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Abstract: Tonoplast intrinsic proteins (TIPs), a sub-family of aquaporins (AQPs), are known to
play important roles in plant abiotic stress responses. However, evidence for the promoters of
TIPs involvement in abiotic stress processes remains scarce. In this study, the promoter of the
vegetable soybean GmTIP1;6 gene, which had the highest similarity to TIP1-type AQPs from other
plants, was cloned. Expression pattern analyses indicated that the GmTIP1;6 gene was dramatically
induced by drought, salt, abscisic acid (ABA), and methyl jasmonate (MeJA) stimuli. Promoter
analyses revealed that the GmTIP1;6 promoter contained drought, ABA, and MeJA cis-acting elements.
Histochemical staining of the GmTIP1;6 promoter in transgenic Arabidopsis corroborated that it was
strongly expressed in the vascular bundles of leaves, stems, and roots. Beta-glucuronidase (GUS)
activity assays showed that the activities of the GmTIP1;6 promoter were enhanced by different
concentrations of polyethylene glycol 6000 (PEG 6000), NaCl, ABA, and MEJA treatments. Integrating
these results revealed that the GmTIP1;6 promoter could be applied for improving the tolerance to
abiotic stresses of the transgenic plants by promoting the expression of vegetable soybean AQPs.

Keywords: vegetable soybean; aquaporin; promoter; GUS; transgenic Arabidopsis; abiotic stresses;
hormone signals; GmTIP1;6

1. Introduction

Vegetable soybean (Glycine max L.), also called “mao dou” in China and “edamame”
in Japan, is a soybean harvested at the R6 growth stage when the seeds are still green and
immature but fully filled inside the pods [1]. Vegetable soybean has huge nutritional value,
and is rich in carbohydrate, protein, vitamin, mineral, isoflavone, fiber, and folate [2]. It
serves as one of the most important legumes in many Asian countries, and has gained
widespread acceptance in the USA and some European and African countries [3]. China
is the largest producer, consumer, and exporter of vegetable soybean in the world [4,5].
Drought, salt, and cold stresses severely affected the yield and quality of vegetable soy-
beans [6–8]. Currently, researches on the abiotic stress response mechanism of vegetable
soybean are extremely inadequate [9–12]. It is promising to discover genes responsive
to environmental factors and develop cultivars tolerant to abiotic stresses for vegetable
soybean, especially given the impacts of global climate changes.

Aquaporins (AQPs), known as membrane channel proteins, have imperative functions
in modulating multiple plant abiotic stress tolerances [13]. Since the first discovery of
AtTIP1;1 from Arabidopsis [14], a large number of AQPs have been identified in a wide
range of plants species. According to the sequence similarity, AQPs could be classified
into plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-
like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs), and the unrecognized
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X intrinsic proteins (XIPs) [15–17]. Among them, TIPs were generally localized in the
tonoplast, mediating water and small neutral molecule exchange between the cytoplasm
and vacuole. The vacuole played vital roles in space filling, osmotic adjustment, storage,
and digestion [18]. Many TIPs have been investigated, including 24 GmTIPs in soybean,
11 AtTIPs in Arabidopsis, 10 OsTIPs in rice, and 12 ZmTIPs in maize [19–22]. Neverthe-
less, the functional explorations of most TIPs have not been attained yet. Different TIP
members consisted of distinct trans-membrane (TM) domains, Asn-Pro-Ala (NPA) motifs,
aromatic/arginine (ar/R) selectivity filters, and Froger’s positions (FPs), which determined
the substrate specificities. Different TIP genes exhibited specific expression profiles under
environmental stresses [23,24]. Manipulation of TIP gene expressions is the key in defining
distinctive biological roles in plants.

Promoters regulate the expression pattern of particular genes at the transcriptional
level [25–28]. Stress responsive promoters had considerable prospect for use in plant
genetic engineering for improving stress tolerance [29]. Several studies have indicated that
developmental cues, as well as environmental stress signals, regulated the function of TIP
promoters. In bananas, the beta-glucuronidase (GUS) activity of the MaTIP1;2 promoter
was elevated under drought and salt stresses in transgenic Arabidopsis [30]. In soybeans,
the GUS activity of the GmTIP2;3 promoter was observed in the roots, stems, and leaves
and preferentially expressed in the steles of roots and stems and down-regulated under
polyethylene glycol 6000 (PEG 6000) and abscisic acid (ABA) stress conditions in transgenic
lotus [31]. The GmTIP2;6 promoter was strongly induced in hypocotyls, vascular bundles,
and leaf trichomes after l-aminocyclopropane-l-carboxylic acid (ACC) and heat stress
treatments in transgenic Arabidopsis [19]. However, the functions of most TIP promoters
are still unknown. It is beneficial to explore the roles of other functionally unknown TIP
promoters.

