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Abstract: Purpose of review: The emerging field of molecular predictive medicine is aiming to change
the traditional medical approach in renal transplantation. Many studies have explored potential
biomarker molecules with predictive properties in renal transplantation, issued from omics research.
Herein, we review the biomarker molecules of four technologies (i.e., Genomics, Transcriptomics,
Proteomics, and Metabolomics) associated with favorable kidney transplant outcomes. Recent
findings: Several panels of molecules have been associated with the outcome that the majority of
markers are related to inflammation and immune response; although. other molecular ontologies
are also represented, such as proteasome, growth, regeneration, and drug metabolism. Throughout
this review, we highlight the lack of properly validated statistical demonstration. Indeed, the most
preeminent molecular panels either remain at the limited size study stage or are not confirmed
during large-scale studies. At the core of this problem, we identify the methodological shortcomings
and propose a comprehensive workflow for discovery and validation of molecular biomarkers that
aims to improve the relevance of these tools in the future. Summary: Overall, adopting a patient
management through omics approach could bring remarkable improvement to transplantation
success. An increased effort and investment between scientists, medical biologists, and clinicians
seem to be the path toward a proper solution.

Keywords: molecular biomarkers; predictive tool; OMICS; renal transplantation

1. Introduction

Kidney transplantation represents the optimal therapeutic strategy for patients with
end-stage renal disease (ESRD), increasing quality of life [1]. However, despite improve-
ments in immunosuppressive therapy, decreasing acute rejections (AR) rates, and increasing
half-life, late kidney graft loss remains a major challenge in transplantation [2].

Nowadays, accepting an organ for transplantation is complex and hazardous. Tools
to anticipate outcomes are based on serum creatinine and donor characteristics, including
biochemistry, visual appraisal, and time zero biopsies. However, these approaches have
drawbacks: serum creatinine is not specific to injury type and is a marker of advanced
kidney damage; while renal biopsy, representing the gold standard in transplant evaluation,
is too invasive and cannot be performed frequently [3]. Accordingly, clinicians are looking
for new molecular markers and fueling research into innovative noninvasive biological
markers for early determination and post-transplant success.

Currently, graft evaluation relies on a limited set of molecular biomarkers, often only
one parameter, closely correlated with a single functional aspect of the organ involved,
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or with a specific disease action monitoring. Such molecular markers would ideally be
used throughout the transplantation process, from the donor, through organ procurement,
preservation, and after transplantation. Donor molecular biomarkers may help in antic-
ipating (short-) and long-term outcomes, while post-transplant, molecular markers may
improve knowledge on graft adaptation and its shortcomings [4].

Reviews have been conducted on markers issued from high-throughput omics tech-
nologies [4,5]. However, to our knowledge, no review investigates omics methodological
challenges and the validity of the derived prediction tools, representing a crucial aspect for
the legitimacy of the results.

Herein, we review the principal predictive models available for kidney transplantation
and explore the current data on novel innovative tools for before procurement and after
transplantation evaluation, discussing their advantages and limits.

2. What Are Omics-Based Molecular Biomarkers?

A biomarker is defined as “a biological molecule found in blood, other body fluids, or
tissues that can be used to follow body processes and diseases in humans and animals” [6].
In the clinic, biomarkers may be used as a diagnostic, prognostic, classifying, and/or
monitoring tool [7].

Nowadays, graft evaluation relies on few biomarkers, and the search for a “golden
molecule”, capturing the function of a transplanted organ in all its complexity, has been
fruitless. Indeed, the complexity of the mechanisms underlying graft outcome can likely
only be captured with a multiparametric molecular approach.

High-throughput technologies have revolutionized medical research. The advent of
“omics” technologies implies a comprehensive assessment of a set of molecules. There
are four main types of molecular omics: genomics, transcriptomics, proteomics, and
metabolomics; each with the potential to improve understanding of pathophysiological
mechanisms, support diagnosis, and ultimately lead to new therapeutics and improved out-
comes [8]. Genomics is the study of the genome [9], transcriptomics of all RNA molecules
transcribed from the genome [10], proteomics of protein nature, and structure, function [11],
and metabolomics of metabolites and their related chemical processes [12]. The metabolome
is a particular challenge since it is a dynamic system constantly in flux.

To date, the use of these approaches in renal transplantation has been mainly restricted
to research, and transition to clinical practices remains a challenge. Indeed, molecular
biomarker validation, identification, or verification is laborious and demands particular
attention. The tools involved in exploring these biomarkers are also to be taken into
consideration; indeed, as we will expose, in many publications, the validity of biomarkers
is assumed where it should be evaluated and re-evaluated.

3. Molecular Omics before Procurement

The need for organs greatly exceeds donations, leading professionals to use extended
criteria donor organs, more sensitive to ischemia/reperfusion injury, unavoidable during
transplantation, and associated with adverse outcomes.

Anticipating organ performance is a serious clinical challenge, which can improve
allocation and individualize post-transplant management. To this end, several predictive
models have been developed [13] (Table 1).

The leading algorithm is the Kidney Donor Profile Index (KDPI), currently the most
effective scoring system to quantify graft failure risk. It includes ten variables: age, height,
weight, last serum creatinine, history of diabetes, hypertension, HCV-infection, ethnicity,
and the cause of death [14]. It should be noted that this score is not intended to serve on its
own, as the predictive power of the KDPI is moderate (c-statistic = 0.60) and it does not
take into consideration factors that may impact graft outcomes, such as any damage, injury,
or abnormalities of the donor [15]. Further studies are needed to determine the accuracy
of predictive tools based on common clinical parameters and to compare or improve their
performance with more sophisticated biomarkers using omics.
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Table 1. Pre-transplantation molecular biomarkers; their role and the performance as predictive tools
in transplantation.

Predictive Model
Approach Markers, Molecules, Roles Sample Type Performance Limitation Ref.

