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ABSTRACT: For large-scale screening studies there is a need
to estimate the diffusion of gas molecules in nanoporous
materials more efficiently than (brute force) molecular
dynamics. In particular for systems with low diffusion
coefficients molecular dynamics can be prohibitively ex-
pensive. An alternative is to compute the hopping rates
between adsorption sites using transition state theory. For
large-scale screening this requires the automatic detection of
the transition states between the adsorption sites along the different diffusion paths. Here an algorithm is presented that
analyzes energy grids for the moving particles. It detects the energies at which diffusion paths are formed, together with their
directions. This allows for easy identification of nondiffusive systems. For diffusive systems, it partitions the grid coordinates
assigned to energy basins and transitions states, permitting a transition state theory based analysis of the diffusion. We test our
method on CH4 diffusion in zeolites, using a standard kinetic Monte Carlo simulation based on the output of our grid analysis.
We find that it is accurate, fast, and rigorous without limitations to the geometries of the diffusion tunnels or transition states.

1. INTRODUCTION

Modeling diffusion in solid-state materials is important for
many applications. One such is the use of nanoporous
materials as membranes. Here the ratio of the diffusion
coefficients of the gases one would like to separate in these
materials is an important factor which, together with the
adsorption, determines the selectivity of a membrane.1−10

Another timely application is identifying superconductive
solid-state electrolyte materials for Li-ion batteries. Here, the
transition from using flammable, nonaqueous liquid organic
electrolytes to solid-state electrolytes is anticipated to open up
for extensive improvements of the power density, time stability,
and safety of such a battery.11−13

During the past decade, high-throughput screening studies
have emerged to find and improve the understanding of
structure−activity relationships for different classes of materials
and to accelerate the process of discovering novel materials for
urgently needed, e.g. green, energy applications.14,15 Theoreti-
cal screening of a wide range of materials before synthesis will
save huge amounts of time and expenses in this process,
significantly increasing our prospects of finding an optimal
material for the task. This development has, in turn, entailed
the development of crystal structure prediction where
databases of millions of hypothetical materials to be screened
for different properties are arising16−21 in addition to those of
already synthesized structures.22−27

To date, numerous high-throughput screening studies have
been carried out on porous materials databases consisting of
different nanoporous materials such as zeolites, metal−organic

frameworks, covalent-organic frameworks, zeolitic imidazolate,
etc. for thermodynamic aspects of CH4 storage,18,28−36 CO2
capture,28,37−40 and Kr/Xe separation.41−44 Likewise for solid-
state electrolyte materials, extensive screening studies have
been carried out focusing on static energetic equilibrium
properties such as bandgaps.20 However, similar studies for
dynamic properties like diffusion coefficients are scarce,3−5

despite being key parameters not only for predicting selectivity
or ionic conductivity in a material but also for determining
whether the diffusion of gases in porous materials is so slow
that diffusion limitation makes thermodynamic analyses of
limited use.
A major challenge in screening the diffusion coefficients of

guest molecules in solids is the sheer quantity of guest-
structure combinations that can be realized. With a nearly
limitless compositional space yet to be explored a brute-force
screening with a state-of-the-art molecular dynamics (MD)
approach would merely scratch the surface. We must therefore
employ new strategies to intelligently design our screening
procedures to exclude nondiffusive materials and short-list
those to be subject for more detailed theoretical studies and
finally to be synthesized and tested experimentally.
We are proposing a novel screening method to estimate the

diffusive properties of particles in solid-state materials with a
multiscale modeling approach. The procedure is based on a
geometric isosurface analysis of the discretized three-dimen-
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sional scalar field quantifying the potential energy experienced
by a migrating particle within a rigid lattice structure. The
potential energy can be translated into the free energy of
diffusion at infinite dilution. This simplification entails that
loading effects or particle−particle interactions are not taken
into account. Such a potential energy field can easily be
computed using a preparametrized force field or at the density
functional theory level of theory.45 The geometric analysis
predicts the activation energy and directions of diffusion while
coarse-graining the energy landscape. This coarse-graining
quantifies the energy data into a lattice model with particle
site-to-site hopping rates. The lattice model acts as input to a
kinetic Monte Carlo (kMC) algorithm46 for computing the
diffusion coefficients for even complicated transition state
landscapes which can be cumbersome to compute analytically.
The procedure we propose does not require any structure
specific parametrization.
Transition state theory (TST) based lattice models

including kMC have been used extensively to describe gas
diffusion in nanopores9,47−50 and also, to a lesser extent, Li+

diffusion in solid-state materials.51 However, these studies use
information from MD simulations to predict the pore-to-pore
diffusion rates, hence the kMC-algorithm is used solely as a
way to accelerate the scale of the simulations and can thus not
be used to predict diffusive behavior a priori performing a more
computationally costly MD simulation. In addition, when
sampling transition states of rate determining processes for
diffusion rates slower than the MD simulation time scale, the
MD is dependent on sampling bias techniques, such as
umbrella sampling,52 constrained MD,53 metadynamics,54 or
nudged elastic band.55 Applying these techniques can often be
tedious, time-consuming, and impossible to apply in a high-
throughput manor.
The idea of analyzing potential energy landscapes for

diffusion to derive a lattice model to which TST was applied
was presented by Kim et al.3 who estimated diffusion
coefficients for CO2, N2, and CH4 adsorbates in zeolites for
gas-separation applications. Similar to our approach, they filled
up the energy levels up to a cutoff energy of 15 kBT to find
points that potentially belong to diffusion paths. Kim et al.
determined one-dimensional diffusion paths, which involved
the approximation that the transition states are perpendicular
to the unit cell vectors and restricting to orthogonal cells. In
this work we show that these restrictions can be removed by
presenting a different approach to identify the diffusion
pathways, which allows us to identify transition states in
diffusive systems of any shapes and allowing all possible unit
cells.
Our TuTraSt algorithm is rigorous in finding all types of

