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Abstract

With the growing population and rapid change in the social environment, nurses in

China are suffering from high rates of stress; however, the neural mechanism under-

lying this occupation related stress is largely unknown. In this study, mental status

was determined for 81 nurses and 61 controls using the Symptom Checklist 90 (SCL-

90) scale. A subgroup (n = 57) was further scanned by resting-state functional MRI

with two sessions. Based on the SCL-90 scale, “somatic complaints” and “diet/
sleeping” exhibited the most prominent difference between nurses and controls. This

mental health change in nurses was further supported by the spatial independent

component analysis on functional MRI data. First, dynamic functional connectome

analysis identified two discrete connectivity configurations (States I and II). Controls

had more time in the State I than II, while the nurses had more time in the State II

than I. Second, nurses showed a similar static network topology as controls, but

altered dynamic properties. Third, the symptom-imaging correlation analysis
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suggested the functional alterations in nurses as potential imaging biomarkers indicat-

ing a high risk for “diet/sleeping” problems. In summary, this study emphasized the

high risk of mental deficits in nurses and explored the underlying neural mechanism

using dynamic brain connectome, which provided valuable information for future

psychological intervention.
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1 | INTRODUCTION

Nurses play a pivotal role in today's health care environment. In con-

trast to the huge requirement, there is a shortage of 5.9 million nurses

according to The State of World Care Report 2020. In China, with the

growing population and rapid change in the social environment,

nurses are suffering from high levels of stress. Particularly, during the

outbreak of coronavirus disease (COVID-19), nurses were the clinical

staff with the most physical contact with patients. With a high risk of

infection, nurses worked under considerable psychological pressure

(Liang, Chen, Zheng, & Liu, 2020), which not only threatened their

productivity and well-being, but also appeared to cause mental health

problems (Hilton, Scuffham, Sheridan, Cleary, & Whiteford, 2008;

Milliken, Clements, & Tillman, 2007). Thus, estimating the mental

health of nurses will provide valuable information for improving the

medical and healthcare system, which may elevate the ability to fight

the next outbreak.

Currently, the mental health of nurses is mainly estimated using

neuropsychological tests. The Symptom Checklist 90 (SCL-90) scale is

a classic self-report inventory, which is well developed and shown to

have sound psychometric properties in a previous study (Bech, Bille,

Moller, Hellstrom, & Ostergaard, 2014). SCL-90 has been widely used

in investigating the mental status of Chinese nurses (Wang et al.,

2018). A cross-temporal meta-analysis of 244 studies indicated that

the SCL-90 scores of Chinese nurses increased steadily from 1998 to

2016 (Xin, Jiang, & Xin, 2019); however, most of the studies did not

include a large sample of controls. The SCL-90 scores of nurses are

usually compared to the Chinese norm obtained in 1986. With

the rapid social development, the criteria of this old norm are inappro-

priate to assess people after 10 years have elapsed. Some studies

selected hospital administrators or technical personnel as the control

group, despite an educational background that is quite different from

nurses. To control this point, nursing graduates who did not work in

the clinic may be a better choice.

In addition to neuropsychological tests, neuroimaging has increas-

ingly been adopted as an objective and important approach for

psychological investigation. Using resting-state functional connectivity

(RSFC), multiple biological features can be predicted, such as age

(Dosenbach et al., 2010), intelligence (Li et al., 2020), personality

(Kong et al., 2019), and diagnosis (Drysdale et al., 2017; Ji et al., 2019;

Ji et al., 2019). It has also been used to estimate the neural underpin-

nings of realistic view adoption in nurses (Ogino, Kawamichi,

Kakeda, & Saito, 2019). Traditionally, most of these studies assumed

that the participants were in a homogenous state during scanning,

while ignoring the dynamic aspect over time. Current advances suggest

that the dynamic psychological course can be captured using time-

varying analyses and represented by different RSFC patterns (Allen

et al., 2014; Gonzalez-Castillo et al., 2015). In the clinical application,

several mental statuses (usually 2–7) and diagnosis-specific RSFC bio-

markers could be identified by the dynamic analysis on resting-state

functional MRI data (Rabany et al., 2019). However, few study investi-

gated the static or dynamic RSFC network features in nurses.