In this study, one novel promoter of GmTIP1;6 was isolated and characterized from
vegetable soybean. Histochemical patterns and transcriptional activities of the GmTIP1;6
promoter under abiotic stresses were further examined in transgenic Arabidopsis. The
results proved that the GUS activities of GmTIP1;6 promoters were abundantly present in
the vascular tissues of leaves, stems, and roots and remarkably enhanced by drought, salt,
ABA, and methyl jasmonate (MeJA) stresses. These findings will contribute to clarify the
transcriptional regulation mechanism of the GmTIP1;6 gene and provide stress responsive
promoter resource for plant genetic engineering.

2. Results
2.1. Phylogenetic Analysis of GmTIP1;6 Gene

To determine the evolutionary relationship and classification of GmTIP1;6, a phyloge-
netic tree was created using soybean TIPs (GmTIPs), Arabidopsis TIPs (AtTIPs), rice TIPs
(OsTIPs), and maize TIPs (ZmTIPs). The result showed that all TIPs were categorized
into five groups: TIP1, TIP2, TIP3, TIP4, and TIP5. GmTIP1;6 had the highest similarity
to TIP1-type proteins from other plants and the best orthologic match of GmTIP1;6 was
GmTIP1;5, AtTIP1;3, OsTIP1;2, and ZmTIP1;2 (Figure 1).
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Figure 1. Phylogenetic relationship of GmTIP1;6 from soybean, Arabidopsis, rice and maize TIPs. 
TIPs were divided into five groups (TIP1, TIP2, TIP3, TIP4, and TIP5), which were marked with 
different colors. Soybean TIPs (GmTIPs), Arabidopsis TIPs (AtTIPs), rice TIPs (OsTIPs), and maize 
TIPs (ZmTIPs) were marked with red spots, purple triangles, dark blue squares, and light blue 
diamonds, respectively. GmTIP1;6 was marked with the red box. 

2.2. Expression Patterns of GmTIP1;6 Gene 
To confirm the roles of GmTIP1;6 in response to abiotic stresses and hormone sig-

nals, the expression patterns of GmTIP1;6 in vegetable soybean seedlings that were 
treated with PEG6000, NaCl, ABA, MeJA, GA3, or NAA were analyzed by qRT-PCR. 
After a 20% PEG6000 treatment, the expression of GmTIP1;6 reached the most dramatic 
induction (10.1 fold) at 1.5 h (Figure 2A). After a 250 mM NaCl treatment, the expression 
of GmTIP1;6 was significantly induced (5.7 fold) at 6.0 h (Figure 2B). When treated with 
a 100 µM ABA treatment, the expression of GmTIP1;6 was up-regulated (2.1 fold) at 6.0 h 
(Figure 2C). After a 100 µM MeJA treatment, the expression of GmTIP1;6 increased (2.4 
fold) at 1.5 h (Figure 2D). When exposed to a 100 nM gibberellin 3 (GA3) or a 100 nM 
1-naphthaleneacetic acid (NAA) treatment, the expression of GmTIP1;6 presented no ob-
vious change or decreased (Figure S1). The result indicated that GmTIP1;6 responded to 
drought, salt, ABA, and MeJA stimuli. 

Figure 1. Phylogenetic relationship of GmTIP1;6 from soybean, Arabidopsis, rice and maize TIPs.
TIPs were divided into five groups (TIP1, TIP2, TIP3, TIP4, and TIP5), which were marked with
different colors. Soybean TIPs (GmTIPs), Arabidopsis TIPs (AtTIPs), rice TIPs (OsTIPs), and maize TIPs
(ZmTIPs) were marked with red spots, purple triangles, dark blue squares, and light blue diamonds,
respectively. GmTIP1;6 was marked with the red box.