KDPI

Age, height, weight, last serum
creatinine, history of diabetes,
hypertension, HCV-infection,

ethnicity, and the cause of death

Blood Prediction of graft
failure (AUC 0.6)

Not validated in
European cohorts,

low c statistics
[14,15]

Genomics

APOL1 polymorphism,
involved in the formation of

most cholesteryl esters in
plasma and also promotes

efflux of cholesterol from cells

Blood

Significantly
associated with
worse outcome

(p < 0.0001), now
integrated to KDPI

Limited to patient of
african descent [16,17]

Polymorphisms of TGF-β and
CCR5, role in inflammation Blood

no consistent
association with
acute rejection

Small cohorts [18]

Transcriptomics

48 mRNA coding for cell
communication, apoptosis,

inflammation
Biospy correlation with risk

of graft failure
Limited number

of samples [19]

Molecular pannel of
1051 transcripts; overexpression

of molecules related
to inflammation

(immunoglobulins), collagens,
integrins, chemokines, Toll-like

receptor signaling, antigen
processing and presentation

and renal injury;
underexpression of markers of
transport, glucose, fatty acid
and amino acid metabolism

Biospy

Many molecules
differentiated

between organs from
deceased donors

vs. living
donors (adjusted

p-value <0.01)

Small cohorts and
short duration of

follow-up
[20]

36 candidate genes, chief
among which IGFBP5 and

CSNK2A2 (cell cycle/growth);
RASGRP3 (signal transduction);
CD83, BCL3, MX1, TNFRSF1B
(immune response); ENPP4,

GBA3 (metabolism)

Biospy

Significantly
associated with

stratification of graft
performance in
correlation with
recipient’s DGF

(p < 0.001)

Small cohorts [21]

Molecular pannel associated
with antigen processing and

presentation via MHC class I/II,
T-cell–mediated cytotoxicity,

allograft rejection/graft versus
host disease, antigen processing

and presentation and cell
adhesion molecules. Top

molecules were HLA-G, HLA-E,
HLA-DRB1, HLA-DRA,
HLA-DPB1, HLA-DPA1,
HLA-DQB1, HLA-DQA1,

HLA-B, HLA-C, HLA-DMA,
PSMB8, PSME1, HSP90AB1,

and PRDX1

Biospy
Significantly

associated with DGF
severity (p < 0.001)

Small cohorts [22]

23-gene transcriptional
signature associated with NK

and CD8+ T cell activation,
among which Granzyme B,

FGFBP2, NKG7, Perforin 1, Fas
Ligand, CD8A, CCR5,
coagulation factor XII

Blood

Risk score associated
with acute cellular

rejection after
6 months,

antibody-mediated
rejection and/or de
novo donor-specific
antibodies, and graft

loss (AUC 0.89)

No standardization [23]

Proteomics

Predictive model
using Neutrophil

gelatinase-associated lipocalin
(NGAL) and L-type fatty acid

binding protein (L-FABP)

Urine
Prediction of reduced

graft function
(AUC 0.8)

Small cohorts [24]
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Table 1. Cont.

Predictive Model
Approach Markers, Molecules, Roles Sample Type Performance Limitation Ref.

Metabolomics

266 plasma metabolites
building ANOVA multiblock

OPLS models, the main
molecules being azelaic acid,

creatinine, kynurenic acid,
kynurenine, indoxyl sulfate

and tryptophan

Blood
Significantly

associated with
rejection (p < 0.005)

Data interpretation
and small cohorts [25]

Review on metabolomics
investigation during perfusion
for the heart, lung, kidney and

liver. Biomarkers molecules
mainly associated with energy
metabolim (ATP → Pi, Krebs
cycle intermediates, lactate),

glycogenolysis, amino
acids metabolism,

Measurable
association with

graft quality
Small cohorts [26]

In this section, we will review studies performed using omics and their prediction
models based on “before procurement” data (i.e., reference to the donor and recipient
biomarkers before transplantation).

3.1. Genomics

Despite early enthusiasm in demonstrating a potential association between donor
DNA polymorphisms and outcome, no study could show good predictive performance.
The only exception is the APOL1 polymorphism, a molecule involved in the formation of
most cholesteryl esters in plasma that also promotes the efflux of cholesterol from cells,
and has been validated technologically and statistically (p < 0.0001) in large single- and
multi-center studies. It is mainly expressed in African ancestry populations and associated
with worse outcomes [16,17]. It is now accepted in the medical community and integrated
in the KDPI.

Other studies focused on gene coding for immune-related molecules, exploring the
link between late allograft loss and genetic variation in the immune response. Authors
have demonstrated that genotypic polymorphisms of TGF-β and CCR5 genes were asso-
ciated with acute rejection (AR) [18]. However, despite numerous publications showing
plausible polymorphisms associated with AR, there are no consistent genetic predictors of
acute kidney allograft rejection [27]. Others have investigated genetic effects on deceased
donor/recipient. Despite being one of the largest cohorts in transplantation, no gene
variants have shown robustness equal or superior to the HLA gene [28].

3.2. Transcriptomics

Transcriptomics quickly followed genomics [29], using high-throughput techniques
such as microarray and next-generation sequencing [30]. However, few studies have been
conducted on donors.

A genome-wide gene expression study on human donor kidney studied 48 genes
coding for molecules linked to cell communication, apoptosis, inflammation, and immune
response. The authors show that these were increased in cadaveric donors vs. living
donors and increased the risk of acute renal failure [19]. An unsupervised analysis in donor
kidney biopsies reported a molecular panel of 1051 transcripts differentially expressed
between deceased vs. living donors, as the former over-expressed molecules were related
to inflammation (immunoglobulins), collagens, integrins, chemokines, Toll-like receptor
signaling, antigen processing and presentation, and renal injury; while the under-expressing
markers were transport, glucose, and fatty acid and amino acid metabolism [20]. This
was later refined to 36 molecular candidates in deceased-donor kidney biopsies: IGFBP5
and CSNK2A2 (cell cycle/growth); RASGRP3 (signal transduction); CD83, BCL3, MX1,
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and TNFRSF1B (immune response); ENPP4, GBA3 (metabolism), which was significantly
associated with the stratification of graft performance in correlation with the recipient’s
DGF (p < 0.001) [21]. Later, the same authors used several molecules to stratify graft
performance, using a panel associated with antigen processing and presentation via MHC
class I/II, T-cell-mediated cytotoxicity, allograft rejection/graft vs. host disease, antigen
processing and presentation, and cell adhesion molecules (top molecules were HLA-G, HLA-
E, HLA-DRB1, HLA-DRA, HLA-DPB1, HLA-DPA1, HLA-DQB1, HLA-DQA1, HLA-B, HLA-C,
HLA-DMA, PSMB8, PSME1, HSP90AB1, and PRDX1). This molecular panel was able to
discriminate kidneys that would later develop DGF and impaired 1-month function [22].

Recently, a 23-transcript molecular signature associated with NK and CD8+ T-cell
activation (among which Granzyme B, FGFBP2, NKG7, Perforin 1, Fas Ligand, CD8A, and
CCR5coagulation factor XII) was described in pretransplant blood to predict AR [23] with
encouraging results (AUC = 0.89); however, it was in a limited size study (n = 80) and will
need to be confirmed in large transplant cohorts.