In this study, we hypothesized that the mental health of nurses

may be affected by years of clinical work. To test this hypothesis, a

traditional neuropsychological test (i.e., SCL-90) was used to characterize

the mental status of nurses, and RSFC with graph theory was adopted

to show the functional architecture during the resting state. To exclude

the effect of the educational background, nursing graduates who did not

work in the clinic were included as the control group.

2 | MATERIALS AND METHODS

2.1 | Participants

To show the effect of clinical work on mental health, clinical nurses

were recruited as the experimental group. To exclude the effect of

the educational background, nursing graduates who did not work in

the clinic were included as the control group. Of note, most of these

people become postgraduate students. To match the three grades of

postgraduates, the work experience of clinical nurses was limited to

3 years. The exclusion criteria were the same for both groups, as

follows: (a) head injury, psychiatric or neurological disease, and alcohol

or drug abuse; (b) psychiatric disease history in first-degree relatives;

and (c) declined or unable to undergo MRI scanning. The study was

approved by the Research Ethics Board for the Anhui University of

Chinese Medicine. All participants were recruited from the local medical

universities and the affiliated hospitals by advertisement.

2.2 | Neuropsychological testing and MRI

To estimate the mental health status, all participants completed the

SCL-90 test with a 5-point rating scale for 90 items, ranging from “not
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at all” to “extremely.” The SCL-90 is a very commonly used neuro-

psychological test that includes the following 10 dimensions: somatic

complaints; obsessive–compulsive; interpersonal sensitivity; depres-

sion; anxiety; hostility; phobic anxiety; paranoid ideation; psychoticism;

and diet/sleeping (higher score implicating a lower level of mental

health). Between-group comparisons were performed for the scores of

the 10 factors, number of risk items, and total SCL-90 score with

covariates including age, gender, and months after graduation. The

significance of the multiple comparisons was corrected by the false

discovery rate (FDR; q < .05).

MRI data were obtained at the University of Science and Tech-

nology of China with a 3-T scanner (Discovery 750; GE Healthcare,

Milwaukee, WI). High-resolution T1-weighted images were acquired

in the sagittal orientation using a three-dimensional brain-volume

sequence (repetition/echo time, 8.16/3.18 ms; flip angle, 12; field of

view, 256 � 256 mm2; 256 � 256 matrix; section thickness, 1 mm;

voxel size, 1 � 1 � 1 mm3). During resting-state functional MRI

scanning, participants were instructed to rest with their eyes closed

without falling asleep. To obtain a steady connectivity pattern, two

sessions of functional images (434 volumes) were acquired using a

single shot gradient-recalled echo planar imaging sequence (repetition/

echo time, 2,400/30 ms; flip angle, 90; field of view, 192 � 192 mm2;

64 � 64 in-plane matrix; section thickness, 3 mm; voxel size,

3 � 3 � 3 mm3; 46 transverse sections).

2.3 | Image data preprocessing

The resting-sate functional images were pre-processed using SPM12

software (www.fil.ion.ucl.ac.uk/spm) and ANFI (https://afni.nimh.nih.

gov/afni/). The processing steps were as follows: (1) delete the first

five time points; (2) remove temporal spikes; (3) slice timing correc-

tion; (4) head motion correction; (5) co-registration to structural

image; (6) regress out nuisance regressors (24 head motion para-

meters, and average signals in the cerebrospinal fluid, white matter,

and whole brain); (7) spatial normalization to the Montreal Neuro-

logical Institute space using the matrix produced by structural image

segmentation (Ashburner, 2007); and (8) spatial smooth with a 4-mm

full width at half-maximum Gaussian kernel.

2.4 | Identification of intrinsic networks

To identify the intrinsic functional networks of our data, a group-level

spatial independent component analysis (ICA) was performed using

the GIFT software [v4.0b] (Calhoun, Adali, Pearlson, & Pekar, 2001).

We used a relatively high model order (number of components, 100)

to achieve a “functional parcellation” of refined components

corresponding to known anatomic and functional segmentations

(Allen et al., 2014). Two steps were performed for data reduction.

