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Multicentric Glioma: An Ideal Model
to Reveal the Mechanism of Glioma
Yong Yan*†, Wei Dai† and Qiyong Mei*

Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China

As a special type of glioma, multicentric glioma provides an ideal pathological model for
glioma research. According to the stem-cell-origin theory, multiple lesions of multicentric
glioma share the same neuro-oncological origin, both in gene level and in cell level.
Although the number of studies focusing on genetic evolution in gliomas with the model of
multicentric gliomas were limited, some mutations, including IDH1 mutations, TERTp
mutations and PTEN deletions, are found to be at an early stage in the process of genetic
aberrance during glioma evolution based on the results of these studies. This article
reviews the clinical reports and genetic studies of multicentric glioma, and intends to
explain the various clinical phenomena of multicentric glioma from the perspective of
genetic aberrance accumulation and tumor cell evolution. The malignant degree of a
glioma is determined by both the tumorigenicity of early mutant genes, and the stemness
of early suffered cells.
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INTRODUCTION

Gliomas are the most common primary malignant tumors in the brain, of which glioblastoma (GB)
accounts for 60-70% and is the most malignant type of gliomas, with a median survival time of only
12-15 months (1). It was once believed that a glioma is a homogeneous entity, with tumor cells
centered on the tumor nest and distributed in a scattered and radiating manner. However, the
tumor stem cell theory overturns this theory of tumor homogeneity and proposes that the tumor
population is more like a family (2, 3). Inside the tumor, there is also the differentiation of stem cells
into precursor cells at various levels, but due to genetic defects, they cannot differentiate into normal
mature neural or glial cells, which lead to the formation of tumors (4, 5). Glioblastomas mostly recur
in situ, which can be explained by the recurrence of tumor cells that have not been completely
removed by surgery and other treatments at the edge of the tumor. However, in a small number of
patients, ectopic recurrences in one or multiple sites also exist. It is true that some ectopic
recurrences can be explained by tumor migration along the white matter tract or by the spread of
cerebrospinal fluid, but there are indeed some ectopic recurrences that cannot be explained by
known metastasis pathways. This phenomenon is actually a form of multicentric glioma (MCG),
i.e., metachronous MCG.

Multicentric gliomas are gliomas that occur simultaneously or successively in multiple parts of the
central nervous system, and the lesions are not connected and cannot be explained by the existing ways
of tumor metastasis like white matter tract migration or cerebrospinal fluid spreading (6). In order to
explain the pathogenesis of MCG, there are many theories including de novo occurrence (7),
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metastasis (8), and stem cell origin (9). The de-novo-occurrence
theory believes that the lesions occur separately, and there is no
correlation in genetic background among them. The population
incidence rate of glioma is 6.6 per 100,000, so the probability of two
gliomas with completely unrelated genetic backgrounds in the same
patient is 4.4/109, and the probability of more than three
occurrences at the same time is almost zero. However, in fact,
MCG reported in the literature account for about 1-10% of central
nervous system gliomas (10–17), which is 6.6-66/107. The number is
much higher than the calculated data with the claim of the theory of
de novo occurrence. Themetastasis theory believes that other lesions
are transferred from an early lesion in some way. However, the
genomic analysis of multiple foci of MCG found that there are large
differences of genetic mutations among the foci, which cannot be
explained by the metastasis theory. The stem cell origin theory may
be a more reasonable explanation for the mechanism of MCG.
Neural stem and progenitor cells are distributed in neural stem cell
pools such as the subventricular zone (SVZ) and subgranular zone
(SGZ) (18). In normal conditions, these cells differentiate into
various neural progenitor cells, and finally into mature neurons or
glial cells (19). The stem-cell-origin theory believes that one or more
critical gene mutations may have occurred in some stage of neural
precursor cells. In the subsequent migration and differentiation
process, these genetically defective precursor cells gradually
developed into various gliomas (4, 5). It is speculated that the
migration and differentiation are in a single direction in most cases,
so most gliomas are solitary; but occasionally, the process is in
multiple directions, thus leading to the appearance of MCG. For
many years, people have been looking for key genes or molecular
targets for tumorigenesis from the perspective of gene mutation and
abnormal expression. Although high-throughput genetic screening,
survival analysis and bioinformatics techniques can be used to find
some early mutations, such as IDH1/2 (20–23), a considerable
proportion of gliomas have not been found to have a clear source
mutation. Multicentric glioma is a special pathological
phenomenon. If the hypothesis that different lesions of MCG
share the same source mutation is established, then the greater
the difference in genetic background among the lesions, the less the
shared mutation genes will be. Therefore, it is more likely to find the
source mutation in these shared mutation genes. For this reason,
MCG provides us with an excellent model, which realizes the early
screening of shared mutations between lesions through natural
mechanisms, which may provide a shortcut for discovering
mutation genes in a very early stage of glioma-genesis. As an
ideal pathological model, multicentric glioma deserves further
understanding and attention.
DEFINITION, CLASSIFICATION AND
EPIDEMICS OF MCG

Gliomas with multiple lesions in the brain need to differentiate
between multifocal glioma (MFG) and MCG. In the former,
multiple lesions can be explained by known metastasis pathways,
such as white matter fiber tracts, cerebrospinal fluid pathway, or
local metastasis; in the latter, the relationship between multiple
Frontiers in Oncology | www.frontiersin.org 2
lesions cannot be explained by the above ways (6, 8). Metastatic
lesions have a genetic background of high consistency, while the
genetics of multicentric lesions have more differences.