channels and TS surfaces allowing us to predict the diffusion
with a multiscale modeling approach. The procedure we
propose does not require any structure specific parametrization
and can be fully automated, and the computational cost is only
a fraction of that of an MD simulation.To our knowledge, there
is no other such algorithm available to the scientific
community.
The anticipated major outcome of making this algorithm

available to the computational chemistry community is the
facilitation of reliable high-throughput screening studies of
guest particle diffusion in solid-state materials. Our goal is to
make possible the prediction of millions of diffusion
coefficients at a manageable computational cost where >90%
are within the experimental accuracy of 1 order of magnitude

relative to those computed by MD. We apply the TuTraSt
algorithm to the study of CH4 diffusion in 113 zeolites to
prove that this goal is, in fact, realistic and to test the limits. We
find that the TuTraSt algorithm reaches the set goals where
96% of the 339 diffusion coefficients were predicted within the
accuracy limit and with a speedup of >5000 relative to the MD
where the directional diffusion coefficients for a structure can
be computed in <1 h on a single CPU.
Finally, the TuTraST algorithm is general in essence as a

method of geometric analysis of scalar fields and is not
restricted to particle diffusion in solid-state materials. An
example is the analysis of bonds based on ideas of the quantum
theory of atoms in molecules: A scalar field function of the
electron density in a molecule was analyzed and the
characterization of chemical bonds facilitated by the TuTraSt
algorithm that allows for identification of the precise position
and function value at which basins, corresponding to high
electron densities, merge.

2. THEORETICAL ASPECTS
The diffusion of a guest particle in a solid-state crystalline host
material is determined by a complex interplay between
particle−host, particle−particle, and host−host interactions.
To study diffusion computationally, the most common
approach is to perform MD simulations. This can be done
using preparameterized force fields computing the interatomic
forces at each integration step or computing the forces “on-the-
fly” using density functional theory (DFT), i.e. ab initio MD.
From the trajectories of N guest particles i, the mean-square
displacements (MSD) can be computed (eq 1). Provided that
the simulations are over a sufficiently long time-scale to reach
the diffusive regime, the self-diffusion coefficients Ds can be
computed according to eq 2 for a dimensions. By computing
Ds at different temperatures T, we can extrapolate the
diffusional activation energy (Ea) and temperature independ-
ent pre-exponential D0 with an Arrhenius plot according to
eq 3.
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To compute the activation energy thus requires several
separate MD simulations per structure on the nanosecond time
scale for diffusion involving activated processes. For limited
numbers of structures and using preparameterized force fields,
this can be feasible. However, when looking at several
thousands of structures, this computational cost will quickly
become impractical while diffusivity slower than 10−8 cm2/s
and 10−4 cm2/s will become prohibitively expensive for
classical and ab initio MD, respectively. Due to this
computational cost, screening studies on diffusion properties
using MD are limited.4,5 However, from a scientific point of
view, the diffusion of a mobile species within a crystalline
material can be considered a site-to-site hopping motion, on a
rigid lattice of sites. Instead of following the diffusion process
in “real-time” such as in an MD simulation, we will
energetically consider the mobile particles moving within a
three-dimensional potential-energy landscape. In such a case
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that energy minima, “basins”, can be sufficiently separated
energetically by energy barrier dividing surfaces, transition
states (TS), the hopping rate between them can be predicted
by TST.52 The time spent in each basin before jumping to the
next is “coarse-grained”, and with kMC we will model the jump
in only one simulation step, independently of the actual time
the process is predicted to take. The spatial and temporal
propagation of the particle is recorded at each step, producing
a trajectory from where the MSD and Ds can be computed
according to eqs 1 and 2, respectively, just like in an MD
simulation.
Provided that the basins and TS surfaces in the potential

energy landscape are known, the Bennet-Chandler ap-
proach52,56,57 allows us to compute the transition rates from
basin A to basin B according to eqs 4 and 5.
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In eq 4 the transmission coefficient κ corresponds to the
probability of the particle ending up in basin B when at the top
of the barrier. In the case that the identified TS is true, then κ =
1/2, T m/2π is the averaged velocity at the top of the barrier
assuming that the particle follows the Boltzmann distribution
at temperature T, and kB is the Boltzmann constant. The TS
surface coordinates are denoted by q*, and the coordinates in
the basin A are denoted by q. P(q*) is the probability of
finding the particle at the top of the barrier, i.e. at a coordinate
q* within the TS surface dividing basins A and B. P(q*) is
computed according to eq 5 where the numerator and

denominator are the integrals of Boltzmann sums of the
energies E over the coordinates q* and q, respectively.
Provided that we have a three-dimensional grid quantifying

the potential energy felt by the mobile species at each point in
space within the host structures, the scientific challenge is to
develop the methodology to accurately partition the grid
points into basin volumes and transition state surfaces to
construct our lattice model. One can then use analytical theory
or kinetic Monte Carlo to compute a self-diffusion coefficient
from the hopping rates.
The here presented identification of diffusion pathways and

the assignment of energies were done differently from the work
by Kim et al.:3 whereas our method identifies basins and TSs
for systems independently from the dimension and shape or
alignment of tunnels with respect to the cell, Kim et al.
determined one-dimensional diffusion paths only that intersect
each layer perpendicular to the cell vectors of a unit cell (one
dimension at a time) exactly once. The energies along the path
were computed as the Boltzmann sums of the points in the
cross sections of the path in each layer, and consequently the
TSs are approximated as perpendicular to the cell vectors. Kim
et al. restricted their analysis to orthogonal cells. The approach
furthermore fails to detect paths correctly that are more
complicated, such as running back and forward, or diagonal
through the cell. The diffusion coefficient is calculated by
combining the diffusions along all one-dimensional diffusion
paths. Whereas this approach can be used to analyze diffusion
paths in well-ordered zeolites with orthogonal cells, the
outlined restrictions make it impossible to use it in more
complicated systems.
To illustrate some of the materials in which the method of