First, subject-specific data reduction via principal components analysis

retained 150 principal components. Then, the concatenated subject-

reduced data were decomposed into 100 aggregate components

along directions of maximal group variability. To ensure the stability

of estimation, the Infomax ICA algorithm was repeated 20 times in

ICASSO, and aggregate spatial maps were estimated as the modes of

component clusters (Damaraju et al., 2014; Himberg, Hyvarinen, &

Esposito, 2004). Finally, the group components were back-projected

to produce subject-specific spatial maps and time courses using the

spatiotemporal regression approach (Calhoun et al., 2001; Erhardt

et al., 2011).

Of the 100 independent components (ICs), 50 were identified as

parts of intrinsic networks (Figure 1) and sorted according to the

criteria of previous studies (Allen et al., 2014; Kim et al., 2017). Briefly,

(a) the spatial distribution of component clusters mainly fell on gray

matter, (b) showed less overlap with vascular, ventricular, or suscepti-

bility artifacts; and (c) time course of the component was dominated

by low-frequency signals (<0.1 Hz).

2.5 | Static functional network connectivity

To exclude physiologic noise, the time course of 50 ICs was low-pass

filtered with a high-frequency cut-off of 0.15 Hz using a fifth order

Butterworth filter. Then, pairwise Pearson's correlations were com-

puted between ICs and converted using Fisher's z-transformation

(Figure 1).

Network properties were computed for these matrices across a

range of thresholds (i.e., sparsity). The lower range was defined as the

average degree (i.e., the number of connections linked to the node)

over all nodes under each threshold network, which was >2 � log(N)

with N = 50 denoting the number of components. The upper range

corresponded to the lowest significant correlation coefficient (p < .05)

among all subjects. This generated the range from 0.18 to 0.48

(step = 0.04). Using the Brain Connectivity Toolbox (http://www.

brain-connectivity-toolbox.net/), six global properties were computed

as in our previous study (Ji, Ren, et al., 2019): network strength (Sp);

global efficiency (Eglob); local efficiency (Eloc); shortest path length

relative to a random network (Gamma); clustering coefficient relative

to a random network (Lambda); and small worldness (Sigma). The area

under the global property curve that provided an overall estimation

independent of the sparsity threshold was compared between groups

by two-sample t-tests. Age, gender, and months after graduation were

included as covariates in this analysis.

2.6 | Dynamic functional network
connectivity (dFNC)

The dynamic functional connectivity between ICs was estimated using

a sliding window approach. According to previous studies (Allen

et al., 2014; Kim et al., 2017), each window contains 22 consecutive

repetition time (52.8 s). The window was slid step-wise by one repeti-

tion time along the scanning time (212 volumes), resulting in 190 con-

secutive windows. Within each window, a 50 � 50 matrix (Fisher's

z transformed) was calculated using the regularized precision matrix

5302 BAI ET AL.

http://www.fil.ion.ucl.ac.uk/spm
https://afni.nimh.nih.gov/afni/
https://afni.nimh.nih.gov/afni/
http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/


(Smith et al., 2011) with L1 norm constraint to enforce sparsity

(Friedman, Hastie, & Tibshirani, 2008). Then, the 190 matrices were

clustered using a k-means algorithm. The optimal number of func-

tional connectivity states (i.e., centroid) were estimated in a search

window of k from 2–10. Among18 clustering methods, 7 supported a

k of 2 (mode) as the optimal number of states (see Figure S1). Three

temporal properties of the dynamic states fractional windows, mean

dwelling time, and the number of transitions) were computed using

the GIFT software (v4.0b) (Calhoun et al., 2001).

Network properties were computed for each window and sparsity

(the same as the static network computation). Then, the property of

each window was represented by the area under the global property

curve. Finally, the coefficient of variation (CV) of the network property

across the 190 windows was assessed to show the variability of topo-

logical metrics over time. The Student's t test or the Mann–Whitney

U test was used to compare the between-group difference of the dFNC

measures. Age, gender, months after graduation, and dynamic head

motion were included as covariates in this analysis. The dynamic head

motion was computed as the CV of frame-wise head motion

(Jenkinson, Bannister, Brady, & Smith, 2002) across the 190 windows.