3.3. Proteomics

Several proteomic studies have been carried out in recent years, mostly focusing
on urine and perfusate [31], aiming to define organ quality through a holistic approach
integrating the multiple events of donor kidney injuries. Comparing proteomic profiles
between different pathophysiological conditions highlighted protein panels with interesting
predictive performance for graft failure, but always in a limited size study (n = 113) [5,24].
Among these, the use of Neutrophil gelatinase-associated lipocalin (NGAL) and L-type
fatty acid-binding protein (L-FABP) showed good performance in the prediction of reduced
graft function (AUC 0.8); however, this remains at the limited size study (n = 94) stage.

3.4. Metabolomics

Metabolomics is now acknowledged as a potential approach in transplantation, gener-
ally used for molecular biomarkers discovery and generating biological hypotheses. One
such study used 266 plasma molecular metabolites to build ANOVA multiblock OPLS
models; the main molecules being azelaic acid, creatinine, kynurenic acid, kynurenine,
indoxyl sulfate, and tryptophan. They showed a strong association with rejection prediction
(p < 0.05) [25].

Recently, a review was conducted on metabolomics investigation during perfusion
for the heart, lung, kidney, and liver. Biomarker molecules mainly associated with energy
metabolism (ATP → Pi, Krebs cycle intermediates, lactate), glycogenolysis, and amino acid
metabolism were discovered. There is an interesting association with graft quality, warrant-
ing larger studies [26]. Indeed, perfusate is a non-invasive alternative to biopsies, enabling
frequent sampling and confirming the superiority of hypothermic machine preservation
over traditional preservation.

To date, these multi-omics molecular investigations coalesce into a large panel of
targets, but without coherence. One of the main challenges stems from the absence of
consensus or a centralized database, inducing sensitivity and specificity for diagnostic
analysis. Development of uniformized workflow for exploration and predictive model
building is needed. This would open the way toward organ-tailored preservation, whereby
high-risk grafts undergo an assessment by omics-conducted molecular profiling, leading to
re-conditioning before transplantation [26].

4. Molecular Omics after Transplantation

Kidney biopsy and creatinine are the main graft monitoring molecules agreed upon in
the transplantation community. However, they cannot apprehend the complete phenotype
of a patient. Hence, machine learning-based prediction algorithms have been explored. The
iBox prognostication system was developed, estimating long-term allograft survival. iBox
defines a score based on immunologic, histologic, and functional (eGFR and proteinuria)
recipient’s criteria [32]. Other works have also been described with common molecules but
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different classifier approaches [33,34]. Although such allograft survival prediction models
hold promise, these tools work well at the population level but lose accuracy for a specific
individual [35].

Omics molecular profiling provides new resources to improve prediction. This section
aims to overview studies performed after transplantation (Table 2).

Table 2. Post-transplantation molecular biomarkers; their role and the performance as predictive
tools in transplantation.

Predictive Model
Approach Markers, Molecules, Roles Sample Type Performance Limitation Ref.

Genomics

Pannel of 13 genes : MET, ST5
and KAAG1 (tumor

development or suppression);
RNF149, ASB15, KLH13

(ubiquitination and proteasome)
; TGIF1, SPRY4, WNT9A, RXRA

and FJX1 (developmental or
growth pathways such as

NOTCH/Wnt or RAR);
CHCHD10 and SERINC5

(energy and membrane repair)

Biopsy

Prediction of the
development of
fibrosis at 1 year

(AUC 0.9)

No validation yet,
clinical trial ongoing [36]

Polymorphism of several genes
such as CYP3A5 (involved in
drug metabolisation, among

which tacrolimus), CCR5,
FOXP3 and other genes

involved in inflammation and
immune response

(interleukines, chemokines, TLR
pathway, innate and adaptative

immunity mediators); TGF b,
VEGF and other mediators

of fibrosis.

Biopsy

Several variants are
predictors of

long-term allograft
function (p = 0.004)

Very small sample set
(24 specimens) [37]

Transcriptomics

Non-invasive urinary cell
mRNAs Granzyme B, Perforin,
Cyclophilin B, all related to the

immune system
and inflammation

Urine
Significantly

associated with acute
rejection (p < 0.001)

Small cohort [38]

The kSORT pannel: 17-gene
transcriptional signature to

predict acute rejection DUSP1,
CFLAR, ITGAX, NAMPT,

MAPK9, PSEN1, RYBP, NKTR,
SLC25A37, CEACAM4, RARA,

RXRA, EPOR, GZMK, and
RHEB) together with 18S

ribosomal RNA as
housekeeping gene. This

signature is mainly directed at
defining the type and intensity
of the inflammatory response

Blood
Prediction of Acute

Rejection
(AUC = 0.93)

No validation on an
independent sample

set. Indeed, an
independant study
showed that adding
kSORT to classical
clinical variables

(eGFR, Proteinuria,
DSA) did not
increase their

diagnostic
performance [39]

[40,41]

The VIRTUUS panel: 3 genes
(18S-normalized CD3ε, CXCL10

mRNA, and 18S ribosomal
RNA) associated with

inflammation and
immune response

Blood No result yet

This is a design &
method presentation

of an ongoing
clinical trial

[42]

Proteomics
Urinary levels of CXCL9 and

CXCL10 proteins, both linked to
inflammation signaling

Urine

Prediction of T
cell-mediated

rejection (TCMR) and
antibody-mediated
rejection (ABMR)

(AUC: 0.75 and 0.83
respectively)

Prospective
cohort study [43]

Metabolomics None significant studies
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4.1. Genomics

Genomic studies have become of great importance in kidney transplantations [5,44].
The first landmark genomics study uncovered for the first-time a molecular heterogeneity
in AR [45].

Recently, genomic analyses have given more specific and robust results. Authors
investigated a panel of 13 genes: MET, ST5, and KAAG1 (tumor development or sup-
pression); RNF149, ASB15, and KLH13 (ubiquitination and proteasome); TGIF1, SPRY4,
WNT9A, RXRA, and FJX1 (developmental or growth pathways such as NOTCH/Wnt or
RAR); and CHCHD10 and SERINC5 (energy and membrane repair). They demonstrated
good predictive power for the development of fibrosis at 1 year (AUC 0.9) [36]. Researchers
have mobilized to unify genomics databases and predictive model selections, allowing
prediction of allograft function, late allograft failure, or tolerance [46]; with for instance the
demonstration of an association with long-term allograft function (p = 0.004) for polymor-
phisms of several genes such as CYP3A5 (involved in drug metabolization), CCR5, FOXP3,
and other genes involved in inflammation and immune response (interleukins, chemokines,
TLR pathway, and innate and adaptative immunity mediators); TGF b, VEGF, and other
mediators of fibrosis. However, this was performed in a small subset and requires larger
studies, meta-analysis, and subsequent validation [37].