The definition of MCG has been developing. The disjointness
of the lesions on the MRI FLAIR was used to exclude MFG (10,
24, 25). In the future, the diagnosis of MCG or MFG may mainly
rely on molecular genetic studies. By analyzing the molecular
genetic background of multiple lesions in a certain case, an
individualized molecular genetic evolutionary tree can be drawn,
so that all lesions can be marked at different positions in the
evolutionary tree. The definition of MCG and MFG mainly relies
on the position on the molecular genetic evolutionary tree, rather
than the imaging or anatomical connection. When the results of
molecular genetics and imaging anatomy appear to be
contradictory, the former should be followed instead of the
latter [as case reported by Reis et al. (7) and Akimoto et al.
(26)]. The boundary of MCG and MFG may become blurred,
and between the two extremes there will be some gray areas that
are difficult to clearly classify.
INCIDENCE

The incidence of MCG is reported between 1-10%. Salvati et al.
summarized 14 years of glioma cases, and found that MCG
accounted for about 2% of gliomas diagnosed and treated in the
same period (10). There are many reasons why it is difficult to
determine its accurate incidence. One is that genetic testing is not
yet popularly used to distinguish MCG from MFG; the second is
that some MCG are metachronous, which may be missed due to
loss to follow-up; the third is the neglect of small ectopic lesions.
Lasocki et al. analyzed the magnetic resonance images of patients
with GB and found that 6% of the cases had small multicentric
non-enhancing brain lesions, and a part of them progressed to
new lesions subsequently (27).
TIME AND SPACE

Multiple lesions may exist simultaneously at the time of
diagnosis (synchronous MCG), or they may appear one after
another in a period of time (metachronous MCG). The longest
interval between the appearance of lesions reported is 22
years (28).

Interestingly, metachronous MCG has a longer survival time
than ordinary solitary glioma [median survival time 353 days vs.
234 days, p<0.05 (29)]; but once ectopic recurrence occurs, the
survival time is similar to that of synchronous multicentric
glioma, with a median survival time of only 7 months (25). In
our clinical experiences, we also find patients with ectopic
recurrences usually have a longer survival time. In some cases,
even when the tumor progresses, there is no tumor recurrence at
the original site, but a tumor growing at a new site (Figure 1).
We speculate that this may be because the location of the
primary lesion is easier to obtain more thorough surgical
resection, or it is more sensitive to radiation or chemo-therapies.
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FIGURE 1 | A case of metachronous multicentric glioma. The patient underwent MRI for headache and found a tumor in the left temporal insula (A, B). She was
given partial resection of the tumor. Pathology showed GBM. Local radiation and temozolomide based chemotherapy were given after surgery. The tumor
completely regressed in MRI 1 year after surgery (C, D). However, in follow-up 1.5 years after surgery, it was found that the patient had a recurrent lesion in the left
caudate head and insula, and an ectopic lesion in the midbrain tectum (E, F). On sequential T2 and FLAIR MR images, there was no connection between the lesion
in the midbrain tectum and in the right basal ganglia. In addition, cytologic test of CSF and MR of the brain and spinal cord did not find there was any evidence of
CSF dissemination. Therefore, the lesion in the midbrain tectum is considered as a metachronous multicentric glioma in contrast with the initial tumor. The patient
underwent ventricular-abdominal shunt surgery to relieve hydrocephalus and was given temozolomide chemotherapy again. She is still under follow-up (21 months
after tumor resection). (a,c,e, MRI of T1 enhanced signal; b, d, f, MRI of T2 signal).
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At the age of onset, although most MCG occur in adults aged
30-70, they can also occasionally occur in children (8, 30–32).

Similar to solitary gliomas, MCG can occur in various parts of
the nervous system, including supratentorial (11), subtentorial and
introspinal (33–35). The most common site is supratentorial. It can
involve left, right or both cerebral hemispheres. The probability of
multiple lesions on one side is about twice that of bilateral (10).
PATHOLOGICAL TYPES

The common pathological types of MCG include glioblastoma
multiforme (GBM), anaplastic astrocytoma(AA), and low-grade
astrocytoma, of which GB is the most popular. The 2021 WHO
Classification of CNS Tumors has cancelled the terminology of
primary/secondary GBM and AA, and substitutes them with
Glioblastoma, IDH-widetype, or Astrocytoma, IDH-mutant,
grade 3 and 4. However, due to most of the cases of MCG are
reported before the publication of the new classification, the
terminologies of GBM and AA are continued to use here. Most of
the lesions have the same or similar pathological grade, such as
GB, GB combined with AA, or all low-grade astrocytoma, but
there are also a few cases diagnosed as high-grade glioma
combined with low-grade glioma. In these cases, the median
progression-free survival (PFS) time is 9 months (36), which is
similar to high-grade MCG. Special types include epithelioid GB
(37), optic glioma (37–39), ganglion glioma (40, 41), pilocytic
astrocytoma (28, 29), and oligodendroglioma (28) (clinical and
pathological features are summarized in Table 1).
PROGNOSTIC FACTORS

