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Abstract: Aquaporins are a family of transmembrane proteins permeable to water. In mammals,
they are subdivided into classical aquaporins that are permeable to water; aquaglyceroporins that
are permeable to water, glycerol and urea; peroxiporins that facilitate the diffusion of H2O2 through
cell membranes; and so called unorthodox aquaporins. Aquaporins ensure important physiological
functions in both exocrine and endocrine pancreas. Indeed, they are involved in pancreatic fluid
secretion and insulin secretion. Modification of aquaporin expression and/or subcellular localization
may be involved in the pathogenesis of pancreatic insufficiencies, diabetes and pancreatic cancer.
Aquaporins may represent useful drug targets for the treatment of pathophysiological conditions
affecting pancreatic function, and/or diagnostic/predictive biomarker for pancreatic cancer. This
review summarizes the current knowledge related to the involvement of aquaporins in the pancreas
physiology and physiopathology.
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1. Introduction

Pancreas is a gland with endocrine and exocrine function and represents a key organ for overall
body homeostasis. Indeed, endocrine pancreatic β-islets are responsible for insulin secretion in
response to hyperglycemia, therefore contributing to glucose homeostasis [1]. Furthermore, exocrine
pancreatic acinar and ductal cells ensure pancreatic fluid secretion composed of water, ions and
enzymes involved in food digestion [2].

Various diseases can affect physiological functions or arise from pancreatic dysfunction.
The diseases include diabetes [3,4], acute and chronic pancreatitis [5], cystic fibrosis [6], pancreatic
cancers [7] and pancreatic insufficiency leading to malabsorption syndrome [8].

AQPs are expressed in both endocrine and exocrine pancreas and ensure important physiological
functions related to insulin secretion and pancreatic fluid secretion [9–14].

Aquaporins (AQPs) are a family of transmembrane water channel proteins that are ubiquitously
expressed among animals, plants and microorganism [15]. Mammalian AQPs are classified as classical
AQPs permeable to water (AQP0, AQP1, AQP2, AQP4, AQP5, AQP6 and AQP8); aquaglyceroporins
(AQP3, AQP7, AQP9, AQP10 and AQP11) permeable to small solutes such as glycerol and urea in
addition to water [16]; and unorthodox AQPs (AQP11 and AQP12) with still uncertain permeability
(Table 1) [17]. Another sub-group of AQPs has been described recently, named peroxiporins, consisting
of aquaporins that facilitate the diffusion of H2O2 through cell membranes. Several AQPs belonging
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to classical or aquaglyceroporins have been described as peroxiporins, namely AQP1, AQP3, AQP5,
AQP8, AQP9 and AQP11 [18–22]. However, recent reports suggest that all AQPs should exhibit H2O2

permeability, although at varying degrees [23].

Table 1. Mammalian aquaporin (AQP) classification.

Mammalian AQPs Classes AQPs Permeability

Classical AQPs AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, AQP8 Water

Aquaglyceroporins AQP3, AQP7, AQP9, AQP10, AQP11 Water, glycerol, urea, small solutes

Unorthodox AQPs AQP11, AQP12 Uncertain for AQP12

Peroxiporins AQP1, AQP3, AQP5, AQP8, AQP9, AQP11 Hydrogen peroxide

AQPs are present in all living organisms. They have evolved from a commune ancestor by initial
internal duplication and inversion of a transmembrane portion containing three helices, yielding
the hexa-helical structure. Two critical transmembrane peptide motifs, asparagine–proline–arginine
(NPA), evolved ensuring pore selectivity. Indeed, NPA motifs evolved as a cationic selectivity filter
and an aromatic residue and arginine (ar/R) region as a proton selectivity filter. Modification of the
ar/R portion, namely in transmembrane domain 5, resulted in variable pore restriction leading to
subfamilies such as the more permissive aquaglyceroporins [24]. Whole chromosome duplications,
local duplications, horizontal transfer, provided variable number of copies that evolved over time and
speciation events [25]. Individual gene sequences changed, yielding structural and thus functional
variants, through selective adaptive pressure, in response to environmental cues such as energy source
availability and also internal physiological needs and constraints [26]. The latter has led over time
to structural variations determining functional specificities in terms of permeating solutes, tissue
distribution and specificity.

