behavior. For example, it
makes a difference if both signals are equally precise or equally
imprecise. Another aspect that was not taken into account in
the previous study is that the precision of sensory input, that
was assumed to be fixed in our previous studies (Philippsen
and Nagai, 2019, 2020b), is likely to change as a child develops.
Specifically, various studies reported that sensory precision tends
to increase with age (Sciutti et al., 2014; Karaminis et al., 2016).
To account for the changes in sensory as well as in prior precision
independently from each other, we extend the previous study
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by additionally modifying the reliance on the sensory input to
obtain a more comprehensive understanding of the potential
mechanism underlying the developmental pathway.

We compared the drawing of the model with drawings created
by children aged between 2 and 8 years old that were recently
obtained using a similar task design (Philippsen et al., 2020);
children were presented with the drawing of an incomplete object
such as a face or a house, and could freely draw on the presented
stimulus. This comparison of data of the model to children’s data
at various ages enables us to postulate how children’s precision
might mature as they develop based on their displayed behavior.

Such a close comparison of psychological and computational
data might be important to elucidate the underlying mechanisms
of child development in the future. Additionally, we demonstrate
the successful implementation of the computational model into
the humanoid robot iCub and briefly discuss the system’s
potential to conduct human-robot interaction experiments for
assessing human neurodiversity in future studies.

2. BACKGROUND

An important mechanism of predictive coding is the integration
of prior (top-down) and sensory (bottom-up) information.
Human perception is considered to be almost Bayesian-optimal,
relying on prior and sensory information based on the precision
of these signals: more precise signals would more strongly
influence the result. Consistent with this idea, previous studies
have suggested that individual diversity might be caused by
differences in the precision that individuals assign to sensory
signals compared to their own predictions (Pellicano and Burr,
2012; Lawson et al., 2014; Lanillos et al., 2020). For instance,
a stronger precision of the sensory signal compared to priors
(hypo-prior) could account for the hypersensitivity in people
with autism spectrum disorder (ASD) (Pellicano and Burr,
2012; Lawson et al., 2014), whereas a higher precision of priors
(hyper-prior) could account for hallucinations in those with
schizophrenia (Lanillos et al., 2020).

In additional, during development, children might integrate
sensory information and priors in ways that differ from adult
perception. While computational studies on developmental
changes in precision are rare, behavioral experiments have been
conducted to clarify how children’s reliance on prior and sensory
information may develop. However, the findings are to date not
conclusive. In particular, younger children are often considered
to possess weaker priors due to a lack of experience (Thomas
et al., 2010; Stone, 2011). In contrast, Sciutti et al. (2014) found
that children aged 7 years and older showed the same relative
reliance on sensory and prior information as adults, but the
absolute precision of these two signals was lower at a younger age.
Some studies even report a slightly stronger reliance on priors
in children. For example, Karaminis et al. (2016) reported that
children aged 6–7 years still exhibited a stronger relative reliance
on the prior to compensate for the imprecise sensory modality.
As an alternative theory, it is also possible that children do not
act in a Bayesian-optimal manner at all (i.e., theymight randomly
attend more strongly to prior or sensory information, regardless

of the precision of the signals). However, the remarkable ability
of children to perform statistical learning indicates that children
already utilize an efficient sensorimotor integration and evidence
accumulation mechanism (Saffran et al., 1996; Kirkham et al.,
2002; Cox et al., 2020). As discussed in the studies of Sciutti et al.
(2014) and Karaminis et al. (2016), the ability to rely on sensory
and prior information according to their respective precision
(i.e., being able to ignore imprecise signals) is a key mechanism
that ensures robustness against environmental noise, and would,
therefore, be important from an early age.

Our study assumes that Bayesian-optimal integration of prior
and sensory information occurs at all ages, but that the precision
attributed to the two signals may vary across development stages,
in line with the view of Sciutti et al. (2014) and Karaminis
et al. (2016). In particular, we systematically investigate how the
precision of prior and sensory information, respectively, may
affect behavior in the task of drawing completion. By comparing
the simulated drawings to drawings created by children, we
suggest a unified framework regarding how the precision of prior
and sensory signals may account for the developmental and
individual differences observed in children.

