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Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. DNA repair genes play a vital role in
cancer development. However, there has been very little research about DNA repair genes in UM./is study aimed to evaluate the
importance of DNA repair genes and established a signature for predicting prognosis and immune features of UM. In this study,
we mined TCGA database through bioinformatics analysis, and the intersect was taken between DNA repair genes and prognosis
related genes and yielded 52 genes. We divided 80 UM patients into C1 and C2 subtypes. GSEA results indicated that abundant
cancer-promoting functions and signaling pathways were activated in C2 subtype and the proportion of SNVs was higher in C2
than in C1 which suggested a worse prognosis. We built a six DNA repair genes model including ITPA, CETN2, CCNO, POLR2J,
POLD1, and POLA1 by LASSO regression to predict prognosis of UM patients and utilized the median value of risk scores as the
cutoff point to differentiate high risk and low risk group. /e survival analyses and the receiver operating characteristic (ROC)
curves in the validation group and entire data set confirmed the accuracy of this model.We also constructed a nomogram based on
age and risk scores to evaluate the relationship between risk scores and clinical outcome. /e calibration curve of the overall
survival (OS) indicated that the performance of this model is steady and robust. Finally, the enrichment analysis showed that there
were complex regulatory mechanisms in UM patients. /e immune infiltration analysis indicated that the immune infiltration in
C2 in the high risk group was different from that in the low risk group. Our findings indicated that the DNA repair genes may be
related to UM prognosis and provide new insight into the underlying mechanisms.

1. Introduction

Uveal melanoma (UM), which arises from melanocytes of
the choroid (90%), ciliary body (6%), or iris (4%) of the eye,
is the most common primary intraocular malignancy in
adults [1,2]. Seven thousand people worldwide are diagnosed
with UM each year [3]. /e incidence of UM in the United
States (5.1 per million per year) has remained unchanged
from 1973 to 2008 [4]. /e incidence of UM is low in Africa
(0.3 per million per year) and Asia such as Japan (0.6 per
million per year) [5, 6]. In the past 30 years, although the
success of UM with surgery or radiotherapy is high, more
than 50% of UM patients still have systemic metastasis [7].
During 3-, 5-, and 10-year follow-up, Carol found that the

metastasis rates of more than 8000 UM patients were 8%,
15%, and 25%, respectively [8]./ere is no effective treat-
ment strategy for metastatic UM patients, whose median
survival time is less than 1 year [9,10]. Several pathological
factors are related to tumor metastasis and prognosis such as
cell type, large size, intrascleral and extrascleral invasion,
ciliary body involvement, and optic nerve extension [11–13].

DNA damage can lead to gene mutation, contributing to
cancer and other related diseases [14]. DNA repair process,
including base excision repair, nucleotide excision repair,
mismatch excision, and homologous recombination, is
constantly active when DNA damage occurs [15]. Abnormal
DNA repair, considered as a hallmark of cancer cells, often
occurs in the evolution of many malignancies [16]. Research
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in the field of UM has mainly focused on genetic, with the
aim of unravel UM biology, and revealed potential thera-
peutic targets [17,18].

However, it is still unclear whether and how DNA repair
genes are involved in the occurrence and development of
UM./erefore, it is of clinical significance to find genes that
are associated with prognosis in UM based on DNA repair
gene expression profiles. Some studies have explored the
relationship between gene sets and disease through bio-
informatics analysis and established risk prediction models
[19, 20]. In our study, we divided two subtypes on the basis
of DNA repair genes for UM and a risk score model to
evaluate prognosis.

2. Materials and Methods

/e transcriptome data and simple nucleotide variant (SNV)
of 80 UM patients were downloaded from /e Cancer
Genome Atlas database (TCGA, https://cancergenome.nih.
gov/). /e relevant clinicopathological characteristics in-
cluding age, gender, and tumor stage were downloaded from
the UCSC Xena website (https://xena.ucsc.edu/). /e de-
tailed clinical characteristics are shown in Table 1.

2.1. Identification of DNA Repair Gene-Based Subtypes.
Univariate cox regression analysis was performed on all
genes, and the prognosis-related genes were identified
with criteria of p< 0.05.150 DNA repair genes were
extracted from the gene set, “HALLMARK_D

NA_REPAIR,” from Molecular Signatures Database v7.4.
/en, we obtained 52 DNA-repair genes, which had
statistically significant hazard ratio (HR) related to patient
overall survival (OS). Finally, the expression level of
intersecting genes were used to identify new subtypes
using NMF R package and evaluated the best k value [21].
/en, we used the principal component analysis (PCA) to
evaluate whether the subtype classification is reasonable.
Next, the survival curve was used to evaluate the difference
in prognosis of different subtypes. We randomly selected 8
genes to further compare the differences of expression
levels in the subtypes.