2.2. Expression Patterns of GmTIP1;6 Gene

To confirm the roles of GmTIP1;6 in response to abiotic stresses and hormone signals,
the expression patterns of GmTIP1;6 in vegetable soybean seedlings that were treated
with PEG6000, NaCl, ABA, MeJA, GA3, or NAA were analyzed by qRT-PCR. After a
20% PEG6000 treatment, the expression of GmTIP1;6 reached the most dramatic induction
(10.1 fold) at 1.5 h (Figure 2A). After a 250 mM NaCl treatment, the expression of GmTIP1;6
was significantly induced (5.7 fold) at 6.0 h (Figure 2B). When treated with a 100 µM ABA
treatment, the expression of GmTIP1;6 was up-regulated (2.1 fold) at 6.0 h (Figure 2C).
After a 100 µM MeJA treatment, the expression of GmTIP1;6 increased (2.4 fold) at 1.5 h
(Figure 2D). When exposed to a 100 nM gibberellin 3 (GA3) or a 100 nM 1-naphthaleneacetic
acid (NAA) treatment, the expression of GmTIP1;6 presented no obvious change or de-
creased (Figure S1). The result indicated that GmTIP1;6 responded to drought, salt, ABA,
and MeJA stimuli.
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250 mM NaCl (B), 100 µM ABA (C), and 100 µM MeJA (D). ** indicated significant differences in 
comparison with the control treatment at p < 0.01 (t-test). 
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A 1.483 kb promoter sequence, upstream of the ATG start codon of the GmTIP1;6 

gene, was cloned. The cis-acting elements of GmTIP1;6 promoter were identified by the 
PlantCARE database. Many abiotic stress and hormone signal-related elements were 
found, including one drought stress response element (MBS), five ABA response ele-
ments (ABRE), four MeJA response elements (CGTCA and TGACG motifs), two GA re-
sponse elements (P and TATC boxes), and one auxin response element (TGA element) 
(Figure 3; Table 1). The result suggested that the GmTIP1;6 promoter might be involved 
in diverse abiotic stress and hormone signal responses. 

Table 1. Sequence, number, location, and function of cis-acting elements in GmTIP1;6 promoter. 

Element Name Core Sequence Number 
Location (bp) 

Function (+) Sense 
Strand 

(−) Antisense 
Strand 

MBS CAACTG 1 +266  Drought responsive 

ABRE-element  ACGTG 5 
+1233  
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−1235 

ABA responsive +1236  
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CGTCA-motif CGTCA 2 +447 −444 MeJA responsive 
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TCA-element  TCAGAAGAGG 1 +853  SA responsive 

P-box CCTTTTG 1  −1153 GA responsive 
TATC-box TATCCCA 1 +614  GA responsive 

TGA-element AACGA 1 +1413  Auxin responsive  

Figure 2. Expression patterns of GmTIP1;6 under drought, salt, ABA, and MeJA stress treatments
in vegetable soybean seedlings. Vegetable soybean seedlings were treated with 20% PEG6000 (A),
250 mM NaCl (B), 100 µM ABA (C), and 100 µM MeJA (D). ** indicated significant differences in
comparison with the control treatment at p < 0.01 (t-test).

2.3. Isolation and Cis-Acting Element Distribution of GmTIP1;6 Promoter

A 1.483 kb promoter sequence, upstream of the ATG start codon of the GmTIP1;6
gene, was cloned. The cis-acting elements of GmTIP1;6 promoter were identified by the
PlantCARE database. Many abiotic stress and hormone signal-related elements were found,
including one drought stress response element (MBS), five ABA response elements (ABRE),
four MeJA response elements (CGTCA and TGACG motifs), two GA response elements (P
and TATC boxes), and one auxin response element (TGA element) (Figure 3; Table 1). The
result suggested that the GmTIP1;6 promoter might be involved in diverse abiotic stress
and hormone signal responses.

Table 1. Sequence, number, location, and function of cis-acting elements in GmTIP1;6 promoter.