3. METHODOLOGY

This section introduces the computational framework (Section
3.1), motivates and describes the experimental design (Section
3.2) and describes the children’s drawing dataset (Section 3.3).

3.1. Computational Model of Drawing
Completion
The computational model used here is adopted from our
previous studies (Philippsen and Nagai, 2019, 2020b), in which
we investigated how changes in the reliance on prior prediction
can affect drawing ability. The model implements the idea of
predictive coding by extending a recurrent neural network with
a Bayesian inference module that integrates the sensory signal
with the predictions of the network model at the input level
(Oliva et al., 2019) as shown in Figure 1. The recurrent neural
network acts as the internal model that generates predictions
about the environment. Given input xt , it predicts the mean µnet

and the variance σ
2
net of the sensory perception of the next time

step. Simulated learning and inference is based upon a generative
model comprising a likelihood and a prior. Based upon Gaussian
assumptions about the prediction errors, the (log) likelihood is
a function of the posterior mean and variance as well as the
observed input x:

− ln(L) =

T−1
∑

t=0

D−1
∑

i=0

(

ln(2πσ
2
net

t,i
)+

(xt+1,i − µnet
t,i)2

2σ 2
net

t,i

)

. (1)

Here, T is the total number of time steps, and D is the
dimensionality of the input vector.

To enable the network to differentiate between different
drawing stimuli classes (e.g., a face and a house), each stimuli
independently uses a different set of initial neuron activations.
Formally, the initial state u0

(s)
of stimuli class s is defined by the
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Figure 1 | Computational model of drawing adopted from Philippsen and Nagai (2020b), and extended with the additional parameter Hsensor which scales the sensory

precision σ
2
sensor in the same way that Hprior scales the prior precision estimated of the network σ

2
net.

initial activations of the N neurons of the network’s context layer
at time step t = 0. The optimization criterion for enforcing this
prior on the distribution of the initial states can be accordingly
defined as

− ln(Linit) =

S−1
∑

s=0

N−1
∑

n=0

(

ln(2πvdist)+
(u0,n

(s)
− ûn)2

2vdist

)

, (2)

where ûn is the (learnable) mean of all initial states and vdist (set
here to vdist = 10) is the predefined variance of the initial states.
The network weights and the initial states are optimized during
network training by maximizing L+ Linit as proposed by Murata
et al. (2013). This optimization process continues for a maximum
of 30, 000 epochs (training is stopped earlier if no improvement
is measured within the previous 5, 000 epochs).

After training, the output of the network’s internal model (i.e.,
the posterior estimate µnet) constitutes the network’s prior belief
about the next time step. The prediction of the internal model
µnet is integrated with the sensory perception x in each time
step according to the variance of the prediction σ

2
net and the

variance associated with the sensory input σ
2
sensor. The precision

of the sensory signal σ 2
sensor is fixed at a constant value of ∼0.05,

computed according to the actual variance present in the input
signal (see Philippsen and Nagai, 2020b for details). The factors
Hprior and Hsensor modify the variance terms when they differ
from 1. Hprior was introduced in Philippsen and Nagai (2020b),
where we modified this parameter, that expresses the variance
(inverse precision) of the prediction. As a result, the model’s
behavior was modified so that it relied more weakly on its prior
(in the case of larger variance, i.e., lower precision) or more
strongly (in the case of smaller variance, i.e., higher precision),
compared to a normal Bayesian-optimal manner of integration.
In this study, we additionally modified Hsensor, that implements
aberrant sensory precision. The integration of sensory input with
predictions follows the rules of Bayesian inference.

σ
2
posterior =

(Hsensor · σ
2
sensor) · (Hprior · σ

2
net)

(Hsensor · σ 2
sensor)+ (Hprior · σ

2
net)

, (3)

µposterior = σ
2
posterior ·

(

µnet

(Hprior · σ
2
net)

+
x

(Hsensor · σ 2
sensor)

)

.