2.2. SNVs in the Subtypes. We used tumor mutation data
obtained from TCGA to analyze the SNVs in the subtypes
and calculated the mutation frequency of all genes using
maftools package [22]. /e top 30 genes with the most
significant mutation frequency difference were listed by
waterfall plots.

2.3. Enrichment Analysis in the Subtypes. GSEA were per-
formed using the clusterProfiler R package in different
subtypes to clarify the key processes activated in subtypes
with poor prognosis [23]. We also analyzed the hallmark
gene sets to deduce their functions and determined whether
the gene sets differed significantly between the subtypes. /e
research was to explore the differences in functions and
pathways between the subtypes.

Table 1: Clinical characteristics of UM patients.

Characteristics TCGA-UM
Age
<65 45 (56.25%)
≥65 35 (43.75%)

Gender
Female 35 (43.75%)
Male 45 (56.25%)

Tumor stage
Stage I 0
Stage II 36 (45%)
Stage III 40 (50%)
Stage IV 4 (5%)

Tumor diameter (mm)
<20 60 (75%)
≥20 19 (23.75%)
Unknown 1 (1.25%)

Tumor thickness (mm)
<10 29 (36.25%)
≥10 51 (63.75%)

Person neoplasm cancer status
With tumor 9 (11.25%)
Tumor-free 56 (70%)
Unknown 15 (18.75%)

Mitotic count
<20 42 (52.5%)
≥20 11 (13.75%)
Unknown 27 (33.75%)
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Figure 1: Continued.
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2.4. Development of a Risk Prediction Model Based on DNA
Repair Genes. 80 UM patients from TCGA were randomly
divided into a training group (n� 56) and an internal val-
idation group (n� 24). In the training group, we selected 6
genes out of 52 DNA repair genes to construct a risk model
through lasso regression. Patients were divided into the high
risk group and low risk group by the median risk score.
/en, we evaluated the risk model in the training group by
survival analysis and 1-, 2-, and 3-year ROC curve. At the
same time, we conducted validation in the internal valida-
tion group and the entire data set to validate the predictive
effect of the model.

2.5. Establishment and Evaluation of Clinical Prognostic
Model. We performed Univariate and multivariate Cox

regression analysis on clinicopathological parameters and risk
scores including age, gender, and tumor stage to analyze their
predictive ability for OS. A nomogram was constructed based
on age and risk scores. /e 1-, 2-, and 3-year survival time of
each patient was predicted according to the nomogram.
Meanwhile, the AUC (area under the curve) and calibration
curve were used to evaluate the prediction efficiency of the
model. /e analysis of this study is in accordance with the
TRIPOD statement (http://www.tripod-statement.org/).

2.6. Functional Enrichment Analysis. /e Gene Ontology
(GO) enrichment analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis were applied to
differentially expressed genes between the high risk and low
risk groups. P< 0.05 was considered statistically significant.
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Figure 1: (a) Venn plot of DNA-related regulators. In total, 52 genes were revealed in the intersection between survival-associated genes and
DNA repair-related genes. (b) k� 2 is the best value. (c) 80 UMpatients were clustered by nonnegative matrix factorization (NMF)methods.
(d) PCA showed a significant difference between two subtypes. (e) Survival curves for patients with two subtypes. (f ) Boxplot depicting
expression levels of some DNA repair genes in the C1 and C2 subtypes.
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2.7. ImmuneCell Infiltration Levels between theHighRisk and
LowRisk Subgroups ofUMPatients. In order to compare the
proportion of different immune cells in the group with the
worst prognosis and the low risk group, we analyzed 22
human immune cell phenotypes in the tumor immune
microenvironment (TME) using CIBERSORT algorithm.
Mann–Whitney U-test was used to compare the infiltration
level of immune cells between the two groups.

2.8. Statistical Analysis. All statistical analyses were per-
formed using R version 4.0.5. Cox regression was used to
identify prognosis-related genes, setting P< 0.05 as the
cutoff value for significance. In all other analyses, P< 0.05
was the threshold for statistical significance.