4.2. Transcriptomics

Almost two decades ago, it was demonstrated that recipient urinary cell mRNA
screening has similar diagnostic performance as biopsy histological analysis for AR [38].
Later, these transcript sets were shown to correlate with biopsy diagnosis, themselves
having limitations for some diagnoses of rejection, identifying some of the limitations
of Banff’s classification [47]. Such transcriptomics data demonstrated unique findings in
clinical settings, whether in recipients’ peripheral blood, urine, or biopsies.

Further investigation on peripheral blood transcriptomics molecular analysis high-
lighted a 17-gene set to detect high risk of AR with high sensitivity (AUC = 0.93). The target
molecules were DUSP1, CFLAR, ITGAX, NAMPT, MAPK9, PSEN1, RYBP, NKTR, SLC25A37,
CEACAM4, RARA, RXRA, EPOR, GZMK, and RHEB) together with 18S ribosomal RNA
as a housekeeping gene, a molecular signature mainly directed at defining the type and
intensity of the inflammatory response. This project, called the Kidney Solid Organ Re-
sponse Test (kSORT), is currently undergoing validation in prospective clinical trials [40,41].
However, an independent study showed that adding kSORT to classical clinical variables
(eGFR, Proteinuria, and DSA) did not increase their diagnostic performance [39].

Recently, a manuscript described the design and methodology of a new clinical trial
that investigated three genes: 18S-normalized CD3ε, CXCL10 mRNA, and 18S ribosomal
RNA, all associated with inflammation and immune response, to determine their predictive
potential for rejection and infection in pediatric kidney transplant recipients: the VIRTUUS
molecular panel [42].

4.3. Proteomics

Proteomics investigations of molecular biomarkers have been increasingly used post-
transplantation. The most promising explored urinary levels of CXCL9 and CXCL10
proteins, both linked to inflammation signaling, were able to show good predictive potential
for T-cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR) (AUC: 0.75
and 0.83, respectively). However, none have been implemented in clinical practice [43].

Furthermore, smaller studies found differing patterns of protein biomarkers associated
with short- and long-term outcomes; however, there is no uniformly agreed molecular
panel as each study; similar to before-procurement studies, has different disease definitions,
sample collection, and methodologies for data acquisition and analysis [5,48].
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4.4. Metabolomics

Studies explored systemic metabolism-related molecular changes after kidney trans-
plantation in serum, plasma, and urine, all with the goal of reflecting the key processes
related to graft accommodation and possibly predicting rejection [25,49,50].

Overall, none of these studies resulted in molecular biomarkers progressing beyond
the discovery stage for similar reasons to proteomics; that is, a lack of a more unambiguous
identification of metabolite biomarkers and extensive validation efforts to enable these
markers to be integrated into patient health care [51].

5. Toward an Optimized Use of Omics in Clinical Application: Workflow, Advantages,
and Limits

Altogether, these omics approaches could become valuable tools in the clinic to dis-
cover and validate new molecular biomarkers and to open the possibility of preservation
tailored to the needs of the organ, increasing the number and the quality of donor organs.
Rather than employing a reductionist approach, these systems use a holistic and integrative
approach to better capture ongoing biological processes and their related molecules.

However, integration of such technologies and molecules in clinical practice requires
an understanding of the dynamics underlying molecular biomarker discovery and model
development [51–53]. Hence, we propose to summarize these into a specific workflow, as
is presented in Figure 1.

Figure 1. Toward an optimized use of omics in clinical application: workflow, advantages, and limits.
The workflow is divided into two sections: Discovery (I) and Validation (II), which in turn are divided
into several steps. All steps are described in the section, “Toward an optimized use of omics in clinical
application: workflow, advantages, and limits” of the review.
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The first phase is the DISCOVERY. It focuses on hypothesis generation without a priori
and is generally untargeted [51]. In short, this approach will extract the relevant molecular
markers from the pool, rather than start from hypothetically key molecules and attempt to
verify their importance.

Figure 1, a: Experimental design, defining targeted clinical issues, molecule types that
are likely involved (metabolites, nucleic acids, proteins, etc.), and thus the choice of high-
throughput technology to use.

Figure 1, b: Defining the molecular investigation technology, next-generation sequencing,
microarray, or mass-spectrometry, the major omics platforms have distinct limitations in
sampling and instrumental methods that must be taken into account. Human sample
collection, storage, and preparation are also critical issues, aiming at limiting internal
degradation of target molecules while remaining compatible with a clinical setting. This
may involve the use of stabilizer reagents (for instance, with RNA) or of pre-analytical
steps such as deprotonation (for instance, with metabolomics). In terms of the instrumental
method, optimal parameters selection is laborious: on the one hand, the industrial sector
offers a large catalog of these tools; on the other hand, the adjustment is conditioned by the
(often partial) researcher’s knowledge and the literature. To date, no consensus defines an
efficient configuration [50]; hence, the need for lab-specific optimization is unavoidable.

Figure 1, c: Data processing, the instrument generates a large dataset containing hun-
dreds to thousands of molecules and their respective detected level in each sample, pro-
ducing enormous tables, so-called «Big Data». The process and management of these
datasets are complex. The common stages of omics data processing are transformation,
normalization, quality control correction, noise filtration, and imputation. All of them are
essential and could be a potential source of error. Hence, it requires numerous adjustments
and perfect understanding [51,52]. Nowadays, automation is made possible by several
types of software, and it promotes some level of standards. However, such solutions,
especially commercial ones, sometimes act as «black-boxes», lacking transparency, which
could negatively impact future results. These standard approaches lead to «one size fits
all» for our data affecting the quality [54]. In most cases, each hypothesis and/or dataset
is unique and answers to its own standard approaches. It is therefore necessary to keep
a “made to measure” approach while investing significant energy to perform proper con-
trols. Moreover, it is of primary importance to use molecular markers for normalization,
such as a housekeeping gene in transcriptomics, but also a marked molecule for mass
spectrometry approaches.