(4)
Using this mechanism, the input used for training the internal
model is more strongly influenced by the input when the sensory
modality is considered to be more precise than the prediction. If
sensory input is less precise, the network automatically switches
to a stronger focus on its own prediction.

3.2. Experimental Procedure
The two-dimensional space explored in this study is shown in
Figure 2 with exemplary designed prior and sensory precision
values. The precision (i.e., inverse variance) of the sensor and
prior distributions are gradually modified from low precision
(bottom left corner) to high precision (top right corner). Note
that at the diagonal from bottom left to top right, where the
relative precision of both signals is the same, the mean of
the posterior remains the same, however, the precision of that
mean changes.

We modify the prior precision by a factor of Hprior ∈

{0.001, 1, 1, 000} and the sensory precision by a factor ofHsensor ∈

{0.001, 1, 1, 000}, where 1 means that the precision of the
distributions corresponds to the network’s estimated precision
of its prior prediction or to the actual precision of the sensory
input, respectively. A factor of 0.001 means that the distribution
is thought to be much more precise (reduced variance), causing
the model to pay more attention to this signal; a factor of 1, 000
means that the distribution is considered to be much less precise,
thereby causing the network to pay less attention to this signal.
These values correspond to the extreme values that were tested
in Philippsen and Nagai (2020b) and were chosen in this study
because they can best reveal the differences between the varying
conditions.

The experiments in this study were performed with ten
independently trained networks which were trained in our
previous study (Philippsen and Nagai, 2020b) with normal prior
and sensory reliance Hprior = Hsensor = 1 to perform one-step-
ahead prediction of two-dimensional trajectories that represent
six different drawing shapes: FACE, HOUSE, CAR, FLOWER,
HUMAN, and ROCKET. To create this data set, ten trajectories
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Figure 2 | Illustration of how the Bayesian inference changes when the precision of the sensory input and the prior are modified.

of each shape were drawn manually by a human subject and
downscaled to consist of 90 time steps each. Seventy percent of
these trajectories were used for training the network (Figure 3A),
and 30% for evaluating the model’s completion ability. Of these
testing trajectories, only the first third of the trajectories (30 time
steps) were presented to the network as shown in Figure 3B.

During recognition and generation, the altered parameter

values Hprior and Hsensor were used to test how this affects the

network’s ability to complete the drawings. The completion is

performed in two steps. First, the network tries to recognize

the incomplete trajectory consisting of the first 30 time steps
by inferring which initial configuration of neuron activations
would best account for the observation of the presented trajectory
(recognition step). For this purpose, the backpropagation-
through-time algorithm was applied for 100 epochs to optimize
with regard to the initial condition while maintaining the
network weights fixed (Murata et al., 2014). The inferred initial

configuration is then used as a starting point for generating
the full trajectory (generation step). This way of completing the
trajectories is inspired by the principle of predictive coding and
is suggested to be analogous to how humans would infer the
underlying causes of an observation while acting in a way that
minimizes the prediction error (Murata et al., 2014).

Further details about the implementation can be found
in Philippsen and Nagai (2020b). The source code for this
experiment is provided as part of the GitHub repository of
Philippsen and Nagai (2020b)2.

3.3. Child Drawing Data Set
An important aim of this study is to use computational
data to make predictions about the underlying
cognitive mechanisms that might drive the behavior of

2https://github.com/aphilippsen/drawingcompletion
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Figure 3 | The seven trajectories used for training (A), and the first 30 time steps of the three testing trajectories used to test the completion ability of the networks

(B). Black and gray lines indicate pen-down and pen-up lines, respectively. One example trajectory each is highlighted with bold lines for visual clarity.

Figure 4 | The 12 stimuli of which six were presented to each of the children, consisting of four different stimuli categories (face, house, car, and human figure) and

three presentation conditions (outline, inner features, and scrambled inner features).

children over the course of their development. For this
purpose, it is not sufficient to look at synthetic data;
instead, comparisons to behavioral data of children
are required to connect computational findings to
actual behaviors.