3. Results

3.1. Selection of Prognostic DNA Repair-Related Regulators.
In our study, we extracted the survival information and
transcriptome data of 80 UM patients from TCGA database
and 150 DNA repair genes from GSEA database, and then,
we performed univariate cox regression analysis on all genes
and identified 9304 prognosis-related genes. Finally, 52
prognosis-related DNA repair genes were mined and se-
lected in NMF cluster analysis (Figure 1(a)). As shown in
Figure 1(b), k� 2 is the best value. /e consensus matrix
revealed cluster 1 and cluster 2, namely, C1 (n� 44) and C2
(n� 36) (Figure 1(c)). As shown in PCA plot, 80 patients
were well divided into two different subtypes according to
the expression pattern of 52 DNA repair genes (Figure 1(d)).
Survival analysis showed that C2 subtype was a high risk

subtype, and the prognosis of its patients was worse than that
of C1 subtype (Figure 1(e)). As shown in Figure 1(f), DNA
repair gene expression was statistically different between two
subtypes.

3.2. GSEA of the Two Subtypes. We selected gene sets with
statistical significance in the GSEA and ranked these sets
according to normalized enrichment scores (NES). /e top
five results are displayed in Figure 2(a). We found that
HALLMARK_COMPLEMENT, HALLMARK_GLYCOL-
YSIS, HALLMARK_INTERFERON_GAMMA_RES-
PONSE, HALLMARK_MTORC1_SIGNALING, and
HALLMARK_ TNFA_SIGNALING_VIA_NFKB were all
activated in the C2 subtype. KEGG pathway analysis showed
KEGG_AXON_GUIDANCE, KEGG_CELL_CYCLE,
KEGG_INSULIN_SIGNALING_PATHWAY, KEG-
G_LYSOSOME, and KEGG_RIBOSOME enrichment pri-
marily in the C2 subtype (Figure 2(b)).

3.3. Difference in SNVs between Two Subtypes.
Furthermore, we analyzed the mutation landscape in C1 and
C2 subtype using the “maftools” R package (Figures 3(a) and
3(b)). /e top 30 genes with the highest mutational fre-
quency were selected and visualized (Figures 3(c) and 3(d)).
Among the top 30 genes with the highest mutation rates in
C1 and C2 subtypes, only GNAQ, BAP1, GNA11 and SF3B1
genes are the same. Compared with C1 subtype, 26 genes in
C2 subtype, such as PLCB4, FBN1, EP400, AR, APC,
ANXA2, ANKRD27, and ANKK1, may be associated with
poor prognosis.

0.0

0.2

0.4

0.6

Ru
nn

in
g 

En
ric

hm
en

t S
co

re

−1

0

1

2

10000 20000 30000 40000
Rank in Ordered Dataset

Ra
nk

ed
 L

ist
 M

et
ric

HALLMARK_COMPLEMENT
HALLMARK_GLYCOLYSIS
HALLMARK_INTERFERON_GAMMA_RESPONSE

HALLMARK_MTORC1_SIGNALING
HALLMARK_TNFA_SIGNALING_VIA_NFKB

(a)

10000 20000 30000 40000
Rank in Ordered Dataset

0.0

0.2

0.4

0.6

Ru
nn

in
g 

En
ric

hm
en

t S
co

re

−1

0

1

2

Ra
nk

ed
 L

ist
 M

et
ric

KEGG_AXON_GUIDANCE
KEGG_CELL_CYCLE
KEGG_INSULIN_SIGNALING_PATHWAY

KEGG_LYSOSOME
KEGG_RIBOSOME

(b)

Figure 2: (a) Top five enrichment terms (ranked in descending order of NES). P< 0.05 was defined as statistically significant. (b) Top five
KEGG terms.
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3.4. Construction of 6-Gene Risk Model. We sought to
identify the key genes for prognostic value using LASSO
model and ultimately found out six genes including CCNO,
CETN2, ITPA, POLA1, POLD1, and POLR2J (Figures 4(a)
and 4(b)). Pearson’s correlation coefficient was used to
examine the association among these six genes (Figure 4(c)).