Pathological grading is the most important prognostic factor for
MCG. The median overall survival (OS) time for high-grade
MCG is 8 months (25); while the median progression-free
survival (PFS) time is 30 months for the low-grade (36). It has
been confirmed that surgical resection of at least one lesion is an
independent factor for good prognosis for high-grade MCG (25,
60, 62, 68, 75, 76), and other factors that may affect the prognosis
include KPS score (76), younger age (75), receiving radiotherapy
(75), and chemotherapy (25). For low-grade MCG, surgery,
radiotherapy, or chemotherapy has been found to have no
significant effect on the prognosis (36).
GENETIC BACKGROUND

Abou-EL-Ardat et al. (9) conducted a detailed genetic analysis of
the multiple lesions of multicentric GBM, and made the
following important findings: First, the genetic abnormalities of
the lesions involve RTK/PI3K, TP53, or RB pathway, as well as
EGFR and CDKN2A/B, indicate that these pathway molecules
play a key role in the development and evolution of GB. Second,
the abnormalities of these pathway molecules are all at a
Frontiers in Oncology | www.frontiersin.org 4
relatively late position in the development of the disease and
are not the original genetic events, and only the deletion of the
PTEN and the mutation of the TERTp are very early genetic
events shared among all lesions. This study shows that,
compared with low-grade glioma, the gene mutations involved
in the early stage of GB have a stronger tumorigenic ability, and it
involves two key genes to activate the disease process which is in
line with the “two-hit hypothesis”. Unfortunately, this study did
not use whole-genome sequencing, so it is impossible to
determine whether there were earlier genetic events before
PTEN deletion and TERTp mutation.

A study on the genetic background of low-grade MCG found
that IDHmutations are very early events of genetic abnormalities
in 3 clinical cases (two of them are the first events, and the other
is the second event following the point mutation of TP53 in the
germ cell line) (70). The results of this study show: 1. The use of
genetic analysis in MCG can effectively screen the source gene
mutations. 2. Some low-grade MCG share the same source
mutations as solitary glioma. 3. The possibility does exist of
other earlier genetic events before IDH1 mutations. The question
that this study did not solve is, for low-grade gliomas that are
negative for IDH1/IDH2 mutations, what is the source gene
event? In another study, using immunohistochemistry, in 14
cases of MCG (including 4 cases of multicentric LGG), no IDH1-
R132H mutation was detected (77), suggesting that some MCG
could have other pathogenic mutations of origin.

When making traceability study of the genetic mutations in
glioma with MCG, an unavoidable question is, whether MCG
has universal significance or just represent a small special
subtype of glioma. Considering clinical data, MCG is similar to
solitary glioma in terms of age of onset, sex ratio, tumor location
and pathological type. Current genetic studies have not found
unique mutations in MCG comparing with solitary ones (9).
Therefore, it is supported by many authors that the occurrence of
MCG is more due to changes in cell behavior rather than specific
gene mutations. On the other hand, considering MCG as a
group, some genetic features were found in them that are
different from solitary gliomas, such as different promoter
methylation and gene expression patterns (78, 79). However,
the different expressed genes found by now are not specifically
mutated or expressed in MCG, and the difference of their
expression pattern is possibly because MCG represents a
special stage in the progression of glioma. Moreover, for
metachronous MCG, the initial lesion presents as single and
has the same manifestations with solitary gliomas. Therefore,
although MCG have their particularities, MCG may still share
the same source of genetic aberrance with solitary gliomas, and it
still have universal significance to make traceability study of the
gene abnormalities in MCG.

The 2021 WHO Classification of CNS Tumors has included
pediatric-type glioma into the scheme of gliomas. However, due
to most of the clinical and genetical studies of MCG reported are
focusing on adult patients, in the following, we will stress on the
discussion of adult-type diffuse glioma. The terminology of
glioma in the following paragraphs, is mainly referred to this
type of glioma.
June 2022 | Volume 12 | Article 798018
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TABLE 1 | Clinical features and genetic aberrance of MCG reported in literature.