Kim et al. fails to give an accurate description, we have looked
at the diffusion in the zeolites PSI, IFY, and AEI, where the
three letter abbreviation refers to the International Zeolite

Figure 1. (a) A 2 × 1 × 1 supercell of the IZA structure framework of PSI (blue = Si and red = O atoms). (b) The isosurface of the potential
energy at 60 kJ/mol, which defines the accessible pore volume, shows that PSI has a one-dimensional tunnel system accessible to CH4. (c) The TSs
of the one-dimensional CH4 diffusion are colored by energy levels (blue = low to red = high). (d) The independent TS surfaces dividing basin pairs
are colored differently; the black points show the positions that represent the lattice sites used in the kMC simulation.
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Association (IZA) structures22 which are shown in Figures 1a,
2a, and 3a. The examples clearly show transition states that are
not aligned parallel to the cell sides. All three examples
furthermore illustrate that the surfaces between basins do not
even need to be orthogonal to the center paths of the diffusion
system (tunnel).
Figure 1b shows the diffusion system (or tunnel) of the

zeolite PSI shown in Figure 1a. The diffusion system of PSI
consists of simple one-dimensional channels running parallel to
one cell vector that are formed of cavities which are connected
along surfaces both orthogonal to the tunnel direction as well
as parallel to it, connecting basins sidewise. The partitioning in
sidewise connected basins cannot be detected by the method
of Kim et al. Figure 1c shows the resulting transition states
colored by the energies. In Figure 1d each transition state is
colored differently. The coordinates that represent the lattice
sites are indicated by the black dots. They are calculated as the
center of the basin coordinates, considering the Boltzmann
weighting. Figure 2a shows the zeolite IFY which has a two-
dimensional or tunnel, and Figure 2b shows how diffusion
paths in this zeolite run diagonal in two dimensions inside the
unit cell. Again, from Figures 2c and 2d it can clearly be seen
that none of the TS surfaces are parallel to the cell sides.
Furthermore, several basins together form the junctions of the

diffusion system, with boundary surfaces not separating the
tunnels orthogonally. A similar example for framework AEI
with a three-dimensional tunnel system is given in Figures 3a-
3d. At the crossings where diffusion paths that extend in
different directions come together, the basins merge in
complicated surfaces, defining TSs that are not parallel to
the unit cell or orthogonal to a simple path.
We overcome the limits by developing a rigorous algorithm

for tunnel detection, and instead of combining one-dimen-
sional diffusions, we detect basins and the TSs as their merging
points only depend on the energy values, building a lattice
model based on this information. This approach allows us to
consider the complete system at once without any restrictions
on the choice of the unit cell or the complexity of the diffusion
system.
We have thus successfully developed an algorithm that

searches for tunnels and transition states (TuTraSt) that
iteratively grows minimum energy basins one isosurface layer
at a time with a connected component search. It identifies
transition state grid points at the position where basins merge.
In addition, the TuTraSt algorithm identifies connected
components and finds energy levels at which conduction
tunnels are formed for each direction, i.e. the diffusional
activation energy.

Figure 2. (a) One unit cell of the IZA structure framework of IFY (blue = Si and red = O atoms). (b) The isosurface of the potential energy at 60
kJ/mol shows that IFY has a two-dimensional tunnel system accessible to CH4. The isolated spherical cavities are inaccessible from the outside and
therefore do not play a role in the diffusion. (c) The TSs of the two-dimensional CH4 diffusion are colored by energy levels (blue = low to red =
high). (d) The independent TS surfaces dividing basin pairs are colored differently; the black points show the positions that represent the lattice
sites used in the kMC simulation.
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3. METHOD

The presented TuTraSt algorithm consists of the following
parts: Using an energy grid as input only, it detects tunnel
systems together with their dimensions and breakthrough
values, identifies basins and transition states (TSs), and from
these determines the process rates and coordinates of the
basins that can be subsequently used to perform a transition
state theory (TST) based analysis to compute the diffusion
coefficients, here implemented by a lattice based kMC
approach.
The idea of the algorithm is to follow the appearance,

growing, and merging of clusters while stepping through the
discretized levels of the (potential) energy grid, from the
minimal energy up to a chosen maximal value (Figure 4).
Clusters will represent basins, and the points on the surfaces
between them correspond to TSs.
Detecting Tunnels in 3d Grids. We initialize our

calculations by computing the energy of our guest molecule

with the atoms of the host lattice. A tunnel is a connected
component of the diffusive system, consisting of energy values
larger than a given value, that runs through the entire material.
A tunnel is called one-dimensional if it extends infinitely into
one direction and two-dimensional (three-dimensional) if it
contains two (three) paths that extend infinitely into two
(three) linearly independent directions.
All grid points with values smaller than or equal to the level

are found, and each cluster found by a neighbor search (i.e.,
each connected component) is analyzed for tunnels (P1−P4 in
Figure 4). For that, it is checked whether the cluster connects
to a point with one of its periodic images, which can be seen by
comparing the boundary crossing vectors of points. The
boundary crossing vectors contain the information on which a
copy of the unit cell point was first found, i.e. it is counting
how often a boundary is crossed with taking directions into
account. The location of the reached periodic image defines
the direction of the tunnel. The direction is obtained from the