3.5. Validation of the Model. Next, patients in the training
group (n� 56), internal validation group (n� 24), and entire
data set were ranked according to risk scores./e expression
levels of these 6 genes were evaluated in the three groups,
respectively, and the stability of the results were robust.
Kaplan–Meier survival curve and tdROC analyses were used
to evaluate the effectiveness of the risk model in three data
sets. As shown in Figures 5(a)–5(h), patients with higher risk
scores had a worse OS. In the tdROC, the AUC values all
exceeded 0.9, indicating a good fit (Figures 5(c), 5(f ), and
5(i)).

3.6. Construction of Nomogram in UM Patients. /e clinical
characteristics combined with the expression of six core DNA-
repair genes are shown in the Figure 6(a). /en, we performed
univariate and multivariate cox regression analysis on clini-
copathological parameters and risk scores including age, gender,
and tumor stage to analyze their predictive ability for overall
survival (Figures 6(b) and 6(c)). A nomogram was constructed
based on age and risk score./e 1-, 2-, and 3-year survival time
of each patient was predicted according to the nomogram
(Figure 6(d)). At the same time, the calibration curve is used to
evaluate the prediction efficiency of themodel (Figure 6(e))./e
AUC of the nomogram model is 0.973, 0.956, and 0.815, re-
spectively (Supplementary Materials (available here)).

3.7. Enrichment Analysis Results. GO enrichment analysis
and KEGG pathway analysis were performed to identify the
different functions and related signaling pathways between
high risk and low risk groups. However, KEGG pathway
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Figure 3: (a, b) /e mutation landscape in C1 and C2 subtype. (c, d) /e top 30 genes with the highest mutational frequency in C1 and C2
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analysis showed enrichment in signaling pathways has sta-
tistical insignificance. GO enrichment analysis showed that
genes were enriched in cyclic-nucleotide-mediated signaling,
notch binging, second-messenger-mediated signaling, cAMP-
mediated signaling, and collagen-containing extracellular
matrix. Compared with the low risk group, the enrichment of
these functions and related signaling pathways may lead to a
worse prognosis in the high risk group (Figure 7).

3.8. Immune Landscape of Different Groups. We conducted
CIBERSORTanalysis to investigate the different immune
cells infiltration in 80 UM patients (Figure 8(a)). We also

analyzed the differential expression of four common
immune checkpoint molecules including PD 1, CTLA 4,
LAG 3, and STING. We found that the high risk group
has a higher expression of PD 1, CTLA 4, LAG 3, and
STING (Figure 8(b)). In order to determine the highest
risk group, we established several new groups including
the C1 subtype in the high risk group, C1 subtype in the
low risk group, C2 subtype in the high risk group, and C2
subtype in the low risk group. Kaplan–Meier survival
curve analysis presented that C2 subtype with high risk
was the group with worst prognosis, compared with the
other three groups (Figure 8(c)). Wilcox test was per-
formed to identify the difference in enrichment levels of
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22 immune cells between C2 subtype in the high risk
group and low risk group. /e result indicated that C2
subtype in the high risk group had the significant levels of
resting mast cells, resting memory CD4 T cells, CD8
T cells, monocytes, macrophages M1 cells, follicular
helper T cells, and activated memory CD4+ T cells
(Figure 8(d)).

4. Discussion

As the most common malignant primary intraocular tumor in
adults, themortality of UMpatients within 5 years is more than
95%. Because of its unique biological and clinical behavior,
more than half of the patients have a poor prognosis, so it is
vital to find effective prognostic biomarkers [24].
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Figure 5: (a–i) /e distributions of risk scores, alive/dead status, and expression of DNA repair genes, Kaplan–Meier curves of patients in
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DNA repair is essential for the protection of genomes
by reducing the number of mutations that may lead to
carcinogenicity [25]. However, its role in UM has not been
clearly understood. Here, we introduced the relationship
between DNA repair genes and UM patients to identify its

expression pattern and find new prognostic-related ther-
apeutic targets.

In this study, we mined TCGA database through bio-
informatics analysis, and the intersect was taken between
DNA repair genes and prognosis-related genes and yielded
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Figure 6: (a) /e correlation between their expression and other clinical characteristic. (b, c) Univariate and multivariate cox regression
analysis results. (d) /e nomogram based on age and risk scores. (e) /e calibration curve of 1, 2, and 3 years.

