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Abstract: The construction of a heterostructured nanowires array allows the simultaneous manipula-
tion of the interfacial, surface, charge transport, and transfer properties, offering new opportunities to
achieve multi-functionality for various applications. Herein, we developed facile thermal evaporation
and post-annealing method to synthesize ternary-Zn2SnO4/binary-ZnO radially heterostructured
nanowires array (HNA). Vertically aligned ZnO nanowires array (3.5 µm in length) were grown on
a ZnO-nanoparticle-seeded, fluorine-doped tin oxide substrate by a hydrothermal method. Sub-
sequently, the amorphous layer consisting of Zn-Sn-O complex was uniformly deposited on the
surface of the ZnO nanowires via the thermal evaporation of the Zn and Sn powder mixture in
vacuum, followed by post-annealing at 550 ◦C in air to oxidize and crystallize the Zn2SnO4 shell
layer. The use of a powder mixture composed of elemental Zn and Sn (rather than oxides and carbon
mixture) as an evaporation source ensures high vapor pressure at a low temperature (e.g., 700 ◦C)
during thermal evaporation. The morphology, microstructure, and charge-transport properties
of the Zn2SnO4/ZnO HNA were investigated by scanning electron microscopy, X-ray diffraction,
Raman spectroscopy, transmission electron microscopy, and electrochemical impedance spectroscopy.
Notably, the optimally synthesized Zn2SnO4/ZnO HNA shows an intimate interface, high surface
roughness, and superior charge-separation and -transport properties compared with the pristine
ZnO nanowires array.

Keywords: thermal evaporation synthesis; Zn2SnO4/ZnO; heterostructured nanowires array; inter-
face; charge transport

1. Introduction

Semiconductor metal oxide nanowires composed of earth-abundant elements are
technologically essential materials for energy conversion/storage devices, optoelectron-
ics, and sensors [1–6]. Nanowires often outperform the commonly utilized isotropic
polycrystalline or particulate films in applications that require more complex and mul-
tifunctional materials [7–9]. This is because nanowires have two different-length scales
(small diameter and significant length) that can be independently tailored to match the
characteristic lengths of disparate physical processes. In addition, nanowires can also
serve as building blocks for constructing heterostructured nanowires with designed ma-
terials that manipulate the surface, interface, and charge-transport/transfer properties,
enabling multi-functionality [10,11]. For example, core/shell nanowires with type-II band
alignment (staggered band edge alignment) spatially improve charge separation, leading
to increased charge carrier lifetime and advantages in photocatalytic and photovoltaic
performances [12,13].
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Binary metal oxides, such as ZnO [8,14], TiO2 [7,15], and SnO2 [9,16], are the most
widely used materials for electron transport in energy conversion applications and optoelec-
tronic devices (e.g., photodiodes, dye-sensitized, and perovskite solar cells). Ternary metal
oxides, such as Zn2SnO4 [17,18], BaSnO3 [19], and BaTiO3 [20], have also been investigated
as alternatives, demonstrating improved performance and functionality for binary oxides.
Recently, n-type semiconductor Zn2SnO4 (ZSO, zinc stannate) has attracted attention for
its potential as a transparent conducting electrode, gas sensor, and perovskite solar cell
owing to its bandgap energy of 3.6 eV, high mobility and conductivity, and low refractive
index [21,22]. Thus far, diverse synthesis methods, including RF sputtering [23], pulsed
laser deposition [24], hydrothermal method [25–28], vapor transport [22,23], and sol-gel
spin-coating [29], have been explored to synthesize ZSO nanowires and their heterostruc-
tures with various morphologies. For example, Wang et al. synthesized ribbon-like ZSO
nanowires through the vapor transport method at 800 ◦C without catalysts [30]. The syn-
thesized nanowires exhibited an average width of 100–200 nm and ultra-long length of up
to 1 mm. Mali et al. synthesized porous ZSO nanofibers by an electrospinning method that
is used for perovskite solar cells [31]. Additionally, Bora et al. [32] and Siwatch et al. [33]
reported a hydrothermal method to synthesize a ZSO/ZnO heterostructured nanowires
array that exhibited improved functionality and photovoltaic performance. However, most
previous studies have reported randomly aligned nanowires with often less controllability
and uniformity in the nanowires or heterostructure morphology.