Consequently, in mammals and humans in particular, AQPs facilitate water transport to ensure
the maintenance of water balance, facilitate glycerol transport to ensure glycerol metabolism, and
participate to other cell processes including cellular migration, cellular expansion and cellular adhesion
occurring notably in tumor cells [27,28]. Thereby, AQPs are expressed in a wide range of tissues and
organs participating to fluid secretion and/or absorption (such as kidneys, lungs, eyes, central nervous
system and exocrine glands including pancreas), in glycerol metabolism (such as adipose tissue, liver,
heart and endocrine pancreas) and in a wide variety of cancer cells. Namely, AQPs are expressed in a
pancreatic tumor as well [29,30].

From a clinical point of view, AQPs potentially represent new therapeutic targets for the treatment
of diseases [31–34]. As a consequence, AQPs inhibitors and gene therapy using viral vectors encoding
AQPs have been developed [31,33–38]. In addition, AQPs are potential biomarkers for the diagnosis
and prognosis of diseases, and in particular of cancers [29,39–50].

This review summarizes the current knowledge on the expression and functions of AQPs in both
endocrine and exocrine pancreas, as well as the current potential interest to use AQPs as new useful
tools for diagnosis, prognosis and treatment for pancreatic-related diseases and pancreatic cancers.

2. Endocrine Pancreas

2.1. Morphology and AQPs Distribution

Endocrine pancreas accounts for circa 10% of total pancreatic cells and is composed of β-islets
containing around 60% β-cells producing insulin, 30% α-cells producing glucagon and 10% of other
γ-cells, δ-cells (or PP-cells) and ε-cells producing respectively somatostatin, pancreatic polypeptide
(PP) and ghrelin [51]. Human β-islets are made of all the endocrine cells types mentioned above
distributed randomly, whereas rodent β-islets are made of β-cells surrounded by the other three types
of endocrine cells [51].
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Divergent results obtained using distinct methodologies suggested at first an uneven distribution
of β-islets in human [52] and rodent [51,53] pancreas, and more recently an even distribution of
β-islets in human pancreas [54]. However, the region of the pancreas that is removed during human
pancreatectomy had distinct metabolic consequences [55]. Indeed, the removal of the pancreatic head
led to improved tolerance to glucose while the removal of the pancreatic tail led to elevated glucose
concentration after fasting or the glucose-tolerance test [55]. In light of these data, it was hypothesized
that not all β-islets are alike [51]. This hypothesis was based on distinct developmental origins of the
head and the tail of the pancreas, distinct metabolic behavior of the β-islets originating from these
regions, and molecular heterogeneity. Indeed, the head arises from the dorsal and ventral pancreatic
buds while the tail and the central portion arises from the ventral pancreatic bud [56]. In addition, rodent
β-islets showed greater capacity to synthesize and secrete insulin when originating from the dorsal
pancreatic bud as compared to when originating from the ventral pancreatic bud [57]. Furthermore,
single-cell profiling of both the messenger RNA and protein levels revealed the existence of four distinct
groups of β-cells with unique antigenic and molecular characteristics [58]. In the future, therapeutic
interventions may have to take into account the heterogeneity of β-islets cellular composition.

To the best of our knowledge, AQP distribution remains unknown in human endocrine pancreas.
However, the expression of several AQPs has been documented in mouse and rat β-cells, but to date,
not in other β-islet cell types. Indeed, the expression of the aquaglyceroporins AQP7 was detected on
mouse and rat β-cells [59–62], as well as rat β-cell lines BRIND-BD11 and RIN-m5F [63–65]. In addition,
the expression of AQP5 and AQP8, two classical AQPs, was also detected on mouse β-cells, and AQP12
was detected in β-cells of rat Langerhans islets (Table 2) [60,65].

Table 2. AQPs expression in endocrine pancreas.

AQP Endocrine Pancreas

AQP5 β-cells (m)

AQP7 β-cells (m, r)

AQP8 β-cells (m)

AQP12 β-cells (r)

m—mouse; r—rat.

2.2. Physiology and AQPs Functions

Due to the sole documented expression of AQPs within β-cells, this section will then only focus
on the physiology of β-cells and the involvement of AQPs in β-cells physiology.