3 | RESULTS

3.1 | Demographic and neuropsychological
characteristics

There were 85 nurses and 61 controls included in this study. The

two groups were well matched in age, gender, and months after gradu-

ation (Table 1). All 12 SCL-90 scores (10 factors, the number of risk

items, and total score) were significantly higher in nurses than controls

(FDR corrected, q < .05; Table 1). “Somatic complaints” and “diet/
sleeping” showed the most prominent difference between groups.

Of the 146 participants, 36 nurses and 21 controls received

multi-modality MRI scanning. No significant difference was demon-

strated in age, gender, or months after graduation between the nurse

and control groups (Table S1). Among the 12 SCL-90 scores, the

“diet/sleeping” score was significantly higher in the nurse group than

the control group (FDR corrected, q < .05; Table S1).

3.2 | Intrinsic network identification

Of the 100 ICs, 50 were grouped into one of the seven intrinsic brain

networks (see the spatial maps and correlation matrix in Figure 1).

These networks are as follows: basal ganglia (BG) network (IC 48);

auditory (AUD) network (ICs 58 and 84); visual (VIS) network (ICs 19, 22,

46, 49, 78, 98, and 100); sensorimotor (SMN) network (ICs 52, 62,

63, 69, 75, 79, 80, 81, and 85); default mode (DMN) network (ICs 9, 21,

26, 43, 44, 56, 66, 86, 89, 97, and 99); cerebellar (CB) network (IC 96);

and cognitive executive (CEN) network composed by dorsal attentional

network (ICs 3, 5, 15, 28, 32, 36, 61, and 77), ventral attentional network

(ICs 2, 12, 37, and 41), frontal–parietal network (ICs 27, 29, 39, 83,

88, 92, and 93).

3.3 | Static network properties

No significant difference between groups existed for the six network

properties (all p > .05; Table S2).

F IGURE 1 Independent components and their static connectivity. The 50 independent components were sorted into seven functional
networks: basal ganglia (BG); auditory (AUD); sensorimotor (SMN); visual (VIS); default mode (DMN); cognitive executive (CEN); and cerebellar
(CB) networks. The correlation matrix between component pairs was computed using the entire resting-state data. Index numbers of independent
components are written on the left and bottom sides of the matrix
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3.4 | Dynamic network properties

Clustering analysis categorized the 190 dynamic connectivity patterns into

two brain function states across all participants. The centroids of both

clusters (Figure 2a; Figure S2) indicated strong functional connectivity

within the network and relatively weak connectivity between networks.

The highest correlations (top 5%) mainly consisted of connections within

and between DMN, CEN, and VIS networks (Figure 2b). Compared to

State II (58% frequency), State I (42% frequency) had a stronger RSFC

strength both within (paired t = 5.3, p < .0001) and between networks

(paired t= 6.2, p < .0001; Figure 2c).

A significant between-group difference existed in fractional

windows (i.e., proportion of time spent in each state, t = 2.8, p = .007;

Figure 3a). Specifically, State I was observed less often in nurses (34.8

± 24.2%) than controls (53.7 ± 24.4%), while State II occurred more

frequently in nurses (65.2 ± 24.2%) than controls (46.3 ± 24.2%). The

mean dwelling time in State I was shorter in nurses than controls

(U = 201, p = .003, df = 55), while State II was longer in nurses than

controls (U = 188, p = .02, df = 50; Figure 3b). Notably, five outliers

(three nurses, two controls) were identified by nonlinear regression

analyses (Motulsky & Brown, 2006), and excluded from the analysis for

State II. Adding the outliers back did not change the significance. No

differences were found with respect to the number of transitions

between nurses (mean ± SD = 4.9 ± 2.23) and controls (mean ±

SD = 5.0 ± 1.38, t = 0.55, p = .58, df = 55).

Among the six global network properties, the variability of Eloc,

and Eglob were higher in nurses than controls (Figure 4; Table S2).

No significant difference was found for the variability of dynamic

head motion, Snet, Gamma, Lambda, and Sigma (p > .05).

3.5 | Correlation analysis

The correlation between imaging and neuropsychological scores was

performed across subjects participating in both experiments (36 nurses

and 21 controls). Because only diet/sleeping score in SCL-90 was

significantly different between these two subgroups, it was used to

explain the neuropsychological meaning of imaging measures. Age,

gender, months after graduation, and dynamic head motion were

included as covariates in this analysis.