Here, we use a drawing data set of drawing completion that
was recorded recently using a similar task design as that used
in the computational study (Philippsen et al., 2020). Children
were presented with incomplete stimuli, representing animate,
or inanimate objects such as a face, a house, or a car where

Frontiers in Neurorobotics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 856184

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Philippsen et al. Simulating Children’s Individual Drawing Development

Figure 5 | Example drawings of children that were categorized as scribbling, completion, coloring, or tracing by adult raters, and examples of drawings that seem

unrelated to the presented stimuli but instead show objects or simple shapes.

Figure 6 | Overview of human ratings of the degree to which children showed scribbling, coloring in, tracing, and completion in their drawings, between 0% (not at all)

and 100% (strongly) at different ages. Every point represents the mean score for a single child, the line shows the linear regression.

crucial parts of the object were missing, such as facial features
or windows (see Figure 4 for the full set of stimuli). Note that the
stimuli for the child experiment provided more details than the
stimuli of the computational study (e.g., the outline of the ears
and the hair is shown for the face stimulus) to make them child-
friendly and to allow the children to better recognize the intended
shape. Furthermore, stimuli were presented in the child study in
three different conditions where the outline, inner features, or
scrambled inner features were shown, respectively. The condition
with scrambled inner features was added for investigating the
relation of individual differences to autistic traits (Philippsen
et al., 2020, under review). In the present study, however, we do
not consider differences between the conditions and the neural
network is only trained on stimuli of the outline condition as
shown in Figure 3A.

Data from 104 children (62 males and 42 females) aged
between 2 and 8 years old (average age 4 years and 9 months)
were collected in a science museum, resulting in a total of 621
drawings. Drawings were performed on a tablet PC using blue
color to distinguish the child-drawn parts from the presented
parts. Children were instructed to draw whatever they liked, and
each child could draw up to six different stimuli.

A previous analysis of this data set revealed that children
show large developmental and individual differences in their
responses to this task. Specifically, ratings of human adults were

collected to assess the overall trend of children’s development
(Philippsen et al., 2020). Younger children tended to show a
higher degree of scribbling and a lower degree of completion
of the stimuli, whereas the reverse trend was observed in older
children. Children also displayed other drawing styles such as the
coloring in of shapes, tracing, or copying presented parts of the
drawing, or even the drawing of objects that did not show any
obvious relationship to the presented stimulus. Figure 5 shows
examples of children’s drawings that are representative of these
different drawing styles. Figure 6 provides an overview of the
human rating assessment of children’s drawing behavior that
was conducted in Philippsen et al. (2020), plotted against the
children’s age. Children showed a decrease in scribbling and an
increase in completion with increasing age, whereas coloring and
tracing behavior could be observed at all ages.

4. RESULTS: HOW RELIANCE ON PRIOR
AND SENSORY INFORMATION AFFECT
DRAWING

This section presents the results of the computational study.
First, we explain the results of the simulation qualitatively for
one of the trained networks, and then confirm the observed
trends by averaging across all ten trained networks. Second, we

Frontiers in Neurorobotics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 856184

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Philippsen et al. Simulating Children’s Individual Drawing Development

Figure 7 | Drawings produced by one network when modifying the variance of sensory input Hsensor (x-axis) and the variance of prior predictions Hprior (y-axis) by a

factor of 1, 000 (low precision), 1 (normal precision), or 0.001 (high precision). The black and gray lines indicate how the network could reproduce the presented part

(cf. Figure 3B), the green lines show the network’s completion ability (solid lines for pen-down, dashed lines for pen-up drawing).

briefly present the implementation of the drawing experiment
into a physical robot and discuss potential future studies for
investigating human neurodiversity.

4.1. Simulation Results
In Figure 7, an example is shown how one of the networks
performed for the nine different constellations of Hprior and
Hsensor. The black lines show the first 30% of the trajectories,
indicating whether the model is able to trace the presented part
of the stimulus. The green lines show how the model completed
the stimulus.