β-cell physiology has been extensively studied owing to its capacity to synthetize and secrete
insulin, playing a key role in the control of glucose homeostasis, but also in diabetes linked to either
insulin insufficiency or resistance [51,66,67]. Briefly, insulin secretion is induced postprandially
by an increase in blood glucose, free fatty acids and amino acids concentrations. In the current
model of stimulus-secretion coupling, β-cells behave as electrically excitable fuel sensors to trigger
insulin secretion in a biphasic manner in response to glucose stimulation [1,68]. Indeed, upon
glucose entry in β-cells and its metabolization, subsequent events include ATP/ADP ratio increase,
closure of ATP-sensitive potassium (KATP) channels, depolarization of plasma membrane, opening
of voltage-dependent calcium channels and sodium channels, increase in intracellular calcium
concentration, activation of calcium-binding proteins and finally exocytosis of insulin-containing
granules [1,68]. This stimulus-secretion coupling pathway leads to a first phase of insulin secretion
occurring rapidly (within 5–10 minutes) and robustly (accounting for circa 15% of total insulin secretion
within 1 h stimulation) following glucose stimulation due to the recruitment of insulin-containing
granules localized in the close vicinity of the plasma membrane [68]. A second phase of insulin
secretion, recruits insulin-containing granules from intracellular storage pools to the plasma membrane
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in a slower (within 1 h following glucose stimulation) but efficient manner (accounting for circa 85% of
total insulin secretion) [68].

The glucose-elicited insulin secretion results from a triggering pathway (also previously referred
as the KATP-ATP-dependent pathway) and an amplifying pathway (also previously referred as the
KATP-ATP-independent pathway) [1,68]. The latter pathway depends on the initial triggering signal and
increased sensitivity of insulin-containing granules to intracellular calcium concentration increase [1,68].
Although the triggering and amplifying pathway have been associated with the first and second phases
of insulin secretion, respectively, the amplifying pathway takes part in the first phase as well [1,68].

In addition to its triggering function played in the stimulus-secretion coupling, increased glucose
concentration has been shown to lead to an augmentation in β-cell volume [69]. An increase in
β-cell volume is known to activate the volume-regulated anion channel (VRAC) and induce plasma
membrane depolarization, which in turn stimulates voltage-sensitive calcium channels and leads to
intracellular calcium concentration increase and insulin release [70,71].

While functional studies have been conducted to assess the role of AQP7 (an aquaglyceroporin)
in β-cells, such studies have been lacking to assess the role of both AQP5 and AQP8 (classical
AQPs) in these cells. Consequently, only the physiological role of AQP7 in β-cells will be primarily
discussed hereafter.

Aqp7 knockout mice displayed hyperinsulinemia [61,62] with either hyperglycemia [62] or
normoglycemia [61], or normal insulin and glucose levels [60]. In addition, some Aqp7 knockout mice
are characterized by β-cells displaying reduced mass and size, decreased insulin content, increased
basal and glucose-induced insulin secretions, increased glycerol and triglycerides contents, elevated
glycerol kinase activity, and lowered glycerol release upon lipolysis stimulation [61]. However, other
Aqp7 knockout mice displayed decreased basal and glucose-stimulated insulin secretions [60] and
did not corroborate basal and glucose-stimulated insulin secretions observed in a previous study [61].
The apparent discrepancies observed among different Aqp7 knockout mice could result from distinct
mice genetic background and/or methodologies.