Figure 3. (a) One unit cell of the IZA structure framework of AEI (blue = Si and red = O atoms). (b) The isosurface of the potential energy at 60
kJ/mol shows that AEI has a three-dimensional tunnel system accessible to CH4. (c) The TSs of the three-dimensional CH4 diffusion are colored
by energy levels (blue = low to red = high). (d) The independent TS surfaces dividing basin pairs are colored differently; the black points show the
positions that represent the lattice sites used in the kMC simulation.
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difference of their boundary crossing vectors. To determine
tunnels correctly, it is important to update boundary crossing
vectors in the case that the point in which two different clusters
C1 and C2 merge connects points with different boundary
crossing vectors b1 and b2: In this case the vector b1 − b2 is
added to the boundary vectors of all points in C2. The number
of linearly independent crossing vectors between periodic
images in one cluster defines its dimensionality, i.e. the number
of directions a tunnel system extends to. The values at which
new directions of tunnels per cluster are formed are stored as
breakthrough values. These breakthrough values estimate the
diffusional activation energy Ea (O1 in Figure 4). The neighbor
search considers grid points with common faces only and does

not take grid points that only have a corner in common
(diagonal checks) into account, since this could lead to errors
in the detection of the surfaces between clusters, which are
found as described in the following.

Finding Transition States and Basins. A more detailed
analyses produces estimates of the basins and transition states
for a chosen maximum energy. To obtain the basins and
transition states, the TuTraSt algorithm detects merging points
that define boundary surfaces between the growing clusters
while stepping up the energy levels of the grid (P4 in Figure 4).
For that, it is crucial to grow the clusters iteratively in each
single level. Otherwise TSs would be assigned incorrectly; in
the worst case a complete shell around one cluster would be

Figure 4. Schematic outline of the TuTraSt algorithm where the boxes are colored by red = input (I1), green = output (O1−O3), blue = processes
(P1−P7), yellow = decisions (D1−D2).

Figure 5. Growth of basins with tunnel and TS identification. The clusters are grown in the order: left, right, top, bottom. A tunnel is detected in
the middle figure of the bottom line (red). Points belonging to TSs are indicated with yellow boundaries.
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falsely identified as TSs. Figure 5 shows the iterative growth of
four basins (left, right, top, bottom basin) in each level
(isolines). TSs are identified as merging points between basins
(yellow). The last figure (bottom-right) shows that six TSs are
identified. One tunnel is detected with the inclusion of the red
point in the middle image of the bottom line in Figure 6. The

points assigned to TSs in principle depend on the order in
which the clusters are grown, but this effect is negligible since
the assignment never differs by more than one step in the grid.
The boundary surfaces between clusters are assumed to be
representative for the transition states if the energy differences
between the first merging point and the minima of the two
neighboring basins are greater than a given value. Otherwise
the barrier is neglected as too small, and the two clusters are
merged. Finally, all points belonging to boundary surfaces
between the same pair of basins are clustered with a neighbor
search. Each of the resulting components gives one transition.
Assignment of Transition Rates and Computing

Diffusion Coefficients. To obtain a lattice model that serves
as input for a TST based computation of the diffusion,
coordinates for the basins and probabilities of the transitions
need to be computed (P6 in Figure 4). First, clusters that
belong to a tunnel system are identified since only these
contribute to diffusion. The positions of the basins are given as
their centers of mass. This approximation will only lead to
problems if the center of mass lies outside the basin and in
another basin - this can only happen in the very unlikely case
that one basin is enclosing another one. All connected TS
surfaces between neighboring basins are identified, each
defining a transition. The direction of a transition is obtained
as the difference of the boundary crossing vectors of two
energy minima, one in each of the neighboring basins, where
the boundary crossing vectors are calculated along a path
connecting the two minima that passes through no transition
states other than the one of interest. It is important to calculate
the directions for each connected component of the boundary
surface between a pair of basins, since the TSs in tunnels that
contain only one or two basins correspond to distinct
transitions. The rate of the transition between two neighboring
basins is obtained by taking the Boltzmann weighted sum of all
energy values of the points on a TS, as well as for all points in
each of the neighboring basins according to the Bennet-
Chandler eqs 4 and 5 (O2 in Figure 4).
For simple systems with known noncomplex systems of

transitions, the application of TST using eqs 4 and 5 to obtain
the diffusion coefficients is analytically straightforward.
However, for an automated screening study the complexity

of the transition state landscapes was unknown, and it is
practical and powerful to use a kMC algorithm which
propagates the particle through the lattice stochastically
based on the probability for each transition to occur. For
our diffusion application we have thus integrated a rejection-f ree
lattice kMC simulation46 (P7 in Figure 4) in the TuTraSt
algorithm to automatically compute the directional diffusion
coefficients from the lattice model output information (O3 in
Figure 4).

4. CASE STUDY: CH4 DIFFUSION IN ZEOLITES
To test TuTraSt, we apply our algorithm to study CH4
diffusion in all-silica zeolites. The characteristic one-, two-, or
three-dimensional formation of diffusion tunnels in zeolites is
periodically separated by pore windows which act as diffusional
”bottlenecks” in addition to the potential energy wells at
adsorption sites. Passing these energetic barriers can thus be
considered rare events in relation to the diffusion within the
pore or well, and the pore-to-pore/well-to-well diffusion can be
considered a hopping motion to which we can assign a
hopping rate making zeolites ideal systems to validate our
prediction of diffusion coefficients in each of the 3 dimensions.
From the IZA database,22 we select all-silica zeolites which

are identified by Zeo++58 to be porous to CH4 that will
constitute our validation set. Porosity is determined for the
rigid frameworks since all-silica zeolites are known to be
relatively rigid. Flexibility has shown to have the largest effect
when the tunnel system contains narrow windows close to the
kinetic diameter of the guest molecule showing enhancements
of diffusion coefficients of up to 39% which corresponds to less
than 0.1 order of magnitude.59 In our screening these very
narrow pores have not been included.
We load 1 CH4 per unit cell into these 113 structures and