It can be observed that the drawings produced with normal
reliance on both signals (middle of Figure 7) were correctly
completed according to the training data. The same was true if
the precision of both signals was increased (top right corner). In
contrast, when there was a drastic reduction in the precision of
both signals (bottom left corner), the model did not show any
meaningful behavior; it could neither follow the presented lines
nor complete the pattern, but rather instead, it produces random
movements.

The top-left and bottom-right corners show cases where the
network only considered one of the two integrated signals to be
precise, whereas the other one was considered to be imprecise.
In the bottom-right corner of Figure 7 we can see the result of
the model simulations when an overly strong reliance was placed
on the sensory signal, and little attention was directed to the
prior signal. Initially, the performance looks very similar to the
performance in the bottom-left corner. The difference between
these two conditions lies with the black lines corresponding to
the behavior of the model while observing the presentation of the
first 30 time steps. Whereas the network showed only scribbling
behavior in the bottom-left corner, in the bottom-right corner,
the network is able to trace the presented (black) lines. This
result demonstrates that a sufficient degree of precision of the
prior information is required to allow the model to complete a
partial drawing, but because of the precise bottom-up signal, the
model can perform more low-level behaviors such as following a
presented trajectory.

The opposite case is displayed at the top left corner of
Figure 7, in which sensory information is considered to be
imprecise, but prior information is precise. In this case, the
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model can follow existing lines, although it is less accurate than
with higher sensory precision. Owing to sufficiently precise prior
information, the model can also complete the shapes in many
cases. However, because of the relatively low reliance on sensory
signals, the completed shape did not always accurately fit the
intended pattern. Specifically, in the example shown, the model
drew a face pattern instead of a flower to complete the bottom-
left shape. Such a drawing of a shape that does not fit the intended
shape is caused by an excessively strong reliance on the priors
combined with insufficient reliance on the sensory input, which
leads to an over-weighting of the network’s confidence in its own
prediction. Owing to the low precision of the sensory input, this
prediction is not always correct, leading to confusion between
shapes.

In summary, two main findings can be extracted from this
analysis: First, the model creates random trajectories when
insufficient prior information is available—a behavior that
resembles scribbling. Second, the low precision of sensory input
together with precise priors seems to cause the network to
confuse the shapes with each other in some cases.

To measure whether these tendencies hold for the entire
dataset, we evaluated the drawings that were produced by all 10
networks. Each network completed the six patterns three times,
using the test dataset (cf. Figure 3B).

First, the distances (mean square error) of the produced
trajectories to all training trajectories were computed to measure
the overall quality of the produced drawing. The average error
of the produced drawings to the closest training trajectories
is displayed in Figure 8, where Figure 8A shows the error
computed for the first third of the trajectory and Figure 8B shows
the error computed on the last two thirds, that is, the network’s
completion, which was performed without visual guidance. The
nine tiles of the matrix correspond to the nine parameter
constellations shown in Figure 7.

It can be observed that the error was small in most cases
but high in the bottom-left corner of Figure 8A and in the
entire bottom row of Figure 8B. This high error was caused
by the scribbling-like behavior observed in Figure 7. Whereas
with sufficient precision of the sensory input, scribbling only
occurred in the completed part of the trajectory (Figure 8B),
a low precision of both signals caused the model to scribble
regardless of the presence of sensory input.

Next, we determined for each parameter constellation, how
often the model misinterpreted the presented shape as a different
shape. Specifically, we counted how often the training shape
closest to the produced drawing corresponded to a shape
that was not the intended shape. The percentages of such
misinterpretations are shown in Figure 9. Note that the tiles that
displayed an extremely high value in Figure 8were left out in this
analysis because an error of 0.3 or higher was found, indicating
that the drawn shape was not similar to any of the training
shapes. In these cases, the model failed to perform any type
of representational drawing; therefore, no misinterpretations
can occur.

The results in Figure 9 show that misinterpretations occur
at a higher percentage at the top-left corner of both matrices
(Figures 9A,B). This confirms that they are more likely to occur

if the relative reliance on prior information is stronger than that
on sensory information. Conversely, if the reliance on sensory
information is more precise than that on prior information,
the rate of misinterpretations even declines compared to the
balanced conditions. However, the performed strokes generally
tend to be less smooth (cf. middle right figure of Figure 7).