14 Journal of Oncology



52 genes. Our results showed that UM patients can be di-
vided into C1 and C2 subtypes based on the 52 genes. GSEA
results indicated that abundant cancer-promoting functions
and signaling pathways were activated in C2 subtype and the
proportion of SNVs was higher in C2 than in C1 which
suggested a worse prognosis. In the meanwhile, we built a six
DNA repair genes model including ITPA, CETN2, CCNO,
POLR2J, POLD1, and POLA1 by LASSO regression to
predict prognosis of UM patients and utilized median value
of risk scores as the cutoff point to differentiate the high risk
and low risk group. /e survival analyses and ROC curve in
the validation group and entire data set confirmed the ac-
curacy of this model. Inosine triphosphate pyrophosphatase

(ITPA) encoded by ITPA gene in mammals can hydrolyze
ITP and dITP into purine nucleoside monophosphate and
pyrophosphate [26,27]. CETN2, a calcium-binding protein,
is possible related to the proper duplication and segregation
of the centrosome [28]. CCNO, essential for DNA damage
repair, is an essential regulator of endogenous apoptosis
[29]. POLR2J gene encodes submit of RNA polymerase II.
Researchers have found that there may be a connection
between POLR2J gene family and several hRPB11 proteins
in humans [30–32]. POLD1 gene encodes the 125 kDa
catalytic subunit of DNA polymerase delta, which is essential
for proofreading and fidelity in DNA replication [33].
POLA1 encodes the catalytic unit of DNA polymerase α,
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which together with the primase complex launches the DNA
replication process [34]. However, the role of these genes in
UM patients is unclear. Survival analysis showed that the
expression of these six genes was related to poor prognosis,
which provided new directions for exploring the mechanism
of UM occurrence and development in the future. We also
constructed a nomogram based on age and risk scores to

evaluate the relationship between risk scores and clinical
prognosis. /e calibration curve of the 1-, 2-, and 3-year OS
indicated that the performance of this model is steady and
robust.

Finally, the enrichment analysis showed that there were
complex regulatory mechanisms in UM patients. /e im-
mune infiltration analysis indicated that the immune
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Figure 8: (a) /e different immune cells infiltration in UM patients. (b) Expression of four common immune checkpoints. (c)
Kaplan–Meier survival curve analysis. (d)/e difference in enrichment levels of 22 immune cells between C2 subtype in the high risk group
and low risk group.
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infiltration in C2 with the high risk group was different from
that in the low risk group, which may be the reason for the
worst prognosis. Previous studies have suggested that the
combination of immunotherapy (IT) and radiotherapy (RT)
seems to be a safe treatment, which can be divided into two
categories according to the combination timing: (1) com-
bination of RT and IT after the tumor escapes the immune
system; (2) combination of RT and IT during the induction
phase [35]. Our study shows that there are different immune
infiltration patterns in UM patients, which may have an
impact on the effect of combined treatment of IT and RT.
/erefore, we can further study these different functional
pathways and immune infiltration patterns, so as to improve
more choices for the treatment strategies of UM in the
future.

5. Conclusion

In this study, we identified two subtypes, C1 and C2. /e C2
subtype was related to a worse prognosis. Abundant cancer-
promoting functions and signaling pathways were activated
in C2 subtype, and the proportion of SNVs was higher in C2
than in C1 which suggested a worse prognosis. We con-
structed 6-gene risk model and nomogram based on age and
risk score, which can perfectly predict the prognosis of UM
patients. Finally, our results showed immune cells infiltra-
tion plays essential role in prognosis.

Data Availability

/e data used to support the findings of this study are
available from the corresponding author upon request.

Ethical Approval

/is article does not contain any studies with human par-
ticipant performed by any of the authors.

Conflicts of Interest

/e authors declare that there are no conflicts of interest.

Authors’ Contributions

TaoWang and Dingwei Liu contributed equally to this work.

Acknowledgments

/is work was supported by the National Natural Science
Foundation of China (81960178) and Natural Science
Foundation of Jiangxi Province (20192BAB205050).

Supplementary Materials

/e AUC of the nomogrammodel is 0.973, 0.956, and 0.815,
respectively. /e AUC of (a) 1 year; (b) 2 years; (c) 3 years.
(Supplementary Materials)

References

[1] J. Kaur, M. A. Malik, R. Gulati, S. V. Azad, and S. Goswami,
“Genetic determinants of uveal melanoma,” Tumor Biology,
vol. 35, no. 12, pp. 11711–11717, 2014.

[2] S. Kaliki and C. L. Shields, “Uveal melanoma: relatively rare
but deadly cancer,” Eye, vol. 31, no. 2, pp. 241–257, 2017.
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