In the light of AQP7 glycerol permeability, the effects of glycerol (acting as an osmolyte), entry
and metabolism have been studied in β-cells. Isosmotic or hyperosmotic addition of glycerol to
the extracellular medium of rat β-cells sequentially induced cell swelling, VRAC activation, plasma
membrane depolarization, electrical activity and insulin exocytosis [59]. In contrast to the effects
of urea (another molecule acting as an osmolyte that can be transported by AQP7), the effects of
glycerol were maintained during the exposure of β-cells to osmolytes [70]. The glycerol-induced
β-cell activation was supposed to result from both its cell entry and subsequent metabolization [70].
Incubation of rat β-cell BRIN-BD11 incubated with extracellular hypotonic medium or isotonic medium
deprived of 50 mM NaCl but replaced with 100 mM urea induced both [2-3H]glycerol entry and
insulin release, as compared to isotonic medium [63]. In addition, insulin released by BRIND-BD11
cells upon incubation with isotonic medium deprived of 50 mM NaCl but replaced with 100 mM urea
or 100 mM glycerol was inhibited following VRAC inhibition [63]. All together these data showed
that urea and glycerol entry upon extracellular isotonicity led to cell swelling, VRAC activation, and
subsequent events leading finally to insulin release [63]. Furthermore, the role of AQP7 assessed
using β-cells from Aqp7+/+ and Aqp7-/- mice confirmed that glycerol entry occurred via AQP7 and
induced subsequent cell swelling, VRAC activation and plasma membrane depolarization and insulin
release [60]. In addition, modification of the AQP7-/- β-cells response to glucose or extracellular
hypoosmolarity suggested a direct or indirect role for AQP7 at a distal or downstream site in the
stimulus-secretion coupling [60]. Additionally, in RIN-m5F β-cells, the incretin hormone glucagon-like
peptide-1 (GLP-1) downregulates AQP7, with AQP7 expression being negatively associated with
insulin release [65]. Interestingly, the orexigenic and lipogenic hormone ghrelin downregulates AQP7,
leading to an increased cytosolic glycerol content that promotes triacylglycerol synthesis [65]. In this
regard, it seems plausible that the reduction of AQP7 induced by GLP-1 and ghrelin might result in
intracellular glycerol accumulation, leading to an increased insulin synthesis and secretion. Therefore,



Int. J. Mol. Sci. 2019, 20, 5052 5 of 14

in light of available studies, AQP7 appears to be involved in the control of insulin release. However,
further experiments using conditional Aqp7 knockout mice could be useful to refine our understanding
of the role of AQP7 in β-cells insulin secretion.

AQP12, an unorthodox AQP, was also found to be expressed in rat β-cells and rat RIN-m5F β-cell
line [65]. However, the possible involvement of AQP12 in β-cell insulin release remains to be assessed.

Interestingly, due to the similarities in the Aqp7-/- and Aqp7+/+ β-cells response to hypoosmolarity
(rates and degrees of swelling), it seems reasonable to speculate at least one water-facilitated pathway
to be present in addition to AQP7, such as AQP5 or AQP8 [60] or Na-K-2Cl [72] (also shown to transport
water [73]), shown to be expressed as well in β-cells. However, further studies will be necessary to
assess the function of AQP5 and AQP8, and of Na-K-2Cl, in β-cells response to hypoosmolarity.

2.3. Diabetes, Obesity and Metabolic Syndrome

Due to AQP7’s expression, especially in β-cells, AQP7 became a protein of interest in
light of pathologies affecting endocrine pancreas, in particular diabetes, obesity and metabolic
syndrome [11–14,74–76].

In humans, the AQP7 gene is localized to a chromosomal region with reported linkage to type 2
diabetes [77] and metabolic syndrome [78]. Single nucleotide polymorphisms in the AQP7 gene have
been associated with obesity and/or type 2 diabetes in Caucasians [79,80] and with type 2 diabetes
in the Chinese Han population [81]. Identified missense (R12C, V59L and G264V) and silent (A103A
and G250G) AQP7 gene mutations in a cohort of Japanese subjects were not linked to obesity or
diabetes [82]. In a cohort of Caucasian subjects, a subject with the G264V mutation in the AQP7 gene
presented type 2 diabetes, overweight and extremely low glycerol levels [79]. Additional studies are
required to deepen the current knowledge concerning the impact of AQP7 loss-of-function mutations
or single nucleotide polymorphism in diabetes, obesity and metabolic syndrome.

The phenotype of Aqp7 knockout mice is characterized by adult-onset obesity and
hyperglycemia [61,62,83]. In obese rats, sleeve gastrectomy modified several parameters of the
pancreas or linked to the pancreatic function. Indeed, sleeve gastrectomy decreased β-cell apoptosis,
pancreatic steatosis, insulinemia, fasting blood glycaemia and improved insulin sensitivity of the
obese rats [65]. In obese rats presenting increased pancreatic AQP7 and AQP12 expression, sleeve
gastrectomy significantly increased AQP7 expression, but not AQP12 expression [65]. The use of
isolated β-cells and/or single cell transcriptome analysis could provide data to assess AQP12 expression
in β-cells, as AQP12 is also expressed in the exocrine pancreas [84]. Finally, additional investigations
are required to assess whether AQP7 and/or AQP12 could become suitable therapeutic targets for the
treatment of obesity and/or type 2 diabetes.