n
)/

Genetic aberrance Source
mutations

na na
na na
na na
na na
na na
na na
na na

21– na na

0 na na
na na
na na
TP53, PTEN, EGFR, p16 deletion na
na na
na na
na na

) na na

na na
na na
na na
na na
na na
MGMT, CD133 na

4 loss of 19q na
na na
na na

8 syn-, nf-, TP53 - na
na na

1- IDH1 mutation na

yr BRAF amplification in 1, BRAF
V600E mutation in 1, IDH1 R132H
in 1

na

6 1p/19q loss, 10q and 7p loss,
IDH1 mutation

na

na na
MGMT,1p19q mutations in 1 na

4 GG: IDH1 wildtype;
LGA: PDGFRA, APC(E582A),
CHEK2, ETV6, MLL2, SDHB,
SF3B1

na

8 na na
na na
TP53, EGFR na
TP53 R175H, HDAC2, MARCKS,
HDAC2A/2B deletion, MTSS1
loss, MET amplification, EGFRvIII
mutation

na

2 IDH1 mutation, with no 1p19q
codeletion;
IDH1 mutation, with 1p19q
codeletion

na

na na
PTEN, TP53, EGFR, and
CDKN2A/B

TERTp in 5,PTEN in 2,
EGFR in 1,CDKN2A in
1

IDH1 nuclear positive na
MGMT,EGFR;MGMT na

yr
r)

IDH1,TP53,ARTX IDH1 R132H in 2,
TP53 in 1

na na
TERTp na
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S/M
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and rang
months

Solitare et al. (42) 1962 1 f 15 na DA 2 r n n 60
Batzdorf et al. (6) 1963 2 m2 44/62 na GBM1/AA1 4/3 r2 y2 y2 24/30
Solomon et al. (43) 1969 1 f 32 S OA&DA 2&2 r y n 36
Chadduck et al. (44) 1983 1 m 63 S GBM 4 b y n 5
Kato et al. (45) 1990 1 f 59 S AA 3 r y n 1
Pell et al. (46) 1991 1 m 11 S GBM 4 b y n 1
Philippon et al. (47) 1992 1 f 53 na PA&GBM 1&4 y n n 8
Mamelak et al. (48) 1994 5 m4/f1 11 (3–43) M5 PA4,O&PA1 1,2&1 r3/b2 y5 y3/n2 all alive 30 (

37)
Sim et al. (49) 1999 1 f 11 S O&PA 2&1 r n n alive at 3
van Nielen et al. (50) 1999 1 m 28 S DA 2 b y n Alive at 6
Franco et al. (51) 2000 2 f2 39/52 M/S GBM/DA 4/2 r/b y/n y/n 20/16
Reis et al. (7) 2001 1 m 54 M AA&GBM 3&4 r y y 10yr
Zamponi et al. (8) 2001 1 m 12 S AA 3 r y n na
Synowitz et al. (38) 2002 1 m 68 S GBM 4 r y n 0.5
Jawahar et al. (52) 2003 1 f 73 M GBM 4 b n n 6
Salvati et al. (10) 2003 25 m15/

f10
53(31-68) S21M4 GBM18/AA7 4/3 r15/b10 y21/n4 y19/n6 8(0.5-18

Kaku et al. (53) 2004 1 m 45 na AA 3 r y y Alive at 5
Saikali et al. (54) 2005 1 f 30 S PA 1 r n y 36
Iza et al. (55) 2006 1 f 62 M GBM 4 r y y 26
Ampil et al. (56) 2007 1 na 56 S AA 3 b y n 2
Tsutsumi et al. (31) 2008 1 f 8 M DA&GBM 2&4 r n y 5
Colavolpe et al. (57) 2008 1 m 44 S GBM 4 r n y 18
Vergani et al. (58) 2009 1 f 23 S DA&O 2&2 r n y alive at 8
Salunke et al. (59) 2010 1 m 50 S GBM 4 r y n 18
Hassaneen et al. (60) 2011 9 m7/f2 48(na) S5M4 GBM 4 r9 y5/n4 y5/n4 12.9(na
Sakai et al. (61) 2011 1 m 20 S PA 1 b n n alive at 4
di Russo et al. (62) 2013 18 m8/f10 66.5(37-78) S15M3 GBM14/AA4 4/3 r18 y7/n11 y17/n1 10(4-29
Terakawa et al. (63) 2013 5 m3/f2 32(23-35) S O3,DA1,O&DA1 2,2,2&2 r5 n5 n5 all alive 30(

138)
Kanoke et al. (28) 2013 1 m 30 M PA&OA 1&2 r y y alive at 14

Garcia et al. (64) 2013 1 f 38 S O 2 r n n alive at 3

Wan et al. (65) 2014 1 m 47 M GBM 4 r y y 3
Yan et al. (25) 2015 5 m4/f1 56(38-70) S4M1 GBM5 4 r5 y4/n1 y4/n1 7(4-30)
Sridharan et al. (40) 2015 1 m 49 S DA 2 r n y alive at 2

Ma et al. (41) 2015 1 m 20 S GG&PA 1&1 r n n alive at 4
de Eulate-Beramendi et al. (33) 2016 1 f 83 S GBM 4 r n n 0.5
Inoue et al. (66) 2016 1 m 27 S GBM 4 b y y 9
Schroeder et al. (67) 2016 1 m 47 S GBM 4 r y y 12