model the dynamics of the CH4 in a rigid framework with MD.
The MD simulations are run for 100 ns with a 1 fs time step at
500 K in the NVT ensemble using the Nose-Hoover
thermostat with the LAMMPS software.60,61 The UFF force
field parameters62 are used to describe the nonbonded
Lennard-Jones interactions with framework molecules, while
the united atom TraPPE force field63 is used to describe the
CH4 molecule which is modeled effectively as a single particle.
The Lennard-Jones parameters between framework atoms and
CH4 are combined using the Lorentz−Berthelot mixing rules.
In this model CH4 does not carry charges, and hence the
Coulomb interactions do not need to be computed. From the
trajectories where the CH4 coordinates are printed every 100
fs, the mean-square displacement (MSD) is computed for time
windows (t − t0) up to 10% of the total simulation time and
for all possible values of t0 according to eq 1. This is done for
each of the three unit cell basis directions (a, b, c). From the
MSD curves the diffusion coefficient Ds of the respective
direction is computed according to eq 2 from the slope of a 3
ps region directly following t at which the root mean-square
displacement (RMSD) exceeds the length of the respective cell
parameter (λa,b,c) to confirm that we have reached the time
scale at which the CH4 is diffusing through the unit cell. We
further confirm that the diffusive regime has been reached by
checking that the slope of MSD as a function of t on the log−
log scale is ∼1 and that the Ds is converged within this region
by computing Ds for smaller time windows of 1 ps. For
directions where the RMSD does not exceed the cell
parameter, Ds is set to 0, and we conclude that CH4 does
not diffuse on the time scale of the MD simulation. From the

Figure 6. Illustration of the dependency of the position of the TSs on
the order in which the basins are grown. No periodic boundary
conditions are applied in this figure.
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113 structures we produce a total of 339 directional MSD
curves. Of these 199 were found to have reached the diffusive
regime from which we computed diffusion coefficients (Ds

MD).
The three-dimensional potential energy grids for each

structure in our validation set are computed with two different
voxel sizes 0.1 × 0.1 × 0.1 Å3 and 0.2 × 0.2 × 0.2 Å3. This is
done by placing a CH4 in the center of each voxel and
summing the Lennard-Jones interaction energy to each atom in
the framework using the same force field as for the MD. These
grids are then used as input for the TuTraSt algorithm,
partitioning the energetic data from the grid into data read by
the kMC algorithm which outputs the 339 directional diffusion
coefficients (Ds

TTS) which we compare with the respective Ds
MD.

We compute and compare the Ds
TTS for the two sets of grids for

a range of energy step sizes (0.1, 0.2, 0.5, and 1.0 kJ/mol) and
energy cutoff values (40, 60, and 80 kJ/mol) to test the limits
of these energetic parameters. In our calculations the time limit
for each calculation is set 150× the median compute time per
structure of data set 5 (DS5), vide inf ra. In our case, this
corresponds to ∼70 h running on a single CPU of an Intel
Broadwell processor running at 2.6 GHz. Carrying out
TuTraSt analysis on structures requiring compute times
beyond this limit is not desirable for screening purposes
since it approaches the MD time scale.
The energy step (Estep) is the parameter that defines the

lower limit of energy barriers which confine the space of a
basin and thus the level of detail in which the TS landscape is
described by the lattice model. If the energy difference between
the lowest energy value within a basin cluster and that within a
TS surface separating the basin from a second connected basin
is below Estep, we consider that these two basins are merged
into one. If the energy step is too big, rate determining
transitions can be missed. This is particularly significant for fast
diffusing materials where the barriers can be missed
completely, merging the diffusion tunnel into one single
basin, resulting in a failure of the analysis. Setting the energy
level parameter too small can on the other hand result in an
overidentification of processes which cannot be considered
”rare events” with a sufficient separation of the diffusional time
scale in relation to movements within the basin. In such a case
that processes are included which are not rate determining and
are significantly faster than these, the kMC simulation will
spend most of its time sampling the fast processes instead of
the rate determining processes.
The energy cutoff (Ecutof f) defines the maximum energy of

grid points which are included in the energetic partitioning.
The number of levels (nL) that the algorithm is iterated over is
thus nL = Ecutof f/Estep, and the TuTraSt algorithm stops once all
grid sites with Egrid ≤ Ecutof f have been analyzed. Ecutof f should be
set to a value that corresponds to an energy which in relation
to the given temperature is the limit where the probability of a
particle visiting that state is negligible and the grid point can be
considered inaccessible. Setting Ecutof f too high results in
unnecessarily long computation times and an excess of
nonrate-determining processes with negligible probabilities to
be executed. This could result in difficulties interpreting the TS
surface if required. A too small Ecutof f would result in a failure to
identify significant diffusion channels and nonconverged
processes rates. In the study of Kim et al.3 the equivalent of
Ecutof f was set to 15 kBT which at the simulation temperature of
500 K of the current study is equivalent to 62.0 kJ/mol.