4.2. Physical Robot Implementation
Additionally to the simulation, the drawing study was also
implemented in the physical humanoid robot iCub to enable a
human to interact with the robot while observing the differences
in drawing behavior when the precision of the prior changes.

As shown in Figure 10, the human and the robot sit face-
to-face to each other; both have their own touch screen
in front of them on which the drawing of both agents is
displayed. The human starts the experiment by drawing the
beginning of one of the shapes that were learned by the
network. The robot, then, completes the shape. Internally, the
trained neural network is used for generating the completed
trajectory, as in the simulation experiments, and the iCub’s
arm movements are calculated accordingly and synchronized
with the line that gradually appears on the screen. To
reduce the implementation effort, the robot is not actually
touching the screen, however, by accordingly synchronizing
the movement, the observer is provided with the impression
that the robot is drawing the line by itself. In addition, on
a separate screen the internal representation of the neurons
of the network are displayed live during the robot’s drawing
(see the screen behind iCub in Figure 10A). As explained in
detail in Philippsen and Nagai (2020b), this figure visualizes the
“cognitive” mechanism that the robot applies when solving the
completion task.

In its current form, the system mainly serves demonstration
purposes, namely, to make the effect of the change of the
precision of the robot’s prior easily understandable for the
human observer. However, in the future, the system could
be used for conducting human–robot interaction experiments
of collaborative drawing with the purpose to investigate the
cognitive mechanisms of the human. This can be achieved by
switching the role of the human and the robot such that the
human is requested to complete the drawing of the robot.
While the currently used drawing shapes might be too complex
for the purpose of a systematic investigation, as the diversity
of child drawings on the stimuli indicates (Philippsen et al.,
2020), simpler drawing shapes might be applicable for this
purpose. For instance, a simple drawing task has been used
in Murata et al. (2019) to visualize cognitive characteristics
of a large group of people. Their study found correlations of
drawing behavior to psychiatric symptoms. Our setup might
be particularly useful for assessing developmental changes
and human neurodiversity with respect to social interactions
due to the additional factor of physical embodiment of the
system. For instance, the system could be used to extend the
iCub experiment of Mazzola et al. (2020) where the prior of
human perception (in form of the central tendency effect)
was measured in individuals interacting with the iCub in a
social situation.
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Figure 8 | Average mean square error of the network’s drawn shape to the shape that best matches the shape when comparing either the first 30 time steps

(presented part) (A) or the last 60 time steps (completed part) (B).

Figure 9 | Percentage of shapes that were misinterpreted as another pattern that was not the intended pattern, computed using (A) the first 30 time steps (presented

part) or (B) the last 60 time steps (completed part). Gray color indicates that this constellation led to random scribbling (cf. Figures 7, 8) such that the percentage

cannot be reliably computed.

5. INTERPRETATION OF RESULTS AND
CONNECTION TO CHILD DATA

In the presented analysis, we explored how gradual changes in
the sensory and prior precision affected the drawing behavior
of the computational model. We found that the completion
ability increased with higher precision of the sensory and prior
signal. The high precision of both signals is associated with
successful completion of representational drawings, whereas too
low precision leads to random trajectories that resemble the
scribbling behavior that young children sometimes display.

When we compare these findings to children’s drawings,
it seems that a gradual increase in the precision of sensory

and prior information over development could account for the
developmental change in children’s drawing behavior, ranging
from scribbling-like behavior at a young age to accurate
completion behavior later on. However, children’s behavior was
not limited to these two drawing styles. Instead, the drawings
were more diverse, including drawing styles such as tracing,
coloring, or drawing of seemingly unrelated patterns. As shown
in Figure 6, these drawing styles did not show any clear
correlation with the child’s age. Following the findings from the
computational model, some of these drawing styles might be
explained by an imbalance of sensory and prior information.
Specifically, the two extreme cases where either sensory or
prior precision is high and the other signal’s precision is low
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Figure 10 | The experimental setup of the demonstration of the system implemented on the iCub robot. (A) The human starts to draw a line and (B) the robot

completes the drawing.