Corrivetti et al. (68) 2016 1 m 41 S DA 2 r n y alive at 1

Cabrera-Aldana et al. (34) 2017 1 m 40 S GBM 4 b n n 1.5
Abou-el-ardat et al. (9) 2017 6 m5/

f1
70 (56–74) S6 GBM 4 na na na na

Grosu et al. (69) 2017 1 m 30 S OA 2 b n n 0
Picart et al. (24) 2018 2 m 61-83 S2 GBM 4 b2 n2 n2 1.5(1-2)
Hayes et al. (70) 2018 4 m3/f1 29(21-44) S3/M1 DA2,DA&AA1,

O&DA2
2,2&3,2&2 r4 y2/n2 y2/n2 all alive 7.2

(5.7yr-10y
Lahmi et al. (71) 2019 3 m3 63(58-65) na GBM 4 na y3 y3 5(4-7)
Kohno et al. (37) 2020 1 m 78 S Epithelioid GBM 4 r y y Alive at 6
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EARLY EVENTS OF GENETIC
ABERRANCE IN GLIOMA

A mutation in IDH1/2 is considered as an early event in glioma-
genesis. Point mutations in the IDH1/2 gene can cause changes
in the activity of NADP+-dependent isocitrate dehydrogenase
and cause the accumulation of abnormal metabolites, leading to
the occurrence of Astrocytoma, IDH-mutant, grade 2-4 (80).
IDH mutations are often accompanied by TP53 mutations,
suggesting that there may be some interactions between them.
IDH1-R132H is the most common type of IDH1 mutation,
accounting for 90% of all IDH1 mutations, which is related to
the concentration of metabolites produced by this site mutation
that is just conducive to tumor cell formation (22).

TERTp mutation is an early event in the pathogenesis of GB
(81). Normal telomere length is considered to be an important
limit for controlling the number of cell replications. Point
mutations in the TERT promoter region can increase the
transcription of TERT enzyme, extend the telomere length of
cells, and enable tumor cells to gain unlimited replication. In
addition to the TERTp mutation, Alpha thalassemia/mental
retardation syndrome X-linked (ATRX) or death-domain
associated protein (DAXX) have been shown to underlie a
telomere maintenance mechanism not involving telomerase. It
has been reported that 83% of primary GBs are associated with
increased TERT activity (82). In addition, cancers generated in
tissues with relatively low rates of self-renewal, including
melanomas, liposarcomas, hepatocellular Carcinomas,
urothelial carcinomas, squamous cell carcinomas of the tongue,
medulloblastomas, are also accompanied by increased TERT
activity (83).

PTEN loss may also be at the source of glioma. In some
animal experiments, knocking down PTEN in neural precursor
cells combined with changes in the expression of other key genes
can induce gliomas (84). A study has reported PTEN loss as an
early event in whole exome and transcriptome multi-focal
sequencing of a case of diffuse intrinsic pontine glioma (85).

It should be pointed out that there are still many gliomas that
have not clarified with clear early genetic events. Moreover, the
occurrence of tumors may be an individualized phenomenon.
For each tumor, its origin has some common features, but there
will be some unique mutations. It will help to find these early
mutations by molecular genetic evaluation and by analyzing
evolutionary relationship between different foci in individual
case. Multicentric gliomas will undoubtedly be of great help to
this kind of researches.
GENE MUTATION, CELL STEMNESS AND
GENESIS OF GLIOMA

Promoting the expression of some oncogenes or silencing some
tumor suppressors by transgene technologies could lead to the
formation of astrocytomas in vivo in animal models. The
oncogenes that have successfully induced high-grade
astrocytoma include Ras, Akt, EGFR, PDGFR, and often in
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combination with mutations in tumor suppressors such as Ink4A
or Arf (86). The tumor suppressor genes used in animal models
include NF1, TP53, and PTEN (84, 87, 88). Mutations of the
genes mentioned above are frequently found in astrocytomas and
glioblastomas. The dysfunction of the genes could disrupt cell
cycle and apopsis regulation (INK4A, TP53, Arf), and growth
factor receptor signaling (PTEN) (89). Patients with mutation of
NF1 in germline are predisposed to suffer from astrocytoma,
neurofibroma, and GB (90). The fact that changing the
expression of oncogenes or tumor suppressor genes could
introduce the formation of glioma in normal brains in animal
models, suggests that if the tumorigenic ability of the mutations
reaches to a certain level, it could cause glioma genesis in
normal brain.

The mutations of some genes that manipulated by human
could lead to glioma genesis, doesn’t mean that they are also “start-
up” mutations in the natural status of glioma. What needs to be
further answered is, in the natural pathological conditions, which
mutations play a key role at early stages in causing normal cells to
Frontiers in Oncology | www.frontiersin.org 7
transform into tumor cells. A study has found that in the tumor-
free SVZ region of GB patients, some neural precursor cells carried
shared driver mutations with their matching tumor, including
TERTp mutation and single nucleotide variants of TP53, EGFR,
PTEN, and/or RB1 (91). Studies based on clinical cases of MCGs
have found that certain mutations, such as IDH1/2, TERTp,
PTEN, and TP53, EGFR, CDKN2A in a less proportion, are
more often to occur at early stages of tumor evolution
(Figure 2) (9, 70, 71). We suppose that source mutations in
normal cells could lead to the mutation and dysfunction of
downstream oncogenes or tumor suppressors through
accumulations of gene mutations, and the course is
accompanied with the process of glioma genesis and development.