Figure 1, d: Data analysis, chemometric is a discipline that manipulates data utilizing
mathematics and statistic fundamentals [55]. This step is sensitive, as it is easy to get
lost in the wide array of tools available [56]. In order to extract the relevant molecules
from the available pool present in the Big Data, data science provides a large number of
statistical models (also known as classifiers), from typical regressions to advanced machine
learning techniques (neural networks, support vector machines, decision trees, logistic and
multinomial regression, etc.). No clear guideline seems to exist in transplantation; hence,
each team applies their approach and, sometimes involuntarily, chooses the method to
their advantage. This is one of the biggest biases in data science: knowing how to properly
use modulization on the dataset [34,56,57]. This may bias the data and highlight molecules
as important, which will, later on, be discovered as artifacts, leading to loss of time and
avoidable spending. Moreover, the accuracy might be of limited significance if a reduced
cohort is used, as it could achieve significantly worse results when the method is extended,
and reciprocally. There are, however, several seminal works that can help in the building of
a more robust modeling strategy [55,58]. The “TRIPOD” guideline promotes some level
of standards or tasks to achieve to develop, validate, or update outcomes of statistical
models [56].

The second phase is the VALIDATION, aiming at validating the predictive model, and
thus the set of molecular biomarker(s) identified in the previous phase, over a large, and
new, sample set.
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Figure 1, e: Predicting model and validation, does the model performance reflects the
distance between the predicted and observed outcome? Is the model able to distinguish
patients who will experience the event from patients who will not? Does the predicting tool
account for competing risks in the population of interest? What is the model power? The
performances of the models are usually measured using the concordance statistics that cor-
respond to the ROC AUC for classification and to the correlation coefficient for regression,
which take into account the error risks. It is recommended to evaluate the predictive tool
both through internal and external validations. Internal validation includes random split-
sampling of cohort and resampling methods. External validation includes large uni- and
multi-centric cohorts to generalize the tool. Finally, molecular biomarker(s) candidate(s)
and these predictive models’ implementation in clinical practice can be considered [51,56].

Figure 1, f: Workflow optimization is aimed at the practical adaptation of predictive
tools toward easy routine implementation “at the patient’s bedside”. It is important to
consider that the most sophisticated, sensitive, and specific molecular biomarker(s) will
only reluctantly be accepted in clinical practice if the tool is too complex to implement. To
increase speed, it is necessary to re-optimize the analytical approach with only the specific
molecules in mind, in order to only target these and maximize executions of the signal
acquisition and analysis. This may include for instance-specific buffers and/or adjuvants,
which would maximize molecular recovery. Successful implementation into clinical practice
hinges on: (i) cost-effectiveness; (ii) availability of clinically realistic sample collection
and procedures; (iii) development and validation of viable bioanalytical strategies; and
(iv) software tools that allow for data analysis and fast translation into clinically meaningful
information [33,34,57].

Figure 1, g: Integration at the patient’s bedside, there are two aspects to consider in
order to foster the introduction of multiparametric omics-based tools to the clinic: the
analytical technology, and the end-user perspective. Regarding technology, omics relies
on high-end analytical automata, requiring a high level of expertise. The enrolment of
the medical biology services is thus of capital importance, and thankfully such high-end
technologies such as mass spectrometry and next-generation sequencing are now well
installed in the labs. It is thus possible to envision sending the patient’s sample through the
regular bioanalytical route and specialized personnel to perform the molecular extraction
and run of the sample, with the appropriate internal and external controls. Regarding the
end-user perspective, this is where the versatility of machine learning classifiers can be an
asset; while the diversity of possible outputs and overly complex molecular names can be
overwhelming at first, the involvement of a medical biologist trained in biology and data
science can transform it into a result tailored to the clinician’s need (on the donor of the
recipient side), with either a score, a decision tree, a relative risk, or a combination of such.
Help from software engineers can also be a bonus to implement the prediction algorithms
on user-friendly platforms (apps, webpages, etc.).

It is hoped that this will give the reader insight into the direction, in which the medical
sciences should, in our opinion, be moving over the next few years. The study of disease at
the molecular level could enable us to treat many diseases more rationally; however, it is
indispensable to undertake it the right way, to maximize benefits, and to avoid wasting
valuable patient samples. However, this will not happen overnight; there is likely to be
a long period of development and evaluation of our new technology before its clinical
application can be fully assessed.

6. Conclusions

In summary, we address the important issue of predicting the outcome of kidney
transplants, which is becoming increasingly relevant in clinical practice. As with other
techniques and tools, practical implementation of a molecular biomarker model should
be performed with caution and a degree of skepticism. An increased effort and invest-
ment between scientists, medical biologists, and clinicians seem to be the path toward a
proper solution.
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We perceived in renal transplant literature a willingness to work together. However,
in the studies reviewed herein, we found substantial variability in data collection, signal
processing methods, and choice of classifier to build predictive models. Moreover, the
definition of graft failure was particularly variable, and the endpoint may vary depending
on the clinician [59]. About half of the studies validated their model without external
data. For the few studies with external validation, the performance of their model was not
persuasive [51,60].

Even though we paint a negative picture of this field, omics molecular technologies
have enormous potential. Among these, metabolomics offers a low-cost option Moreover,
sample and data analysis can be performed in a matter of hours, which is compatible with
the timing in transplantations. The increased availability of high-definition equipment in
hospital biochemistry services (such as mass spectrometer, next-generation sequencing
machines, etc.) can foster the use of many omics technologies toward improving trans-
plantation, keeping the itinerary of the sample within typical lanes in medical practice,
hence improving the possibility for deployment into routine use [57,61]. Although our
study focused only on the four fundamental pillars, other omics technologies exist. These
other omics, including epigenomic, fluxomic, inomic, or lipidomic, could bring a novel
perspective to the field of transplantation [62,63].

As discussed above, the first promising steps have been made and clinical molecular
markers in combination with predictive models could provide valuable information on
allograft outcomes. In the future, omics technologies could bring a new regard to current
clinical practice and patient/graft management (Figure 2).