Since the dwelling time in States I and II were significantly negative

correlated (ρ = �0.75, p < .001), their difference (normalized by the total

dwelling time) were computed to represent their relative duration in each

subject. We did not use the ratio between states directly because some

dwelling time was zero. This relative duration was positively correlated

with the diet/sleeping score (ρ = 0.34, p = .014; Figure 3(a)). The diet/

sleeping score did not show significant correlation with either the

variability of dynamic Eloc (ρ = 0.07, p = .60) or Eglob (ρ = 0.06, p = .66).

4 | DISCUSSION

This study investigated the mental health of clinical nurses using

neuropsychological tests and dynamic brain functional connectome.

TABLE 1 Demographic and clinical
characteristics of study participantsMeasures Nurse (n = 85) Control (n = 61)

Statistics/
raw p value

Demographics

Age (Y) 24.3 ± 1.26z 24.1 ± 1.47 0.60b/.55

Gender (M/F) 3/82 2/59 <0.01a/.94

Months after graduation 16.7 ± 7.75 17.1 ± 7.22 2507c/.72

SCL-90

Somatic complaints 1.5 ± 0.45 1.3 ± 0.23 1,520c/<.0001

Obsessive–compulsive 1.8 ± 0.47 1.6 ± 0.42 2018c/.02

Interpersonal sensitivity 1.6 ± 0.49 1.4 ± 0.42 2030c/.03

Depression 1.6 ± 0.50 1.4 ± 0.42 1944c/.01

Anxiety 1.6 ± 0.47 1.4 ± 0.37 1790c/.001

Hostility 1.5 ± 0.45 1.3 ± 0.36 1994c/.02

Phobic anxiety 1.4 ± 0.41 1.2 ± 0.26 1867c/.004

Paranoid ideation 1.4 ± 0.42 1.2 ± 0.30 1893c/.005

Psychoticism 1.4 ± 0.41 1.2 ± 0.41 1709c/.0004

Diet/sleeping 1.6 ± 0.47 1.3 ± 0.37 1723c/.0005

No. of risk items 38.8 ± 22.6 24.3 ± 17.3 1645c/.0001

Total score 138.8 ± 36.9 121.3 ± 25.6 1819c/.002

Note: Means ± SDs.

Abbreviations: F, female; M, male; NA, not available; Y, year.
aAccording to the chi-square test.
bAccording to the two-sample t-test.
cAccording to the Mann–Whitney U test.
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As compared to controls, the nurses had higher risk of mental deficits

in all SCL-90 dimensions. These neuropsychological findings were

further supported by the subgroup functional MRI analysis. First, two

frequently recurring connectivity patterns were identified (States I

and II). Controls spent more time in State I than II, while the nurses

spent more time in State II than I. Second, nurses showed a similar

static network topology as controls, but higher variability of dynamic

Eloc and Eglob than controls. Third, the symptom-imaging correlation

suggested these functional alterations in nurses as potential imaging

biomarkers of high risk for mental deficits.

SCL-90 is a classic neuropsychological test that can efficiently

evaluate potential symptoms in 10 dimensions; however, the norm

in 1986 of this test in China is far behind the social change

(Xin et al., 2019). In this study, we collected a large sample of SCL-90

tests from nurses. Compared to nursing graduates who did not work

in a hospital setting, the nurses were at higher risk for mental deficits

than controls in all SCL-90 factors. When facing large-scale public

health events, this psychological problem may be more severe. At the

beginning of the 2019 coronavirus outbreak, the Chinese Medical

Rescue Association developed a detailed psychological intervention

plan for the medical staff (Chen et al., 2020); however, although some

nurses showed excitability, irritability, and signs of psychological

distress, the nurses declined psychological help and stated that they

did not have any problems. For this reason, some nurses mentioned

that they did not need a psychologist, but needed more rest without

interruption (Chen et al., 2020). Thus, it is more practical to decrease

the risk of mental deficits at ordinary time, which may eventually

elevate the resistance of the medical system to a public health event.