Interestingly, a very recent study showed that epigenetic modification, i.e., the methylation of the
AQP7 gene promoter region in human hypertrophic white adipose tissue correlated with decreased
AQP7 expression [85].

3. Exocrine Pancreas

3.1. Morphology and AQPs Distribution

Exocrine pancreas accounts for circa 90% of total pancreatic cells and consists of acinar and ductal
epithelial cells involved in pancreatic juice secretion, representing daily about 1 to 2 liters and consisting
of fluid and enzymes. Pancreatic juice secretion is required for neutralization of stomach acid and
proper food digestion. Pancreatic juice secretion is controlled by several neurotransmitters including
secretin, cholecystokinin and acetylcholine [86].

AQP1, AQP3, AQP4, AQP5, AQP8 and AQP12 mRNA were found in the human exocrine
pancreas [87,88]. However, only AQP1, AQP5 and AQP8 protein expression were detected [87,88].
AQP1 expression was localized to centroacinar cells (apical membrane), intercalated ductal cells (apical
membrane), capillary endothelial cells, and pancreatic zymogen granule membrane [87,89,90]. AQP5
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was localized to intercalated ductal cells [87], AQP8 was found solely in the apical membrane of acinar
cells [91] and AQP12 localization remained to be assessed.

Rat exocrine pancreas expresses similar Aqps mRNA as the human pancreas, with the exception of
Aqp3 [87,88,92]. In rat, AQP1 is localized in intralobular and interlobular ductal cells (apical membrane,
basolateral membrane, caveolae and vesicular structures) [93,94], acinar zymogen granules [89]
endothelia cells [92]. AQP3 is expressed in acinar cells (membrane and intracellular structures) [48].
In addition, AQP5 is expressed in centroacinar cells (apical membrane) and intercalated ductal cells
(apical membrane) [87], and AQP8 is expressed in acinar cells (apical membrane) [88]. Mouse exocrine
pancreas was reported to express AQP1 in interlobular ductal cells (apical membrane) [87], AQP5 in
interlobular, intralobular and intercalated ductal cells (apical membrane) [87] and AQP12 in acinar
cells (intracellular structures; Table 3) [84].

Table 3. AQPs expression in exocrine pancreas.

AQP Exocrine Pancreas

AQP1 Acinar cells (r, h)
Ductal cells (m, r, h), Endothelial cells (r, h)

AQP3 Acinar cells (h)

AQP5 Acinar cells (r)
Ductal cells (m, r, h)

AQP8 Acinar cells (r, h)

AQP12 Acinar cells (m)

m—mouse; r—rat; h—human.

3.2. Physiology and AQPs Functions

Pancreatic juice secretion involves two distinct molecular steps: A first step consisting into the
secretion of an isotonic fluid by acinar cells, and a second step consisting in the secretion of most of the
water with sodium, chloride and bicarbonate ions by ductal cells [95]. In this two steps process, acinar
AQP8, (apically located), and both ductal AQP1 (apically and basolaterally located) and AQP5 (apically
located) ensure transcellular water flow to the gland lumen [87]. So far, pancreatic fluid secretion
was shown do not be altered in Aqp1, Aqp5, Aqp8 or Aqp12 knockout mice [96–98], despite the major
involvement of AQP8 and AQP1 in acinar and ductal fluid secretion, respectively [92,93]. However,
very recently, fluid secretion measurement performed on isolated pancreatic ducts from Aqp1 knockout
and in vivo MRI cholangiopancreatography assessing the rate of pancreatic fluid secretion supported
the involvement of AQP1 in pancreatic ductal fluid and bicarbonate secretion [99]. Similar techniques
could be used for further investigating the respective contribution of other AQPs to the pancreatic
juice secretion process.