Figure 2. New perspective on renal transplant management. The arrows show the current manage-
ment (red arrow) and future potential management (green arrow) adopted for kidney transplantation.
Current management includes two steps: (a) Donor–Recipient pairing, based on evaluation of donor
variables and organ quality. To help clinicians in allocation, the Kidney Donor Profile Index (KDPI)
score can be used. (b) After kidney transplantation monitoring, using kidney biopsy and creatinine
level. However, such parameters cannot apprehend the complete phenotype of a patient and can lead
to premature loss of organs. Future management with omics: to improve quality of care in patients,
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omic approaches (i.e., genomics, transcriptomics, proteomics, and metabolomics) can be implemented
through several steps: (a) selection of optimal donor with the addition of omics-based predictive
tools to common clinical parameters; (b) preservation of kidney, which can be tailored to the need of
the organ based on an in-depth understanding of the organ (through omics data at the donor level)
and through real-time monitoring of the perfusate; (c) post-transplant monitoring and prediction
of acute rejection; throughout the life of the organ, graft management through bioinformatics could
improve clinical practice; and (d) prevent chronic graft loss; and (e) monitor for tolerance. Figure
adapted from reference [64].

Author Contributions: Conceptualization, R.T. and T.K.; methodology, M.L. and R.T.; validation,
R.T., T.K., L.P. and T.H.; formal analysis, M.L. and R.T.; investigation, M.L.; resources, L.P. and T.H.;
data curation, M.L. and R.T.; writing—original draft preparation, M.L.; writing—review and editing,
R.T.; visualization, M.L. and R.T.; supervision, R.T., T.K., L.P. and T.H.; project administration, T.K.,
L.P. and T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Inserm, Université de Poitiers and CHU de Poitiers.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Marie-Christine Duperrier for her help in
English editing and proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hariharan, S.; Johnson, C.P.; Bresnahan, B.A.; Taranto, S.E.; McIntosh, M.J.; Stablein, D. Improved Graft Survival after Renal

Transplantation in the United States, 1988 to 1996. N. Engl. J. Med. 2000, 342, 605–612. [CrossRef]
2. Jeon, K.-O.; Son, S.-Y.; Hahm, M.-I.; Kim, S.-I. Quality of Life among End-stage Renal Disease Treatments and Economic Evaluation

of Renal Transplantation and Hemodialysis Treatments. J. Korean Soc. Transplant. 2015, 29, 200. [CrossRef]
3. Williams, W.W.; Taheri, D.; Tolkoff-Rubin, N.; Colvin, R.B. Clinical Role of the Renal Transplant Biopsy. Nat. Rev. Nephrol. 2012,

8, 110–121. [CrossRef]
4. Christians, U.; Klawitter, J.; Klawitter, J. Biomarkers in Transplantation—Proteomics and Metabolomics. Ther. Drug Monit. 2016,

38, S70–S74. [CrossRef]
5. Salvadori, M.; Tsalouchos, A. Biomarkers in Renal Transplantation: An Updated Review. WJT 2017, 7, 161. [CrossRef]
6. Biomarker. Available online: https://www.ema.europa.eu/en/glossary/biomarker (accessed on 2 June 2022).
7. Califf, R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. 2018, 243, 213–221. [CrossRef] [PubMed]
8. Neagu, M.; Longo, C.; Ribero, S. Omics Landscape in Disease Biomarkers Discovery. Dis. Markers 2016, 2016, 4068252. [CrossRef]
9. Roth, S.C. What is Genomic Medicine? J. Med. Libr. Assoc. 2019, 107, 442–448. [CrossRef]
10. Fu, X.-D. Non-Coding RNA: A New Frontier in Regulatory Biology. Natl. Sci. Rev. 2014, 1, 190–204. [CrossRef] [PubMed]
11. Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci.

2017, 55, 182–196. [CrossRef] [PubMed]
12. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond Biomarkers and towards Mechanisms. Nat. Rev. Mol. Cell Biol.

2016, 17, 451–459. [CrossRef] [PubMed]
13. Troppmann, C.; Gillingham, K.J.; Benedetti, E.; Almond, P.S.; Gruessner, R.W.G.; Najarian, J.S.; Matas, A.J. Delayed Graft Function,

Acute Rejection, and Outcome After Cadaver Renal Transplantation: A Multivariate Analysis. Transplantation 1995, 59, 962–968.
[CrossRef]

14. Lee, A.P.K.; Abramowicz, D. Is the Kidney Donor Risk Index a Step Forward in the Assessment of Deceased Donor Kidney
Quality? Nephrol. Dial. Transplant. 2015, 30, 1285–1290. [CrossRef]

15. Dahmen, M.; Becker, F.; Pavenstädt, H.; Suwelack, B.; Schütte-Nütgen, K.; Reuter, S. Validation of the Kidney Donor Profile Index
(KDPI) to Assess a Deceased Donor’s Kidneys’ Outcome in a European Cohort. Sci. Rep. 2019, 9, 11234. [CrossRef] [PubMed]

16. Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.;
Knob, A.L.U.; et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science 2010,
329, 841–845. [CrossRef]

17. Freedman, B.I.; Pastan, S.O.; Israni, A.K.; Schladt, D.; Julian, B.A.; Gautreaux, M.D.; Hauptfeld, V.; Bray, R.A.; Gebel, H.M.;
Kirk, A.D.; et al. APOL1 Genotype and Kidney Transplantation Outcomes from Deceased African American Donors.
Transplantation 2016, 100, 194–202. [CrossRef]

http://doi.org/10.1056/NEJM200003023420901
http://doi.org/10.4285/jkstn.2015.29.4.200
http://doi.org/10.1038/nrneph.2011.213
http://doi.org/10.1097/FTD.0000000000000243
http://doi.org/10.5500/wjt.v7.i3.161
https://www.ema.europa.eu/en/glossary/biomarker
http://doi.org/10.1177/1535370217750088
http://www.ncbi.nlm.nih.gov/pubmed/29405771
http://doi.org/10.1155/2016/4068252
http://doi.org/10.5195/jmla.2019.604
http://doi.org/10.1093/nsr/nwu008
http://www.ncbi.nlm.nih.gov/pubmed/25821635
http://doi.org/10.1093/chromsci/bmw167
http://www.ncbi.nlm.nih.gov/pubmed/28087761
http://doi.org/10.1038/nrm.2016.25
http://www.ncbi.nlm.nih.gov/pubmed/26979502
http://doi.org/10.1097/00007890-199504150-00007
http://doi.org/10.1093/ndt/gfu304
http://doi.org/10.1038/s41598-019-47772-7
http://www.ncbi.nlm.nih.gov/pubmed/31375750
http://doi.org/10.1126/science.1193032
http://doi.org/10.1097/TP.0000000000000969