In addition to traditional neuropsychological tests, the dynamic

brain functional connectome is recognized as a novel approach to

F IGURE 2 Connectivity feature of two mental states. (a) Cluster centroids for each state. The total number of occurrences and percentage of
total occurrences are listed above each matrix. (b) Top 5% connections (i.e., the largest absolute correlation coefficients) in the circular maps.
Index numbers of independent components are written in squares. Color and gray lines represent intra- and inter-network connectivity,
respectively. (c) The average intra-network connectivity strength is higher in State I than State II, while the inter-network connectivity was the
inverse
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track the dynamic mental state (Gonzalez-Castillo et al., 2015), and an

objective biomarker for neuropsychiatric disease (Damaraju et al.,

2014; Kim et al., 2017; Liao et al., 2013). In a subgroup of the partici-

pants, we additionally compared the mental state of nurses to controls

using a functional connectome. Two recurring states (I and II) were

identified in the �16 min functional scanning. Both the positive

connectivity within networks and negative connectivity between

networks were significantly stronger in the State I than State II. Thus,

it appeared that some connections were more active than others in

the State I, while the connectivity strength was more similar across

connections in State II. Correlation analysis further indicated that the

relative longer dwelling time in State II than I was associated with a

higher risk of diet/sleeping problems. Nurses had higher diet/sleeping

scores than controls, and stayed a longer time in the State II than

controls. The diet/sleeping problem is likely related to the frequent

night shift, which disrupted the normal biological rhythms.

The human brain is efficiently organized in a small-world pattern

that manifests as high efficiency and low path length in graph theory

(Bullmore & Sporns, 2012). The small-world related network proper-

ties were similar between nurses and controls, suggesting that years

of clinical work did not disrupt the efficient organization of brain

function, although the nurses were at higher risk of mental deficits than

controls. On the contrary, the dynamic variance of local and global effi-

ciency was higher in nurses than in controls. These increased variances

F IGURE 3 Temporal properties of the
dynamic states. (a) The mean fractional windows
spent in each state as measured by percentage
(i.e., total time spent in State I vs. State II) is
different between groups. The diet/sleeping
score is positively correlated to the different
dwelling time between States II and I. (b) The
mean dwelling time (i.e., number of consecutive
windows spent in each state before switching) in

State I is shorter in nurses than controls, while
that in State II is the inverse. * FDR
corrected p < .05

F IGURE 4 The temporal variance of
brain network topology. The coefficient
of variation of local and global efficiency
is smaller in nurses than controls. * FDR
corrected p < .05
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may reflect higher functional flexibility to the change in environment.

But this improvement may be achieved at a high cost of energy

consumption, which exhausted the nurses.

Some limitations in this study should be mentioned. First, the

findings of this study were from nurses working <3 years. With time,

mental health status may decrease when nurses adapt to the hospital

environment and work. Longitudinal studies may indicate to what

extent our conclusions can be generalized to nurses with longer work

experience. Second, only one neuropsychological scale was used in

this study. SCL-90 is a classic test containing factors in multi-dimensions,

and can be easily completed in large samples. Based on the current

findings, future work concerning the abnormal factors may use more

specific scales for further investigation. Third, although the nurses and

controls have similar education background, their working environment

was quite different. Thus, it was unknown whether the high risk of

mental deficits in nurses were specific to nursing service or could be

generally observed in other staffs of hospital. Finally, this study focused

on signals of gray matter and excluded white matter components as

the most ICA studies. However, new advances indicated that the

resting-state fMRI signal in white matter may also vary with physiological

states (Ji, Liao, Chen, Zhang, & Wang, 2017). Thus, it would be interest-

ing to take white matter signals into account in future studies.

5 | CONCLUSIONS

With the growing population and rapid change of social environment,

nurses in China are suffering from high rates of stress. In this study,

we characterized the mental status of nurses using the SCL-90 scale.

The “diet/sleeping” score was significantly correlated to the relative

duration between resting states across all participants. The dynamic

properties of the functional connectome were different between

nurses and controls. In summary, this study emphasized the high risk

of mental deficits in nurses and explored the underlying neural mecha-

nism, which will provide valuable information for future psychological

interventions.
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