Another phenomenon revealed by animal model experiments
is, compared with mature cells, stem and precursor cells are
easier to be transformed into tumor cells. High-grade gliomas
can be induced by silencing the expression of TP53, Nf1 and
PTEN in neural stem/progenitors in the SVZ or SGZ of mice
brains (84, 87, 88). When silencing the expression of these genes
FIGURE 2 | Hierarchical structures of the mutations revealed by studies based on MCG cases. In low grade glioma (including diffuse astrocytoma and
oligodendroglioma), mutations of IDH, TP53 and ARTX frequently lies in the higher levels of the hierarchy; while in GB, TERTp, PTEN loss, EGFR, and CDKN2A are
more frequently seen in the higher levels of the mutational hierarchy.
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in mature neural cells in non-neurogenic brain regions (such as
cortex and striatum), different studies have drawn different
conclusions: some studies have found it cannot form gliomas
(84); while other studies have got the opposite results (88). This
may be explained by the different techniques and experimental
conditions in the experiments. However, these results at least
suggest that, it is more difficult to induce mature neural cells into
glioma cells compared to neural stem cells and precursor cells.
We speculate that whether a normal cell can be transformed into
a tumor cell is related to the stemness of the target cells and the
tumorigenic ability of the mutations. Compared with mature
cells, stem and precursor cells are more likely to be affected by
tumorigenic mutations and transforms into tumor cells.
However, when the tumorigenic ability of the mutations
reaches a certain level that is strong enough, even mature cells
can be induced into tumor cells as well.
MIGRATION OF NEURAL STEM CELLS
AND ITS ROLES IN THE GENESIS OF MCG

The neural stem cell pool of adult human is mainly located in the
SVZ(18, 92–95). Inhumanperiventricular heterotopia, anX-linked
dominant genetic disease, the normalmigration and differentiation
of neural stem cells in this area is affected and thus forms many
tumor nodules around the ventricles, combined with hypogenesis
and smaller sizes of the corpus callosum, brain stem and cerebellum
(19, 96–98). This proves from the side that the SVZ is the source of
stem cell migration and differentiation in vivo. Microstructure of
SVZ consists of several layers. The ependyma forms the first layer,
belowwhich is the gap area lacking cells. This area in rodents is rich
of precursor cells and the activation, replication, and division of
these cellsmainly forms neuroblasts of the rostral migratory stream
(RMS) (99–104). In human embryos and infants, similar activated
cells exist in this area, but in human adults, this area forms an
oligocellular zone (105).Below the gap is adensebandof cells rich in
astrocytes, which are considered to be the main source of adult
neural stemcells (106). Someastrocytesof this layerwill extend their
synapses to theependymalcell layer and receivemolecular signals in
the cerebrospinalfluid (CSF) (107–109). In addition, there are some
axons and synapses from distant neurons distributed in this layer
and contacting with the astrocytes (92). Therefore, it is speculated
that the activation of neural stem cells may be regulated by the
neuro-psychological-endocrine network. Below the astrocyte layer
is a transition zone lacking cells, and then to the outside is the brain
parenchyma (92, 108).

Based on the reported distribution of MCG lesions, it is
speculated that the following migration pathways may exist in
the SVZ area: 1. Mutations occur in some neural stem cells or
precursor cells in SVZ, making them proliferate and form nest
there; 2. Mutated precursor cells of the nest in SVZ migrate and
differentiate along white matter fibers and blood vessels (110,
111) in one or more directions, forming solitary or multiple
gliomas in the brain parenchyma; 3. Neural stem cells in the
subependymal zone and the migration site of the cortex exist
mosaic-like correspondence (112), which may explain why MCG
Frontiers in Oncology | www.frontiersin.org 8
in different parts of the brain have various migration patterns
(113); 4. The nest grows and spreads along the subependymal
area, gradually involving more subependymal areas. 5. The
mutated neural stem cells in the nest migrate into the CSF,
colonize with the drift of the CSF to other areas of the ventricle
wall, and form a new nest in the local SVZ (Figure 3).