Element Name Core Sequence Number
Location (bp)

Function
(+) Sense Strand (−) Antisense Strand

MBS CAACTG 1 +266 Drought responsive

ABRE-element ACGTG 5
+1233 −585

−1235
ABA responsive+1236

+1291

CGTCA-motif CGTCA 2 +447 −444 MeJA responsive

TGACG-motif TGACG 2 +444 −447 MeJA responsive

TCA-element TCAGAAGAGG 1 +853 SA responsive

P-box CCTTTTG 1 −1153 GA responsive

TATC-box TATCCCA 1 +614 GA responsive

TGA-element AACGA 1 +1413 Auxin responsive
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and − represented the sense and antisense strand, respectively. Different elements with different 
core sequences in the promoter were marked by different colors. 

2.4. Histochemical Localization of GmTIP1;6 Promoter 
To evaluate the functions of the GmTIP1;6 promoter, it was fused to the GUS re-

porter gene and transformed into Arabidopsis. GUS staining was observed in the trans-
genic seedlings, including leaves, stems, and roots. In the aerial part, GUS staining was 
strongly detected in the vascular bundles of leaves and stems (Figure 4A). In the under-
ground part, GUS staining was obviously detected in the vascular bundles of primary 
roots and root hairs, except for the root apexes (Figure 4B). It was evident that GmTIP1;6 
promoter played a key role in the vascular tissues of seedlings. 

Figure 3. The 1.483 kb promoter sequence and cis-acting element distribution of the GmTIP1;6. + and
− represented the sense and antisense strand, respectively. Different elements with different core
sequences in the promoter were marked by different colors.

2.4. Histochemical Localization of GmTIP1;6 Promoter

To evaluate the functions of the GmTIP1;6 promoter, it was fused to the GUS reporter
gene and transformed into Arabidopsis. GUS staining was observed in the transgenic
seedlings, including leaves, stems, and roots. In the aerial part, GUS staining was strongly
detected in the vascular bundles of leaves and stems (Figure 4A). In the underground part,
GUS staining was obviously detected in the vascular bundles of primary roots and root
hairs, except for the root apexes (Figure 4B). It was evident that GmTIP1;6 promoter played
a key role in the vascular tissues of seedlings.
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Figure 4. Tissue expression patterns of GmTIP1;6 promoter in transgenic Arabidopsis. GUS staining 
for the aerial (A) and underground (B) parts of proGmTIP1;6-GUS transgenic Arabidopsis seedlings. 

2.5. Activities of GmTIP1;6 Promoter in Response to Drought and Salt Stresses 
To explore the roles of the GmTIP1;6 promoter in response to drought and salt 

stresses, transgenic Arabidopsis seedlings were subjected to 2–6% PEG6000 or 50–150 mM 
NaCl, and GUS activities were compared. After PEG treatment, GUS staining was 
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than that under 6% PEG6000 (Figure 5B). Similarly, after NaCl treatment, GUS staining 
was remarkably induced (Figure 5C). GUS activity under 50 mM NaCl was higher than 
that under 150 mM NaCl (Figure 5D). The result confirmed that the activities of the 
GmTIP1;6 promoter could be elevated by drought and salt stresses. 
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seedlings under 2–6% PEG6000 or 50–150 mM NaCl treatment. ** indicated significant differences 
in comparison with the control treatment, p < 0.01 (t-test). 
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signals, transgenic seedlings were treated with 25–50 µM ABA or 50–100 µM MeJA, and 
GUS activities were contrasted. ABA and MeJA treatments highly promoted the GUS ac-
tivity (Figure 6A,C). GUS activity after a 25 µM ABA treatment exhibited a greater in-
crease than that after a 50 µM ABA treatment (Figure 6B). Similarly, GUS activity after a 
50 µM MeJA treatment displayed more abundance than that after a 100 µM MeJA treat-
ment (Figure 6D). The result verified that the activities of the GmTIP1;6 promoter could 
be enhanced by ABA and MeJA signals. 

Figure 4. Tissue expression patterns of GmTIP1;6 promoter in transgenic Arabidopsis. GUS staining
for the aerial (A) and underground (B) parts of proGmTIP1;6-GUS transgenic Arabidopsis seedlings.