Int. J. Mol. Sci. 2022, 23, 6318 13 of 14

18. Hoffmann, S.; Park, J.; Jacobson, L.M.; Muehrer, R.J.; Lorentzen, D.; Kleiner, D.; Becker, Y.T.; Hullett, D.A.; Mannon, R.;
Kirk, A.D.; et al. Donor Genomics Influence Graft Events: The Effect of Donor Polymorphisms on Acute Rejection and Chronic
Allograft Nephropathy. Kidney Int. 2004, 66, 1686–1693. [CrossRef] [PubMed]

19. Moore, J.; McKnight, A.J.; Döhler, B.; Simmonds, M.J.; Courtney, A.E.; Brand, O.J.; Briggs, D.; Ball, S.; Cockwell, P.;
Patterson, C.C.; et al. Donor ABCB1 Variant Associates with Increased Risk for Kidney Allograft Failure. J. Am. Soc. Nephrol.
2012, 23, 1891–1899. [CrossRef]

20. Hernandez-Fuentes, M.P.; Franklin, C.; Rebollo-Mesa, I.; Mollon, J.; Delaney, F.; Perucha, E.; Stapleton, C.; Borrows, R.; Byrne, C.;
Cavalleri, G.; et al. Long- and Short-term Outcomes in Renal Allografts with Deceased Donors: A Large Recipient and Donor
Genome-wide Association Study. Am. J. Transplant. 2018, 18, 1370–1379. [CrossRef]

21. Halloran, P.F.; Einecke, G. Microarrays and Transcriptome Analysis in Renal Transplantation. Nat. Rev. Nephrol. 2006, 2, 2–3.
[CrossRef] [PubMed]

22. Archer, K.J.; Guennel, T. An Application for Assessing Quality of RNA Hybridized to Affymetrix GeneChips. Bioinformatics 2006,
22, 2699–2701. [CrossRef] [PubMed]

23. Hauser, P.; Schwarz, C.; Mitterbauer, C.; Regele, H.M.; Mühlbacher, F.; Mayer, G.; Perco, P.; Mayer, B.; Meyer, T.W.; Oberbauer, R.
Genome-Wide Gene-Expression Patterns of Donor Kidney Biopsies Distinguish Primary Allograft Function. Lab. Investig. 2004,
84, 353–361. [CrossRef]

24. Mueller, T.F.; Reeve, J.; Jhangri, G.S.; Mengel, M.; Jacaj, Z.; Cairo, L.; Obeidat, M.; Todd, G.; Moore, R.; Famulski, K.S.; et al. The
Transcriptome of the Implant Biopsy Identifies Donor Kidneys at Increased Risk of Delayed Graft Function. Am. J. Transplant.
2007, 8, 78–85. [CrossRef]

25. Mas, V.R.; Archer, K.J.; Yanek, K.; Dumur, C.I.; Capparuccini, M.I.; Mangino, M.J.; King, A.; Gibney, E.M.; Fisher, R.;
Posner, M.; et al. Gene Expression Patterns in Deceased Donor Kidneys Developing Delayed Graft Function After Kidney
Transplantation. Transplantation 2008, 85, 626–635. [CrossRef] [PubMed]

26. Mas, V.R.; Scian, M.J.; Archer, K.J.; Suh, J.L.; David, K.G.; Ren, Q.; Gehr, T.W.B.; King, A.L.; Posner, M.P.; Mueller, T.F.; et al.
Pretransplant Transcriptome Profiles Identify among Kidneys with Delayed Graft Function Those with Poorer Quality and
Outcome. Mol. Med. 2011, 17, 1311–1322. [CrossRef]

27. Zhang, W.; Yi, Z.; Wei, C.; Keung, K.L.; Sun, Z.; Xi, C.; Woytovich, C.; Farouk, S.; Gallon, L.; Menon, M.C.; et al. Pretransplant
Transcriptomic Signature in Peripheral Blood Predicts Early Acute Rejection. JCI Insight 2019, 4, e127543. [CrossRef]

28. Snoeijs, M.G.J.; Pulinx, B.; van Dieijen-Visser, M.P.; Buurman, W.A.; van Heurn, L.W.E.; Wodzig, W.K.W.H. Characterization of
the Perfusate Proteome of Human Donor Kidneys. Ann. Clin. Biochem. 2013, 50, 140–146. [CrossRef]

29. Koo, T.Y.; Jeong, J.C.; Lee, Y.; Ko, K.-P.; Lee, K.-B.; Lee, S.; Park, S.J.; Park, J.B.; Han, M.; Lim, H.J.; et al. Pre-Transplant Evaluation
of Donor Urinary Biomarkers Can Predict Reduced Graft Function After Deceased Donor Kidney Transplantation. Medicine 2016,
95, e3076. [CrossRef] [PubMed]

30. Gagnebin, Y.; Pezzatti, J.; Lescuyer, P.; Boccard, J.; Ponte, B.; Rudaz, S. Combining the Advantages of Multilevel and Orthogonal
Partial Least Squares Data Analysis for Longitudinal Metabolomics: Application to Kidney Transplantation. Anal. Chim. Acta
2020, 1099, 26–38. [CrossRef]

31. Kvietkauskas, M.; Zitkute, V.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. The Role of Metabolomics in Current Concepts of
Organ Preservation. IJMS 2020, 21, 6607. [CrossRef]

32. Loupy, A.; Aubert, O.; Orandi, B.J.; Naesens, M.; Bouatou, Y.; Raynaud, M.; Divard, G.; Jackson, A.M.; Viglietti, D.; Giral, M.; et al.
Prediction System for Risk of Allograft Loss in Patients Receiving Kidney Transplants: International Derivation and Validation
Study. BMJ 2019, 366, l4923. [CrossRef]

33. Raynaud, M.; Aubert, O.; Divard, G.; Reese, P.P.; Kamar, N.; Yoo, D.; Chin, C.-S.; Bailly, É.; Buchler, M.; Ladrière, M.; et al.
Dynamic Prediction of Renal Survival among Deeply Phenotyped Kidney Transplant Recipients Using Artificial Intelligence: An
Observational, International, Multicohort Study. Lancet Digit. Health 2021, 3, e795–e805. [CrossRef]

34. Pahl, E.S.; Street, W.N.; Johnson, H.J.; Reed, A.I. A Predictive Model for Kidney Transplant Graft Survival Using Machine
Learning. Comput. Sci. Inf. Technol. CSIT 2020, 10, 99–108. [CrossRef]

35. Montero, N.; Codina, S.; Cruzado, J.M. Prediction Scores for Risk of Allograft Loss in Patients Receiving Kidney Transplants: Nil
Satis Nisi Optimum. Clin. Kidney J. 2020, 13, 745–748. [CrossRef]