The above speculated MCG migration pathway is supported
by some experimental and clinical evidence. A study detected
early genetic changes homologous to the tumor in neural stem
cells in the SVZ that were not invaded by tumors, suggesting that
there are abnormal neural stem cell nests in the SVZ that is not
yet invaded by tumors (91). By analyzing the single-cell
landscape of shared and tumor-private mutations in the tumor
and early nests in SVZ of patient, they found that the clonal
evolution of cells harboring driver mutations in the direction
from SVZ to GB instead of the opposite direction. Using a mouse
model of TP53, PTEN and EGFR mutations in NSCs from the
SVZ through genome editing, which were recurrent driver
mutations found in the tumor-free SVZ tissues from the
patients with GB, the early abnormal neural stem cell nests
were induced in the subependymal zone, and glioma cells could
be detected in multiple areas in the mouse brain. In addition, to
examine the possibility of whether cells harboring shared driver
mutations spread to the SVZ at a very early stage of disease, the
authors introduced TP53, PTEN and EGFR mutations into the
cortex. After the stereotactic injection, neither spread of cells to
the SVZ nor statistically significant proliferation of cells was
noted, compared to the mouse model carrying driver mutations
in SVZ. The findings suggest that in pathological conditions of
glioma patients, the nests of abnormal neural stem cells are
formed at SVZ and can migrate to multiple areas in the brain
parenchyma to form gliomas, instead of that the nests formed at
cortex and migrate to the SVZ. In clinical cases, changes in MRI
T2 or FLAIR may indicate the migration trajectories of mutant
cells. In some cases, there are obvious abnormal signals from the
ventricle wall to the cerebral cortex on MRI T2 or FLAIR, which
may reflect the migration path of the mutant cells from SVZ to
the cerebral cortex (Figure 4). Although there is no direct
evidence that mutated neural stem cells can migrate with the
CSF, neural stem cells can also be isolated and cultured in the
CSF of the human embryos and premature infants (114–116).
This shows that neural stem cells can exist in the CSF in the early
stages of life. In addition, in the CSF of patients with GB, a
complete genome homologous to the tumor was detected and
shared the same early gene mutations (including IDH and
TERTp) with the tumor (117). Therefore, we speculated that in
a tumor state, some mutated neural stem cells may regain
abilities in early stages of life, making them migrate into,
survive in and may spread with the CSF. This can explain
some bilateral or supra-subtentorial MCG.
DISCUSSION (OUR PERSPECTIVE)

In the past, the histopathological grade of the tumor was usually
used to reflect the degree of malignancy of the tumor. However,
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for some gliomas with the same pathological grade, the tumor
characteristics and patient survival period can be very different.
For example, multicentric GBs have a worse prognosis than
solitary ones. What’s more, the IDH1/2 mutant type has a better
Frontiers in Oncology | www.frontiersin.org 9
prognosis than the IDH1/2 wild type in glioma with the same
pathological grades. These evidences show that in addition to the
histopathological grade, there are other factors involved in
determining the degree of malignancy of glioma.
FIGURE 3 | The relationship between the mutation of neural stem cells in the subependymal zone and the occurrence of multicentric glioma. The rectangular box on
the left shows the normal subependymal area that is not affected by the tumor, and the oval area on the left shows the normal microstructure of the subependymal
area. From the ventricle to the brain parenchyma, there are ependymal layer (layer 1), gap zone (layer 2), astrocyte zone (layer 3), loose layer (layer 4), and brain
parenchyma (layer 5). It can be seen that neural stem cells differentiate into less primary progenitor cells, and the local cell hierarchy is regular. The rectangular frame
on the right shows the location of the mutant neural stem cells, and the oval area on the right shows the microstructure of the area. As shown in the figure, early
gene mutations occurred in neural stem cells in this area, leading to active cell proliferation and differentiation into progenitor cells. The primary progenitor cells
migrated along the white matter fibers and blood vessels into the brain parenchyma, replicated, differentiated, and accumulated mutations to form tumors. The arrow
shows the migration pathway of the mutant progenitor cells: the green arrow shows the migration into the brain parenchyma, the red arrow shows the local
migration along the subependymal zone, and the blue arrow shows the migration along the cerebrospinal fluid (to be verified). (Yellow cells in layer 1, ependymal
cells; blue cells in layer 2, neural stem cells; pink cells in layer 3, progenitor cells; brown-yellow cords in layer 3 and layer 4, axons and synapses of distant neurons;
green dots, chemical transmitters in cerebrospinal fluid).
FIGURE 4 | glioblastoma of a 13-year-old adolescent. On the MRI FLAIR (A) and T2 (B), abnormal signals can be seen spreading from around the occipital horn of
the ventricle to the occipital cortex. These abnormal signals may reflect the process of the migration, replication and differentiation of the mutant precursor cells from
the subependymal zone to the mature brain lobe. The patient underwent a subtotal tumor resection. Postoperative pathology revealed GBM. Immunohistochemistry
showed Ki67 20%+, IDH1-, TP53 weakly+, Olig2-, H3K27M-, H3K27me3+, and ATRX partially missing. The patient was given local radiation and temozolomide
based chemotherapy after surgery and is currently under follow-up (3 months after surgery).
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Some clinical phenomena of glioma suggest that the
malignant degree of glioma is related to the stemness of the
precursor cells of origin. The phenomenon of gliomas of WHO
grade I and of some grade II may be cured after surgery, indicates
that the source mutation may occur in late progenitor cells or
even mature glial cells in these gliomas. On the other hand, the
existence of multicentric low-grade gliomas indicates that even in
low-grade gliomas, the source of mutation can appear in neural
stem cells or early progenitor cells. This may explain why diffuse
astrocytomas are difficult to be cured, and will relapse and
progress. The aggressiveness and relapsing tendency of high-
grade gliomas and the fact that they are more likely to have
multicentric lesions than low-grade gliomas suggest that the
source of high-grade gliomas may originate from neural stem
cells or early precursor cells. Theoretically, stem cells survive for
a long time and repeatedly replicate and divide, which can lead to
accumulation of genetic mutations, and therefore are more prone
to accumulate tumorigenic mutations. With growing of age or
under some conditions of chronic inflammations, the replication
of stem cells increases, which can explain why malignant tumors
is more likely to occur in the elderly or in patients with some
chronic inflammatory conditions (such as chronic hepatitis and
gastritis). In the nervous system, with age increases, the number
and replication activity of neural stem cells also decline, which
may explain why the incidence of glioma has a curve with age of
first rises and then declines. The incidence of GB peaks at the age
from 40 to 60, and decreases in the elderly.