2.5. Activities of GmTIP1;6 Promoter in Response to Drought and Salt Stresses

To explore the roles of the GmTIP1;6 promoter in response to drought and salt stresses,
transgenic Arabidopsis seedlings were subjected to 2–6% PEG6000 or 50–150 mM NaCl, and
GUS activities were compared. After PEG treatment, GUS staining was sharply enhanced
(Figure 5A). Stronger GUS activity was detected under 2% PEG6000 than that under 6%
PEG6000 (Figure 5B). Similarly, after NaCl treatment, GUS staining was remarkably induced
(Figure 5C). GUS activity under 50 mM NaCl was higher than that under 150 mM NaCl
(Figure 5D). The result confirmed that the activities of the GmTIP1;6 promoter could be
elevated by drought and salt stresses.
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Figure 5. GUS activities of the GmTIP1;6 promoter under drought and salt stress treatments in
transgenic Arabidopsis. (A,C) GUS staining for the proGmTIP1;6-GUS transgenic seedlings treated
with 2–6% PEG6000 or 50–150 mM NaCl. (B,D) Activity analyses of GUS protein in transgenic
seedlings under 2–6% PEG6000 or 50–150 mM NaCl treatment. ** indicated significant differences in
comparison with the control treatment, p < 0.01 (t-test).

2.6. Activities of GmTIP1;6 Promoter in Response to ABA and MeJA Signals

To investigate the roles of the GmTIP1;6 promoter in response to ABA and MeJA
signals, transgenic seedlings were treated with 25–50 µM ABA or 50–100 µM MeJA, and
GUS activities were contrasted. ABA and MeJA treatments highly promoted the GUS
activity (Figure 6A,C). GUS activity after a 25 µM ABA treatment exhibited a greater
increase than that after a 50 µM ABA treatment (Figure 6B). Similarly, GUS activity after a
50 µM MeJA treatment displayed more abundance than that after a 100 µM MeJA treatment
(Figure 6D). The result verified that the activities of the GmTIP1;6 promoter could be
enhanced by ABA and MeJA signals.
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Figure 6. GUS activities of the GmTIP1;6 promoter under ABA and MeJA hormone treatments
in transgenic Arabidopsis. (A,C) GUS staining for proGmTIP1;6-GUS transgenic seedlings treated
with different hormone signals (25–50 µM ABA or 50–100 µM MeJA). (B,D) Activity analyses of
GUS protein in transgenic seedlings under different hormone treatments. ** indicated significant
differences in comparison with the control treatment, p < 0.01 (t-test).

3. Discussion

Harsh environmental conditions negatively influenced the vegetable soybean pro-
duction [32–36]. In recent years, due to high nutritional benefit, the cultivation area of
vegetable soybean had gradually expanded worldwide. Simultaneously, the risks of veg-
etable soybean facing various abiotic stresses significantly increased owing to global climate
changes. However, candidate genes available for improving vegetable soybean abiotic
stress tolerance are still scarce.

AQPs extensively participated in plant adaptation to variable environmental stresses.
TIPs, one sub-family of AQPs, supported the function of multifaceted vacuoles by facil-
itating the transport of water and other small solutes [37–39]. Regarding the sequence
homology, TIPs could be further categorized into five groups: TIP1, TIP2, TIP3, TIP4, and
TIP5 [40]. TIP homologs were localized in distinct vacuolar subtypes based on the specific
functions [41–44]. Gene functions of different TIP members showed complex patterns
with no generality. For instance, overexpressing of tomato SlTIP2;2, cotton GhTIP1;1, and
GhTIP2;1, Thellungiella salsuginea TsTIP1;2, Jatropha curcas JcTIP1;3, Passiflora edulis PeTIP3;2
and wheat TaTIP4;1, increased drought, salt, cold, osmotic, and oxidative stress resistances
by regulating the water relation, ROS balance, the accumulation of Na+ and proline, and
stimulating the expression of stress responsive genes in transgenic plants [45–51]. Contrast-
ingly, overexpression of Glycine soja GsTIP2;1 and wheat TaTIP2;2 decreased drought and
salt stress tolerances with relatively low proline content and high water loss in transgenic
plants [52,53]. In Arabidopsis, microarray analyses showed that most AtTIPs were involved
in drought, salt, osmotic, ABA, MeJA, GA3, and indole-3-acetic acid (IAA) stress responses
(Figure S2). AtTIP1;3 transported water and contributed to plant reproduction. In soybean,
GmTIPs were uplifted, lowered, or unchanged under drought, heat, flooding, ABA, MeJA,
ACC, or SA stress conditions. GmTIP1;5 responded to drought stress and facilitated the
water transport in Xenopus laevis oocytes [54]. GmTIP2;3 improved osmotic stress tolerance
in yeast cells [31]. In rice and maize, drought, salt, osmotic, cold, ABA, and GA stresses ac-
tivated or inhibited the expressions of OsTIPs and ZmTIPs. OsTIP1;2 was transcriptionally
up-regulated, whereas ZmTIP1;2 was down-regulated after drought treatment [21,22]. It
was urgent to define the precise roles of other TIP genes. In the present study, GmTIP1;6
had the highest similarity to TIP1-type proteins from other plants, and the best orthologic
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match of GmTIP1;6 was GmTIP1;5, AtTIP1;3, OsTIP1;2, and ZmTIP1;2 (Figure 1). The
transcripts of GmTIP1;6 were favorably accumulated after 20% PEG6000, 250 mM NaCl,
100 µM ABA, and 100 µM MeJA treatments in vegetable soybean (Figure 2). GmTIP1;6
acted as one potential target gene in developing a stress resistant vegetable soybean. The
mechanistic pathways behind the distinct roles of TIPs remain unelucidated.