5. RESULTS AND DISCUSSION
In Figure 7 we compare our TST computed diffusion
coefficients Ds

TTS with the MD results Ds
MD. This comparison

shows that for most materials our predictions are within 1
order of magnitude of the exact MD results. Such accuracy is
sufficient for most applications.
It is instructive to investigate how our results depend on the

different parameters that we can use to tune the accuracy of
our calculations: The Ds

TTS’s in Figure 8 are computed for
energy grid resolutions gres = 0.1, and Figure 9 shows them for
gres = 0.2. For the finer gres = 0.1 grid, no significant loss of
accuracy is observed when decreasing the detail of our lattice
model by increasing Estep from 0.1 to 0.2 kJ/mol. However,
when increasing Estep further to 0.5 and 1.0 kJ/mol, an
increasing number of outliers appear, where Ds

TuTraSt is
underestimated relative to Ds

MD. When varying the Ecutof f
values, no significant change in correspondence between
kMC and MD data is observed. For the coarser 0.2 Å grid,
outliers arise when increasing the Estep from 0.1 to 0.2 kJ/mol,
while the correspondence is similarly stable throughout the
Ecutof f values.
Since the energy step size shows instabilities at 0.2 kJ/mol,

we restrict the further analysis of the results to Estep = 0.1 kJ/
mol. For these 6 data sets (DS1-DS6) of varying Ecutof f = 40,
60, and 80 kJ/mol and gres = 0.1 and 0.2 Å, we proceed with a
detailed comparison of accuracy, stability, and speed. To
facilitate this comparison we present a number of metrics. nUF
(unfinished) defines the number of TuTraSt structure
calculations ×3 that did not finish within the time limit. nD0
is the number of directions accurately predicted to be
nondiffusive by both MD and TuTraSt as well as those that
were predicted diffusive by TuTraSt but not MD, however
where the DS

TTS is lower than or within 1 order of magnitude of
the estimated lower limit of Ds

MD that can be probed within the
MD simulation time and is thus within the desired accuracy
limit. For the diffusive data for which we have both Ds

TTS and
Ds

MD, nDaccept tells us the number of Ds
TTS that are within our

accuracy goal of 1 order of magnitude, while nDoutlier tells us the

Figure 7. Directional diffusion coefficients computed with the
TuTraSt algorithm with optimized energetic parameters (gres = 0.2
Å, Ecutof f = 60 kJ/mol, and Estep = 0.1 kJ/mol) on the y-axis relative to
the corresponding diffusion coefficients computed with MD on the x-
axis on a log−log scale for DS5. The solid black line represents a
perfect correspondence between the data sets, while the light gray and
dark gray dashed lines guide the limits for deviation of 1 and 2 orders
of magnitude, respectively.
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number of Ds
TTS that are outside this limit. To identify

systematic deviations we compute the bias ϵ = ∑n log(Ds
TTS/

Ds
MD)/nDs along with the variance σ = (log(Ds

kMC/Ds
MD) − ϵ)2/

nDs of the data. The Spearman’s rank correlation coefficient
(ρSpearman) is a metric comparing the ranking of diffusion
coefficients obtained from the MD and TuTraSt. Identical
rankings result in ρSpearman = 1. We define the percentage
(%accept) of the total 339 diffusion directions (nDtot) for which
the diffusion has been predicted within our defined accuracy
limits i.e. %accept = 100 × (nD0 + nDaccept)/nDtot. SU notates the
mean speedup for the TuTraSt computation time relative to
the corresponding MD computation time per structure. Table
1 presents these metrics for the 6 data sets.
In Figures 10 and 11 the data for DS2 and DS5 are

presented. Here the spread of the Ds
TTS data relative to the Ds

MD

validation data is shown in the left and middle panels, while the
right panel shows the spread of the speedup of the TuTraSt
calculations relative to the MD, per structure.
From the results presented in Table 1, we can conclude that

the speedup when using the TuTraSt algorithm to compute
the diffusion coefficient relative to MD is drastic. Further by
increasing the grid resolution from gres = 0.1 to 0.2 Å the
number of grid points is decreased by a factor of 8. This speeds
up, in particular, the neighborhood search which is the
computational bottleneck in several processes of the TuTraSt
algorithm, namely P2 (see Figure 4) for the cluster growth and
P6 for grouping connected TS points into separate transitions
and finding transition directions. Comparing the speedup of
DS5 relative to that of DS2 shows that using the coarser grid

results in a further significant speedup of 13× allowing the
TuTraSt calculations to finish within our set time limit while a
loss of accuracy is not noted. The use of a coarser grid also
decreases the memory requirements for the TuTraSt
calculations, which can facilitate the analysis of structures
with larger unit cells.
Using Ecutof f = 40 kJ/mol decreases the computational costs

relative to Ecutof f = 60 kJ/mol; however, it shows to be at the
limit of the energies sampled during an MD simulation within
a nanosecond time scale leading to a few diffusion channels not
being identified at energies with breakthrough energies >40 kJ/
mol, while diffusion was shown in these directions by the MD.
Looking at the higher cutoff value Ecutof f = 80 kJ/mol there is
no accuracy improvement, while the computational time
increases and fewer of the TuTraSt calculations finished
within the time limit, in turn, decreasing the total %accept. We
thus confirm that a Ecuttof f of 60 kJ/mol (∼15 kBT) is
appropriate when comparing with MD as suggested by Kim et
al. However, if a study is performed where one wishes to detect
slow diffusion beyond the MD time scale, use of a higher Ecutof f
will be necessary. From the results we also conclude that an
Estep value of 0.1 kJ/mol is necessary to withhold the stability of
the calculations, while the loss in speed is insignificant relative
to Estep = 0.2 kJ/mol (<10%). For each new class of materials it
is however advisible to run a representative subset against MD
to calibrate the energy parameters.
Following this discussion we conclude that the optimized

TuTraSt parameters for studying CH4 diffusion in zeolites is
that of DS5 (gres = 0.2 Å, Ecutof f = 60 kJ/mol, and Estep = 0.1 kJ/