3.3. Pancreatic Diseases including Pancreatitis, Cystic Fibrosis and Cancer

AQPs have been involved in several pancreatic diseases including pancreatitis, cystic fibrosis and
cancer [9,29,30,48].

In acute or chronic pancreatitis, considered as inflammatory syndromes, patients suffer from
sudden disease onset characterized by abdominal pain, elevated serum digestive enzymes levels and
abnormal abdominal imaging. In a rat model of acute pancreatitis and in liver X receptor β knockout
mice model displaying exocrine pancreatic insufficiency, AQP1 expression was decreased [100,101].
Despite several studies, the role of AQP1 in pancreatitis has not been fully understood [9]. Pancreatitis
can cause multiple organ failure including lung and colon displaying the altered expression of
AQPs [102–104]. In a mouse model of autoimmune pancreatitis, it is worth pointing out that the cystic
fibrosis transmembrane conductance regulator (CFTR) corrector C18 and the CFTR potentiator VX770
rescued CFTR expression, restored AQP5 expression and pancreatic fluid secretion, and eliminated
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tissue inflammation [105]. It would be worth assessing whether CFTR corrector and potentiator are
also able to correct AQP1 expression in animal models of pancreatitis. In the future, treatment with
CFTR correctors may offer an additional therapeutic tool to treat pancreatitis. In the context of gene
therapy for pancreatic disorders such as pancreatitis [106], adenoviral vectors encoding AQP1 or AQP5
may represent additional tools [32,36,107].

In cystic fibrosis, a genetic disease resulting from CFTR mutation, patients experienced several
manifestations including alteration of pancreatic juice secretion. CFTR is normally expressed in
pancreatic ductal cells and contributes to pancreatic juice secretion [108]. Interestingly, Cftr knockout
guinea-pigs and mice showed decreased AQP1 expression and pancreatic fluid secretion [99,109].
Nevertheless, the underlying causal mechanism remains to be assessed.

In cancer, a leading cause of death worldwide, AQPs have been shown to be involved in cancer
cell migration, adhesion, growth, proliferation, invasion and metastasis, as well as drug resistance,
angiogenesis and epithelial–mesenchymal transition [27,28,49,50,110,111]. Studies have explored the
role of AQPs in pancreatic cancers, especially in pancreatic ductal adenocarcinoma (PDAC) representing
the most common type and being the most aggressive and lethal malignancy, with a five-year survival
of only 7%. Pancreatic cancer is anticipated to become the second leading cause of cancer-related death
by 2030 [112]. Currently, surgery represents the only therapeutic option to cure PDAC cancer, but
one needs to keep in mind, that only a small number of patients present with a resectable tumor at
the time of diagnosis. Early PDAC diagnosis remains difficult due to the lack of distinct symptoms
and the absence of specific clinical markers of early stages of PDAC. Following the use of PDAC
cell lines, AQPs involvement was suggested in PDAC cell migration, cell proliferation and increased
apoptosis [91,113,114]. However, the expression of AQPs has been poorly studied in PDAC [29,30]. A
first study performed using PDAC from a small cohort of Caucasian patients showed a modification in
AQP5 localization and expression in intercalated and intralobular ductal cells as compared to normal
pancreatic tissues [48]. Indeed, AQP5 labeling was localized to the entire plasma membrane and
intracellularly as opposed to the typical apical membrane in normal pancreatic tissue [48]. In addition
AQP5 expression was higher in PDAC and correlated with the tumor differentiation status and
aggressiveness [48]. Furthermore, the same PDAC also displayed modified AQP3 localization and
expression as compared to normal pancreatic tissues [48]. Indeed, AQP3 labeling was localized to
ductal cells (plasma membrane or intracellularly) in PDAC (but heterogeneous among PDAC samples)
while nearly absent in normal pancreatic ductal cells [48]. In addition, AQP3 expression was inversely
correlated with the tumor differentiation status and aggressiveness [48]. A second study using PDAC
from a relative larger cohort of Chinese patients displayed higher AQP1 and AQP3 expression as
compared to benign pancreatic tissue, and the expression level was inversely correlated with the tumor,
node metastasis stage of the disease [115]. In addition, positive AQP1 and AQP3 expression were
significantly associated with patients survival but represent poor-prognosis factors in PDAC [115].
Further studies using larger cohort of PDAC patients are required to assess further the beneficial value
of using AQPs as markers of PDAC stages and prognosis, and to support the possible involvement
of AQPs in epithelial–mesenchymal transition occurring in PDAC. Finally, additional studies will be
required to decipher the molecular mechanisms underlying AQPs differential expression in PDAC,
and the benefit of using appropriate therapeutic tools to target AQPs in PDAC [31,50,111].