Promoter sequences are crucial for the accurate regulation of gene transcriptions
in plants. Time, location, and level of gene transcripts affected the functioning of TIPs
under both favorable and stressful conditions. Many reports have specifically pointed
out the compositions of stress and hormone related elements in TIP promoters [55–57].
Plant responses to stress stimulus were generally mediated by diverse hormonal cues.
In rices, the OsTIP3;1 promoter was reciprocally controlled by ABA and sugar signals
through the ACGT and CE1 elements, based on the luciferase (LUC) activity detection in
protoplast transient expression assay [58]. In bananas, drought (MBS), cold (LTR), ABA
(ABRE), MeJA (CGTCA motif), SA (TCA element), and GA (P-box) responsive elements
were observed in the promoter region of MaTIP1;2. In soybeans, many light responsive
elements, such as Box 4, G-Box and I-Box, GATA, MBS, and GARE motifs were found
in the GmTIP2;3 promoter. Heat (HSE) and ethylene (ERE) responsive elements were
detected in the GmTIP2;6 promoter. GUS activity assays in transgenic plants confirmed that
MaTIP1;2, GmTIP2;3 and GmTIP2;6 promoters were drought, salt, dark, heat, ABA, and
ACC stress inducible or inhibitive promoters [19,30,31]. In the present study, the promoter
of GmTIP1;6 was obtained from vegetable soybean. Cis-acting elements analyses revealed
that GmTIP1;6 promoter possessed drought (MBS), ABA (ABRE), MeJA (CGTCA and
TGACG motifs), GA (P and TATC boxes), and auxin (TGA element) responsive elements
(Table 1; Figure 3), which were necessary for the regulation of gene expression. In transgenic
Arabidopsis, the GmTIP1;6 promoter directed obvious expression in the vascular tissues of
leaves, stems, and roots (Figure 4). Consistent with the expression patterns, the activities of
the GmTIP1;6 promoter were enhanced by drought, NaCl, ABA, and MeJA stresses and
varied with different concentrations of stress treatments (Figures 5 and 6). Current data
concluded that the GmTIP1;6 promoter responded to diverse abiotic stresses and hormone
signals and regulated gene expression both quantitatively and qualitatively in plants. More
experimental evidence is required to establish the detailed regulation mechanisms of the
TIP stress responsive promoters that are valuable for plant genetic engineering.

4. Materials and Methods
4.1. Stress and Hormonal Treatments for Vegetable Soybean

The main cultivar of vegetable soybean Zhenong 6 was used in this study. Seedlings
were grown in a temperature-controlled chamber (PTC-300, Shanghai, China), and kept
at 22 ◦C day/20 ◦C night, 16 h photoperiod, 60% relative humidity, and 25,000 Lux light
intensity [1]. The root systems of 35 day old seedlings were removed from the soil and
immersed into 20% PEG6000, 250 mM NaCl, 100 µM ABA, 100 µM MeJA, 100 nM GA, and
100 nM NAA solutions for 0 h, 0.5 h, 1.5 h, 6 h, 12 h, or 24 h. The seedlings were sampled
and frozen in liquid nitrogen and stored at −80 ◦C for DNA and RNA extractions.