Figure 8. Comparing the DTTS and DMD for all IZA zeolites, using grids with grid size 0.1 Å. The plots differ by the choice of the values of Ecutof f and
Estep.
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mol) where TuTraSt predicted the Ds values within 1 order of
magnitude of the MD data for 96% of the 339 cell directions of
the 113 zeolite structures and with an unchanged moderately
high ranking correlation, ρSpearman = 0.69. Of the remaining 4%,
50% were within 1.1 orders of magnitude, and the maximum
deviation was 1.4 orders of magnitude. The mean time to
compute Ds of CH4 for one structure of this data set for all 3
dimensions using the TuTraSt algorithm is 93 min on a single
CPU of an Intel Broadwell processor running at 2.6 GHz. We
also note that the median compute time per structure is 28 min
where the mean is strongly skewed by two significant outliers
where the unit cells of these structures are exceptionally large
(cell parameters >50 Å). The corresponding time averages for
MD are 1.0 × 105 min.
The detection of tunnels, TS, and basin partitioning, as well

as the organization of the TSs into components between basins
together with the assignment of directions for the processes,
heavily relies on neighborhood searches. It is therefore not

surprising that we find a stronger influence on the computa-
tional cost of the number of points checked, mainly affected by
the grid resolution and the maximal energy value, than on the
number of levels that are stepped through. The cost of each
level is dependent on the number of new grid points at the
respective isovalue which decreases as the gradient of the
energy function increases when higher energy states are
reached, while the cost is polynomially dependent on the grid
resolution. The number of grid points is thus the main
dependency of the computation cost. However, for a given
system an accurate cost prediction cannot be made a priori as it
is essentially not directly dependent on the total number of
grid points but the number of grid points within Ecutof f and the
number of independent transitions within identified diffusion
tunnels as computed by neighborhood searches in processes
P2 and P6 shown in the flowchart. Processes P1, P3, P4, P5,
and P7 have a negligible contribution to the total computa-
tional cost.

Figure 9. Comparing the DTTS and DMD for all IZA zeolites, using grids with grid size 0.2 Å. The plots differ by the choice of the values of Ecutof f and
Estep.

Table 1. Metrics Describing Accuracy, Stability, and Speedup of the Diffusion Computations with the TuTraSt Algorithm
Relative to MD for 6 Data Sets, All with Estep = 0.1 kJ/mola

gres Ecutof f UF nD0 nDaccept nDoutlier ϵ σ ρSpearman %accept SU

DS1 0.1 40 42 134 149 14 0.44 0.42 0.73 83 585
DS2 0.1 60 45 134 148 12 0.42 0.42 0.72 83 409
DS3 0.1 80 54 130 146 12 0.41 0.44 0.71 81 363
DS4 0.2 40 0 139 179 21 0.33 0.65 0.67 94 8257
DS5 0.2 60 0 139 185 15 0.37 0.43 0.69 96 5345
DS6 0.2 80 3 136 185 15 0.43 0.44 0.69 95 4359

agres values are given in Å, and Ecutof f values are given in kJ/mol.
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An additional note is that bias ϵ is consistently ∼0.4
indicating a systematic overestimation of the diffusion
coefficients computed by the TuTraSt algorithm compared
to the MD. This is expected considering we assume κ = 1/2
which is an ideal system where the TS are exact, meaning that
recrossing events are not considered and hence our results will
be an upper limit.

6. CONCLUSIONS, OTHER APPLICATIONS, AND
OUTLOOK

We have presented a rigorous algorithm to analyze the
geometry of three-dimensional potential energy landscapes felt
by a diffusing particle in a solid-state material. The algorithm
identifies tunnels and partitions the discretized energetic
information up to a given energy cutoff value into basin and
transition state ”packages”, respectively. These packages
provide the information necessary to compute transition
rates for all transitions between connected basins separated
by transition state surfaces where the basins are reduced to
discrete points in the unit cell volume. The tunnel and
transition state search algorithm outputs a list of all possible

transitions between lattice sites along with corresponding
transition rates and transition vectors. This is the information
required to compute the diffusion coefficient for a given
transition with transition state theory, and we integrate a
kinetic Monte Carlo simulation into the TuTraSt algorithm for
automated computation of the directional diffusion coef-
ficients. From the validation study of CH4 diffusion in zeolites
we conclude that TuTraSt is successful in predicting diffusion
coefficients within the set accuracy goal of 1 order of
magnitude for a large majority of the data (96%) provided
optimal energetic parameters. These calculations are computa-
tionally cheap with a median computation time per structure
∼0.5 h on a single CPU which truly opens up for massive high-
throughput screening studies of diffusion in solid materials of
all energy landscape geometries. These run times are expected
to be decreased by potentially 2 orders of magnitude by
translating the code, currently written in Matlab, into a Python
code with integrated C++ neighborhood search, also making it
independent of licensed software.
This approach is general and can be applied to any host

material where the structure fluctuations can be considered to
have a negligible effect on the diffusion of the guest particle,

Figure 10. For DS2 the energetic parameters are gres = 0.1 Å, Ecutof f = 60 kJ/mol, and Estep = 0.1 kJ/mol. The left panel shows the directional
diffusion coefficients computed with the TuTraSt algorithm on the y-axis relative to the corresponding diffusion coefficients computed with MD on
the x-axis on a log−log scale. The solid black line represents a perfect correspondence between the data sets, while the light gray and dark gray
dashed lines guide the limits for deviation of 1 and 2 orders of magnitude, respectively. The center panel shows a histogram of the log-scale
deviation from the MD validation set. Here the solid green line shows the ϵ = 0.42, and the dashed green lines show 1 (−) and 2 (.-) × σ = 0.42.
The right panel shows a histogram of the log-scale speedup of a TuTraSt calculation per structure relative to the corresponding MD calculation.
The green solid line shows the mean speedup of 409 for DS2.