Figure 11 | Illustration of the proposed developmental pathways that might account for the drawing behaviors observed in the child study. The green arrow shows a

parallel increase of sensory and prior precision, the red arrow illustrates how precision would increase with a hypo-prior tendency, the blue arrow with a hyper-prior

tendency. Examples of model results and child drawings representative for these cases are displayed.

reveals typical behavior patterns that could have their equivalent
in the children’s drawing data. With high sensory precision
but insufficient prior precision, the model showed scribbling
behavior but was able to trace the presented part of the trajectory.
Children who traced the presented stimuli, but did not show any
representational drawing, thus, could have overly relied on the
bottom-up signal while not making use of prior information. In
the opposite case, with low sensory but high prior precision, the
model was able to complete drawings but sometimes drew shapes
which did not correspond to the presented shape. Similarly,
children sometimes drew objects or shapes on top or next to the
presented stimulus that did not have an obvious connection with
the presented shape. One possible explanation for this tendency
is that children might have relied more strongly on their priors
and neglected sensory information in some cases.

Figure 11 summarizes these ideas. Developmental changes
observed in the child study (increase in completion and decrease
in scribbling), together with the simulations of the computational
model, suggest that there is a general trend across development
leading from low to high precision in both signals. Such a parallel
maturation of the precision of both modalities could, therefore,
constitute the optimal developmental pathway (green arrow in
Figure 11).

However, it is likely that the maturation of sensory and prior
precision does not always occur in parallel, as in the optimal
case. As a result, an imbalance might occur, causing the model
to over- or underestimate the precision of either the prior or
the sensory signal at certain points in the development. Previous
studies revealed inconclusive results regarding the maturation
of sensory and prior precision across various age groups
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(Thomas et al., 2010; Stone, 2011; Sciutti et al., 2014; Karaminis
et al., 2016), which leads to the possible explanation that each
child follows an individual pathway—an explanation that could
account for the diversity that is observable in children’s drawings.

Our simulations suggest that some of the displayed drawing
styles could be the result of a divergence from the optimal
developmental pathway, leading to a stronger reliance on prior
information (hyper-prior tendency, blue arrow in Figure 11)
or sensory information (hypo-prior tendency, red arrow in
Figure 11). Specifically, children in Philippsen et al. (2020) might
have applied different strategies when integrating prior and
sensory information. Some children drew figures that seemed
unrelated to the presented stimulus, relying more strongly
on their own priors, while ignoring the presented sensory
information. Other children might have relied more strongly on
the presented bottom-up information, which in our simulations
was associated with scribbling or tracing behavior.

In conclusion, our findings suggest that children’s
development leads them from low to high precision, and
that not only the relative but also the absolute precision of both
signals plays an important role and could be related to individual
drawing differences that are observable in children’s drawings.

6. CONCLUSION

In this study, we investigated how the precision of prior and
sensory signals influences behavioral outcomes in a drawing
completion task. A computational model based on the predictive
coding theory was employed to systematically analyze how these
two precision values may affect drawing. By comparing the
model’s behavioral output with drawings produced by children
aged between 2 and 8 years in the context of a similar task, we
propose a theory of how precision of prior and sensory signals
may develop with increasing age in children.

Our findings indicate that a gradual increase in the precision
of both signals could account for the decrease in scribbling and
the increase in the completion of drawings in the child study.
Moreover, different individual pathways in the development that
might lead to a temporary overweighting of either the precision
of the prior or of the sensory signal could account for some of the
individual differences that were observed in children’s drawings.
Therefore, the predictive coding theory and, more precisely,
changes in the precision of the prior and sensory signals, could
account for the developmental and individual differences of
children in the context of the presented task.

In the future, experimental studies are required that
systematically analyze the precision that children attribute to
prior and sensory information over their development to confirm
this hypothesis. Longitudinal studies are particularly important
in this regard to reveal whether individual children consistently
follow one of the proposed developmental pathways in Figure 11,
or instead show higher variability compared to adults, causing
the presence of hypo- and hyper-prior tendencies in the same
individual.