4.2. Phylogenetic Analysis for GmTIP1;6

Protein sequences of soybean GmTIPs, Arabidopsis AtTIPs, rice OsTIPs, and maize
ZmTIPs were obtained as previously reported [19–22]. Multiple sequence alignment was
performed by ClustalX2 software. Phylogenetic tree was constructed by MEGA7.0 software
based on the neighbor-joining (NJ) approach followed by 1000 bootstrap replicates [59].

4.3. RNA Extraction and qRT-PCR Analysis for GmTIP1;6

RNA was extracted from the vegetable soybean seedlings using the RNAprep Pure
Plant Kit (Tiangen, Beijing, China). Then, 1 µg RNA was used for cDNA synthesis with
FastQuant RT Kit (Tiangen, Beijing, China). Specific primer pairs for qRT-PCR were
designed using PrimerQuest Tool [60] (Table S1). GmActin11 (Glyma.18G290800) was used
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as the internal reference [61–63]. The amplification reactions of qRT-PCR were performed
on Applied Biosystems StepOnePlusTM Real-Time System using SuperReal PreMix Plus
SuperReal (SYBR Green) (Tiangen, Beijing, China). The thermal cycle used to the following
procedure: 95 ◦C for 15 min, followed by 40 cycles of 95 ◦C for 10 s, 53 ◦C for 20 s, and 72 ◦C
for 30 s, following a 10 min extension at 72◦ C. Each experiment was accomplished with
three technical replicates. The 2−∆∆CT method was used to analyze the relative amounts
of transcripts accumulated for GmTIP1.6 [64]. Student’s t-test was applied to determine
significant differences at a level of p < 0.01.

4.4. DNA Extraction and Promoter Cloning of GmTIP1;6

DNA was extracted from the vegetable soybean seedlings using the Plant Genomic
DNA Kit (Tiangen, Beijing, China). Promoter (5′ flanking region upstream of the coding
sequence) of GmTIP1;6 was isolated from the vegetable soybean genomic DNA by PCR.
Specific primer pairs were designed for cloning of the GmTIP1;6 promoter using DNAMAN
software (Table S1). PCR product was cloned into pMD-18-T vector (TaKaRa, Shiga, Japan)
and verified by sequencing.

4.5. Cis-Acting Element Analysis of GmTIP1;6 Promoter

Sequence, number, location, and function of abiotic stress and hormone responsive
elements in the promoter of GmTIP1.6 were analyzed by the PlantCARE database [65].

4.6. Vector Construction of GmTIP1;6 Promoter and Transgenic Arabidopsis Generation

To generate the proGmTIP1;6::GUS construct, the promoter of GmTIP1;6 was inserted
into Pst I/Sma I restriction sites and ligated into the pCAMBIA1391z vector using the
primers as presented in Figure S3 and Table S1. The GUS fusion construct was then
transformed into Arabidopsis by Agrobacterium-mediated floral dipping method [66]. Trans-
formed lines were selected using Murashige and Skoog (MS) medium containing 50 mg/L
hygromycin (Hyg). The homozygous T3 transgenic Arabidopsis seeds were used for further
experiments.

4.7. Stress and Hormone Treatments for Transgenic Arabidopsis

The proGmTIP2;6::GUS transgenic seeds were germinated on MS medium and cul-
tured in the temperature-controlled chamber (PTC-300, Shanghai, China) kept at 22 ◦C
day/20 ◦C night, 16 h photoperiod, 60% relative humidity, and 25,000 Lux light intensity
for 5 days. Then, the 5-day-old seedlings were exposed to MS medium containing 2–6%
PEG6000, 50–150 µM NaCl, 25–50 µM ABA, or 50–100 µM MeJA for 5 days. Seedlings on
MS medium without any treatments were used as controls. Each treatment was performed
in triplicate. After stress and hormone treatments, the transgenic Arabidopsis seedlings were
subjected to evaluate the GUS activities.

4.8. GUS Staining and Activity Detection for Transgenic Arabidopsis

GUS staining and activity detection were conducted as described previously [19,30,31].
The seedlings of transgenic Arabidopsis after staining were photographed using the Leica
microscope. GUS activities were analyzed and compared based on Student’s t-test, at a
significant level of p < 0.01.
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