Figure 11. For DS5 the energetic parameters are gres = 0.2 Å, Ecutof f = 60 kJ/mol, and Estep = 0.1 kJ/mol. The left panel shows the directional
diffusion coefficients computed with the TuTraSt algorithm on the y-axis relative to the corresponding diffusion coefficients computed with MD on
the x-axis on a log−log scale. The solid black line represents a perfect correspondence between the data sets, while the light gray and dark gray
dashed lines guide the limits for deviation of 1 and 2 orders of magnitude, respectively. The center panel shows a histogram of the log-scale
deviation from the MD validation set. Here the solid green line shows the ϵ = 0.37, and the dashed green lines show 1 (−) and 2 (.-) × σ = 0.43.
The right panel shows a histogram of the log-scale speedup of a TuTraSt calculation per structure relative to the corresponding MD calculation.
The green solid line shows the mean speedup of 5345 for DS5.
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which can be modeled as a single particle. Such screening
studies to be anticipated with this approach are Li+/Na+/Mg+

diffusion in hypothetical solid-state electrolyte materials for ion
batteries, extra-framework ion diffusion in nanoporous
materials and glasses, or Kr/Xe separation in nanoporous
materials. It is in principle possible to apply this approach to
guest molecules essentially modeled by multiple particles, such
as CO2. However, in these cases constructing a potential
energy grid is not as straightforward since at each grid point
one needs to average over all possible degrees of rotational
freedom, which may become a computational bottleneck.
The TuTraSt algorithm can also be applied as an analytical

tool to interpret results and free energy surfaces retrieved from
molecular dynamics or Monte Carlo simulations where the
provided qualitative and quantitative information on transition
states and basins facilitates the understanding of processes
behind diffusional trends. One such study carried out by the
authors acted to provide quantitative data to support the
hypothesis that the presence of a few CH4 molecules lowers
the energy barriers of neighboring CH4 in the direction along
the channel of M-MOF-74 (M = Mg, Ni, Zn) and increasing
diffusion coefficients as shown by NMR experiments and
molecular dynamics simulations.
The applications of the TuTraSt algorithm are not restricted

to the study of diffusion. Other properties also depend on the
levels where clusters merge or the levels where tunnels appear.
One example is the analysis of scalar functions derived from
the electron densities as in the quantum theory of atoms in
molecules for the description of atoms and bonds. Typically an
isovalue is chosen for the visualization and analysis of the
densities above the isovalue.64,65 (De)localization of electrons
and bond types can be distinguished by the different values
where these electron density clusters merge.66 So far this is
done by a postanalysis by hand. Since our algorithm is
designed to find the values of merging clusters, it can be
applied to such an analysis in an automatized way. In a separate
study by the authors, TuTraSt was applied to analyze the scalar
function obtained from the electron density called ”density
overlap regions indicator” (DORI)67 of a molecule in a
molecular crystal.68 Bond types are differentiated by taking a
reasonable DORI value and integrating over the points in the
regions that correspond to one bond with values greater or
equal to the chosen value. Since the bond types are most
distinguished at the values where the basins of a bond merge
into one cluster, the merging points as determined from the
TuTraSt algorithm give a good choice for the value up to
which to integrate. This allows for performing a quantitative
theoretical analysis that confirms the observed modifications of
the covalent bonds in this molecule.69,70

An additional anticipated application of TuTraSt is to
improve the currently used schemes to find inaccessible
pockets of guest molecules in solids based on structure
geometry, e.g. Zeo++,58 by using instead an energy based
scheme. Finding and blocking these spaces are important for
Monte Carlo simulations that sample energetically particle
insertions in porous materials to compute equilibrium uptake
and thermodynamic quantities in different conditions.71 As the
TuTraSt algorithm is designed to identify energetically
accessible space, it is straightforward to also use this
information to identify the inaccessible space within a
structure.
For studying the diffusion of sufficiently low concentrations

of guest particles, such as in the CH4 case study, it is a safe

assumption that the potential energy landscape is representa-
tive for the free-energy landscape as these are equal at the
infinite dilution limit. However, with increased guest particle
loading, guest−guest interactions can play an increasingly
significant role on the diffusion. For cases, such as CH4 in
porous materials, where particles may interact within a pore,
particle collisions will be the dominant loading effect and are
known to slow down the diffusion. While for ionic particles,
the Coulomb forces constitute the dominating guest−guest
interactions. These effects essentially perturb the transition
state landscape, and our future focus is thus to further develop
the TuTraSt algorithm to account for particle loading, in
account to these two effects.
To correct for collisional loading effects we will apply and

evaluate the dynamically corrected TST methodology such as
proposed by Beerdsen and Dubbeldam et al.48,49 Here, the
recrossing parameter κ in eq 4 can be defined as a function of
the loading. In the dynamically corrected TST formalism, the
transmission coefficient κ corrects for trajectories which cross
the transition state from basin A but fail to end up in basin B,
compensating the loading induced shift of reaction coor-
dinates.
To include charge interactions in our TST based lattice

model we will test two ways to add the Coulombic ion−ion
interactions, which will both be tested toward different ionic
loadings and evaluated in terms of accuracy and computational
effort. The first alternative is to update P(q*) in eq 5 ”on-the-
fly” for each possible process at each step in the kMC
simulation where E(q*) and E(q) are recomputed to take into
account the Coulombic energies of surrounding ions. The
second alternative is to apply a one time analytic correction to
the lattice model where the Coulombic correction at each site
is set in relation to the occupation probabilities at each
surrounding lattice site.
For zero loading, it is possible to analytically obtain the

diffusion coefficients for the limit of infinite dilution if all rates
between any pair of sides are known following the method
given by Braun and Sholl.72 The diffusion coefficients are
obtained from the expansion of the smallest eigenvalue of a
matrix obtained from the spatial Fourier transform of the
transfer matrix taking average thermal population into account,
in the limit of the wave vector running to zero. This method
has not been computationally implemented to our knowledge.
If we assume that particles only move between neighboring
sites, the input required for this analytical analysis can be
obtained from a TuTraSt analysis. If implemented, this
approach can therefore be used alternatively to the kMC
simulation to calculate diffusion coefficients based on the
TuTraSt analysis.
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