The novelty of this study is that it directly compared the data
obtained from the simulation with children’s drawing data. Both

the model and the child experiment used the same underlying
task design. However, whereas the child study was designed to
replicate the completion task of the computational model as
closely as possible, there are a number of differences between
these studies that should be acknowledged.

The first difference lies in the way that the model perceives
the world, compared to human perception. Specifically, for the
model, the first part of the picture was revealed continuously
as a trajectory, whereas it was presented to the children before
any action. This difference is caused by the nature of the
computational model that requires a recurrent neural network
at its core in order to be able to generate time-dependent
predictions and implement the ideas of predictive coding. This
design should be improved in the future to allow for a more
human-like perception.

A second limitation is that, in contrast to a child, the model
is not creative and cannot produce any other meaningful output
patterns than those for which it has been previously trained. As a
result, only a subset of the drawing styles that children displayed,
could be replicated by the network. For example, the model
always completes drawings in a similar way whereas children
could complete drawings in many different ways—a difference
not accounted for in this study. Children also sometimes colored
in the shapes, which is a behavior that cannot be easily simulated
within the current setting: the model displays scribbling behavior,
but it cannot be restricted to draw only inside a particular region
of the drawing plane.

Also, it should be noted that our interpretation of
the children’s drawing data constitutes only one possible
explanation. In particular, the task instructions that were
provided to the children were not strict: the children were
not explicitly asked to complete the drawings, but instead to
draw whatever they liked. Thus, it is possible that children that
did not complete the drawing, instead found other reasonable
interpretations of the task and created the drawings according to
this interpretation.

Finally, an important limitation is that the model cannot
direct attention to specific regions of the drawing. Therefore, in
the simulations, it was necessary to artificially differentiate two
cases: drawing on the first part of the drawing that was presented
to the model, and completing the second part without the
availability of any input. This computational design was chosen
to obtain a complete impression of the capabilities of the network.
However, because of this design, the computational model
always drew the full trajectory consisting of the presented part
and the completed part, whereas most children completed the
drawing without additionally tracing the existing lines, although
they could do so if they chose. Such differences between the
computational model and children’s behavior limit the degree to
which they could be compared and should be addressed in future
studies. For example, the child experiment could be modified to
fit the computational study more closely by letting the drawing
appear gradually on the screen, which might motivate children
to also display tracing behavior. It could also be considered
to analyze the model data analogously to how the child data
was analyzed in previous studies (Philippsen et al., 2020, under
review) to further verify the interpretation of this simulation
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and eventually strengthen the link between the child and the
model data.

Being based on the principle of predictive coding, these
results could also have a potential impact on gaining an
understanding of the mechanistic causes of neurodevelopmental
disorders. Recently, several studies suggested that an imbalance
in the integration of prior and sensory information might
constitute a root cause for developmental and psychiatric
disorders (Gonzalez-Gadea et al., 2015; Idei et al., 2018;
Sterzer et al., 2018; Lanillos et al., 2020; Philippsen and Nagai,
2020a). However, experimental evidence is not consistent. In
particular, a recent study with individuals with ASD did not
find any correlation between the usage of prior information and
autistic traits (Angeletos Chrysaitis et al., 2021). Our simulation
results suggest that the interplay of using sensory and prior
information might explain individual differences in behavior
observed throughout development, but it is a subject of future
study to assess whether our proposed method can elucidate
systematic differences between individuals with and without
ASD. Sterzer et al. (2018) suggested that the usage of prior
information might depend on the sensory modality involved
and the hierarchical level of processing, indicating that the
specific task design is crucial and could account for inconsistent
evidence. Our findings suggest that additionally developmental
stages play an important role, and should be considered carefully
in future research.

In conclusion, our study proposed a novel hypothesis on
the developmental pathways of children based on the predictive
coding theory. We demonstrated that the hypothesis is plausible
using a computational model that reflects the behavioral data of
children. Such a close connection between computational and
behavioral studies may be a key component of future research
as it opens up new approaches to study the underlying cognitive
mechanisms involved in child development.
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