4. AQPs as Useful Tools for Clinicians

4.1. AQPs as A Target for Therapy

Due to their involvement in various cellular physiological and pathophysiological processes,
AQPs represent targets for drug, phyto-compounds, antibody immunotherapy and gene therapy.

A variety of small molecules targeting AQPs have been extensively studied [11,31,33,34]. Indeed,
AQPs can be inhibited by metal ions, gold(III) compounds, metalloids, antidiabetic drugs and other
drugs or phyto-compounds [11,31,33,34,116]. In addition, AQPs expression can be modulated by
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various phyto-compounds including flavonoids, curcuminoids, stilbenes, chalcones, isoflavonoids,
triterpenes, monoterpenoids and capsininoids [116–118]. Moreover, antibodies could also represent
a useful tool to target AQPs [34]. Indeed, gene therapy using adenoviral vectors encoding AQP has
already been used to restore AQP function [32,36,107,119].

Although all these tools have not been tested yet for their potential beneficial effects for the
treatment of pancreatic pathologies, some of the tools could be evaluated for the treatment of diabetes,
pancreatitis, cystic fibrosis and cancer [11,13,14,31,33,74,116]. Due to epigenetic modifications of AQPs
genes, tools controlling such processes might also be useful to modulate AQPs expression [85,120,121].
In the future, additional studies will determine if AQPs can become new useful therapeutic targets for
the treatment of pancreatic pathologies.

4.2. AQPs as Biomarkers

Predictive and prognostic biomarkers are valuable tools in cancer diagnosis and therapy
monitoring. A very recent study assessed the expression of AQPs on 106 PDAC resected tissues
samples and showed higher expression of AQP1 and AQP3 in PDAC compared with peritumoral
tissue and normal pancreatic tissue. Both AQP1 and AQP3 are proposed as diagnostic markers of
PDAC and a predictive marker of poor prognosis in PDAC patients [115]. Another study, conducted
on 35 PDAC patients suggests AQP3 to be related with late and more aggressive stages of PDAC while
AQP5 is proposed as a potential histological marker for early stages of PDAC [48].

Another report suggested that AQP3 expression in PDAC is negatively regulated by miR-874, and
resulted in the suppression of cell proliferation and increased cell apoptosis in PDAC cell lines [113].
Further investigation should focus on the prognostic value of AQP3 and/or miR-874 using a larger
cohort of clinical samples.

Furthermore, it is speculated that AQPs regulation may be implicated in the ability of some
cancer cells to respond to treatment. For example, AQP3 overexpression has been shown to contribute
to chemo-resistance to arsenite in melanoma [122], as well as to cisplatin in gastric cancer [123].
In colorectal cancer cells, knockdown of AQP5 sensitizes cells to 5-fluorouracil via inhibition of the
Wnt-β-catenin signaling pathway [124]. Whether the AQPs expression and regulation contribute to
PDAC response to treatment remains an open question that surely deserves further investigation.

5. Conclusions

AQPs are expressed in both endocrine and exocrine pancreas ensuring important physiological
functions related to insulin secretion and pancreatic fluid secretion. Several AQPs present modified
expression in various pancreatic pathological conditions, making them exciting potential new drug
target for pancreatic disorders. Furthermore, several recent studies suggest involvement of various
AQPs in pancreatic cancer development. However, further studies are needed to understand fully
the role of AQPs in the development of pancreatic malignancies and to confirm their potential use as
prognostic and/or predictive biomarkers in pancreatic cancer.
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Abbreviations

AQP Aquaporin
CFTR Cystic fibrosis transmembrane conductance regulator
KATP channels ATP-sensitive potassium channels
PDAC Pancreatic ductal adenocarcinoma
PP Pancreatic polypeptide
VRAC Volume-regulated anion channel
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