In addition to cell stemness, some clinical and laboratory
evidence also suggests that the malignancy of glioma is related to
the tumorigenic ability of early mutant genes. IDH1/2 mutation
can cause some low-grade gliomas and secondary GBs, which
indicates that certain low-tumorigenic mutations can cause
gliomas with a relative slower evolution tendency. The
phenomenon of some low-grade gliomas will gradually
progress to high-grade gliomas may reflect the gradual
accumulation of genetic mutations during tumor progression.
When key genes closely related to the cell cycle and signal
pathways are involved, the malignancy of tumors will increase
significantly. The mutations of the primary GB may occur in key
genes related to the cell cycle or signaling pathways at an early
stage, so the tumor shows high malignancy even at the early stage
of the tumor. What’s more, according to the results of some
studies, at least two key gene are involved in early stage of GB
[e.g. TERTp mutation and PTEN deletion (35)], which is
consistent with the hypothesis of “twice hits” in the
mechanism of malignant tumorigenesis.

We believe that the malignant degree of a tumor is
determined by the histopathological grade, the stemness of the
cells of origin, and the tumorigenic ability of the early mutant
genes. If the above three factors are represented by the X, Y, and
Z axes, a three-dimensional coordinate system can be drawn. The
diagonal line passing through the Origin represents the degree of
malignancy of the tumor, which is negatively correlated with the
median survival time of patients (Figure 5). With the
improvement of the tumorigenic ability of the mutant gene
and the increase of the stemness of the tumor-originating cells,
Frontiers in Oncology | www.frontiersin.org 10
the degree of malignancy of the tumor gradually increases, and
the median survival time of patients gradually shortens. Different
types of gliomas can be marked at different positions in the
coordinate system. If a vertical line is drawn from their position
to the diagonal line passing through the origin, the projection
position on the diagonal line can reflect the malignant degree of
the tumor. Highly differentiated gliomas, such as WHO grade I
gliomas, may originate from precursor cells with a low stemness,
and their early mutant genes have low tumorigenicity, so their
positions in the coordinate system are near from the origin, and
the malignancy of the tumor is low. Astrocytoma, IDH-mutant,
grade 4 (also called as secondary GB in old classification systems)
has IDH1/2 mutations with low tumorigenicity. Compared with
GB, its early mutant genes have lower tumorigenicity. Therefore,
it is marked on the lower side of primary GB in the stemness axis
of the coordinate system. Although the pathological grades of
secondary GB are the same as primary ones, their projection on
the diagonal is nearer to the origin, reflecting a lower degree of
malignancy. Compared with solitary gliomas of the same grade,
MCG may have similar tumorigenicity of the mutant genes, but
the stemness of the originate cells is higher. Therefore, their
FIGURE 5 | The relationship among the grade of gliomas, the tumorigenicity
of mutations, and the stemness of originate cells. The malignancy of glioma is
determined by the tumorigenic ability of gene mutation and the stemness of
originate cells. With the improvement of the tumorigenicity of the mutant
genes and the increase of the stemness of the originated cells, the grade of
the tumor increases. Compared with solitary gliomas of the same grade,
MCG have similar tumorigenicity of mutant genes, but the stemness of the
originated cells is increased. The diagonal of the cube signifies poor
prognosis. Along the direction far from 0, the prognosis of patients will be
worse. (X axis: stemness of originated cells; Y axis: tumor grade; Z axis:
tumorigenicity of mutant genes. 1, neural stem cell; 2-4, precursor cells; 5,
mature neural cells; 6, glioma of WHO grade I; 7, diffuse astrocytoma/
oligodendroglioma, IDH mutant, grade 2; 8, diffuse astrocytoma, IDH wide
type, grade 2; 9, MCG, grade 2; 10, diffuse astrocytoma/oligodendroglioma,
IDH mutant, grade 3; 11, diffuse astrocytoma, IDH wide type, grade 3; 12,
MCG, grade 3; 13, diffuse astrocytoma, IDH mutant, grade 4; 14,
glioblastoma, IDH wide type, grade 4; 15, MCG, grade 4.).
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projection position in the diagonal line is farther form the origin
compared with solitary gliomas. This explains why the
prognosis of MCG is worse than that of solitary gliomas of the
same grade.
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