36. Oetting, W.S.; Dorr, C.; Remmel, R.P.; Matas, A.J.; Israni, A.K.; Jacobson, P.A. Concepts of Genomics in Kidney Transplantation.
Curr. Transpl. Rep. 2017, 4, 116–123. [CrossRef]

37. Sarwal, M.; Chua, M.-S.; Kambham, N.; Hsieh, S.-C.; Satterwhite, T.; Masek, M.; Salvatierra, O. Molecular Heterogeneity in Acute
Renal Allograft Rejection Identified by DNA Microarray Profiling. N. Engl. J. Med. 2003, 349, 125–138. [CrossRef]

38. O’Connell, P.J.; Zhang, W.; Menon, M.C.; Yi, Z.; Schröppel, B.; Gallon, L.; Luan, Y.; Rosales, I.A.; Ge, Y.; Losic, B.; et al. Biopsy
Transcriptome Expression Profiling to Identify Kidney Transplants at Risk of Chronic Injury: A Multicentre, Prospective Study.
Lancet 2016, 388, 983–993. [CrossRef]

39. Dorr, C.R.; Oetting, W.S.; Jacobson, P.A.; Israni, A.K. Genetics of Acute Rejection after Kidney Transplantation. Transpl. Int. 2018,
31, 263–277. [CrossRef]

40. O’Brien, R.P.; Phelan, P.J.; Conroy, J.; O’Kelly, P.; Green, A.; Keogan, M.; O’Neill, D.; Jennings, S.; Traynor, C.; Casey, J.; et al.
A Genome-Wide Association Study of Recipient Genotype and Medium-Term Kidney Allograft Function. Clin. Transplant. 2013,
27, 379–387. [CrossRef]

http://doi.org/10.1111/j.1523-1755.2004.00936.x
http://www.ncbi.nlm.nih.gov/pubmed/15458467
http://doi.org/10.1681/ASN.2012030260
http://doi.org/10.1111/ajt.14594
http://doi.org/10.1038/ncpneph0066
http://www.ncbi.nlm.nih.gov/pubmed/16932378
http://doi.org/10.1093/bioinformatics/btl459
http://www.ncbi.nlm.nih.gov/pubmed/16935927
http://doi.org/10.1038/labinvest.3700037
http://doi.org/10.1111/j.1600-6143.2007.02032.x
http://doi.org/10.1097/TP.0b013e318165491f
http://www.ncbi.nlm.nih.gov/pubmed/18347543
http://doi.org/10.2119/molmed.2011.00159
http://doi.org/10.1172/jci.insight.127543
http://doi.org/10.1258/acb.2012.011144
http://doi.org/10.1097/MD.0000000000003076
http://www.ncbi.nlm.nih.gov/pubmed/26986138
http://doi.org/10.1016/j.aca.2019.11.050
http://doi.org/10.3390/ijms21186607
http://doi.org/10.1136/bmj.l4923
http://doi.org/10.1016/S2589-7500(21)00209-0
http://doi.org/10.5121/csit.2020.101609
http://doi.org/10.1093/ckj/sfaa081
http://doi.org/10.1007/s40472-017-0153-x
http://doi.org/10.1056/NEJMoa035588
http://doi.org/10.1016/S0140-6736(16)30826-1
http://doi.org/10.1111/tri.13084
http://doi.org/10.1111/ctr.12093


Int. J. Mol. Sci. 2022, 23, 6318 14 of 14

41. Li, B.; Hartono, C.; Ding, R.; Sharma, V.K.; Ramaswamy, R.; Qian, B.; Serur, D.; Mouradian, J.; Schwartz, J.E.; Suthanthiran, M.
Noninvasive Diagnosis of Renal-Allograft Rejection by Measurement of Messenger RNA for Perforin and Granzyme B in Urine.
N. Engl. J. Med. 2001, 344, 947–954. [CrossRef]

42. Mueller, T.F.; Einecke, G.; Reeve, J.; Sis, B.; Mengel, M.; Jhangri, G.S.; Bunnag, S.; Cruz, J.; Wishart, D.; Meng, C.; et al.
Microarray Analysis of Rejection in Human Kidney Transplants Using Pathogenesis-Based Transcript Sets. Am. J. Transplant.
2007, 7, 2712–2722. [CrossRef]

43. The PLOS Medicine Staff Correction: The KSORT Assay to Detect Renal Transplant Patients at High Risk for Acute Rejection:
Results of the Multicenter AART Study. PLoS Med. 2015, 12, e1001790. [CrossRef]

44. Roedder, S.; Sigdel, T.; Salomonis, N.; Hsieh, S.; Dai, H.; Bestard, O.; Metes, D.; Zeevi, A.; Zeevi, A.; Gritsch, A.; et al. The KSORT
Assay to Detect Renal Transplant Patients at High Risk for Acute Rejection: Results of the Multicenter AART Study. PLoS Med.
2014, 11, e1001759. [CrossRef] [PubMed]

45. Van Loon, E.; Giral, M.; Anglicheau, D.; Lerut, E.; Dubois, V.; Rabeyrin, M.; Brouard, S.; Roedder, S.; Spigarelli, M.G.;
Rabant, M.; et al. Diagnostic Performance of KSORT, a Blood-based MRNA Assay for Noninvasive Detection of Rejection
after Kidney Transplantation: A Retrospective Multicenter Cohort Study. Am. J. Transplant. 2021, 21, 740–750. [CrossRef]

46. Kumar, J.; Contrepois, K.; Snyder, M.; Grimm, P.C.; Moudgil, A.; Smith, J.M.; Bobrowski, A.E.; Verghese, P.S.; Hooper, D.;
Ingulli, E.; et al. Design and Methods of the Validating Injury to the Renal Transplant Using Urinary Signatures (VIRTUUS) Study
in Children. Transplant. Direct 2021, 7, e791. [CrossRef]

47. Rabant, M.; Amrouche, L.; Lebreton, X.; Aulagnon, F.; Benon, A.; Sauvaget, V.; Bonifay, R.; Morin, L.; Scemla, A.; Delville, M.; et al.
Urinary C-X-C Motif Chemokine 10 Independently Improves the Noninvasive Diagnosis of Antibody–Mediated Kidney Allograft
Rejection. JASN 2015, 26, 2840–2851. [CrossRef]

48. Suhail, S.M. Significance of Urinary Proteome Pattern in Renal Allograft Recipients. J. Transplant. 2014, 2014, 139361. [CrossRef]
[PubMed]
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