In this study, we report a thermal evaporation method to synthesize vertically aligned
ZSO/ZnO heterostructured nanowires array (HNA), demonstrating a highly aligned
and uniform morphology. Single-crystalline ZnO nanowires array were first grown on
the fluorine-doped tin oxide (FTO) substrate. Subsequently, the ZSO shell layer was
formed by the thermal evaporation of the Zn and Sn metal mixture, followed by post-
annealing at 550 ◦C. The thermal evaporation of the elemental metal mixture allows the
control of the amount of Zn and Sn independently and ensures a high vapor pressure at a
low temperature (700 ◦C). Notably, a highly crystalline ZSO shell layer with an average
thickness of ~15 nm was successfully formed on the ZnO nanowires array. The resulting
ZSO/ZnO HNA exhibited a higher surface roughness, close interface, and superior charge-
transport properties than the pristine ZnO nanowires array.

2. Experimental Section
2.1. Deposition of ZnO Seed Layer

A ZnO nanoparticle seed layer was deposited by a sol-gel spin-coating method. The
coating solution was prepared by dissolving zinc acetate dihydrate (0.263 g, ZnAc-2H2O,
99.9%, Sigma Aldrich Chemicals, St. Louis, USA) in anhydrous ethanol (20 mL, 99.9%,
Daejung Chemicals). Acetylacetone (0.2 mL, 99.5%, Sigma-Aldrich Chemicals) was added
as a stabilizer. After aging at 25 ◦C for 24 h, the resulting solution was spin-coated on
pre-cleaned FTO substrates (TEC8, Pilkington) at 2500 rpm for 1 min. Subsequently, the
samples were annealed at 350 ◦C for 1 h in air to form the ZnO nanoparticle seed layer and
remove organic residues.

2.2. Hydrothermal Growth of ZnO Nanowires Array

ZnO nanowires array were grown on ZnO nanoparticle-seeded FTO substrates through
a hydrothermal route. The growth solution was prepared by dissolving zinc nitrate hex-
ahydrate (1.487 g, >99%, Sigma-Aldrich Chemicals) and hexamethylenetetramine (0.701 g,
>99%, Sigma-Aldrich Chemicals) in deionized water (100 mL). After stirring for 10 min,
polyethyleneimine (1.0 g, PEI, branched, Mw ~25,000, Sigma-Aldrich Chemicals) and am-
monia (3.0 cc, 25–30%, Ducksan Chemicals, Seoul, Korea) were added and stirred for
an additional 10 min. The growth solution was poured into a glass bottle (Schott bottle,
125 mL capacity). Then, the ZnO-seeded FTO substrates were vertically suspended in the
solution. Finally, the growth solution was heated to 100 ◦C in an oven and held for 2–6 h.
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The obtained samples were washed with deionized water, followed by absolute ethanol,
and dried with N2 in air.

2.3. Synthesis of ZSO/ZnO Heterostructure Nanowires Array

The ZSO shell layer was synthesized by the thermal evaporation of an elemental Zn
and Sn powder mixture in a tube furnace, followed by post-annealing in a muffle furnace.
First, a Zn-Sn-O amorphous shell layer was deposited on the ZnO nanowires array (sample
size: 2 cm × 2 cm) by the thermal evaporation of Zn/Sn (molar ratio of Zn/Sn = 2 and
loading amount = 2 g) in a vacuum (1 mTorr, 700 ◦C for 0.5–2 h), followed by oxidation with
O2 gas flowing (50 sccm). The substrate was positioned 10 cm away from the precursor
crucible on the downstream side. Next, the samples were annealed at 550 ◦C for 1 h in an air
atmosphere to form a crystalline ZSO shell layer on the surface of the ZnO nanowires array.

2.4. Characterization and Measurement of Materials

The crystal structures of the synthesized materials were determined using X-ray
diffraction (XRD, Mac-Science, M18XHF-SRA). The morphologies and film thicknesses
were observed through field-emission scanning electron microscopy (JEOL, JSM-6330F).
Transmission electron microscopy (TEM) images and selected area diffraction (SAD) pat-
terns were recorded on a JEM-3000F (JEOL) microscope at an accelerating voltage of 300 kV.
Raman spectra were recorded using a Raman spectrometer (Horiaba Jobin Yvon, T64000).
Electrochemical impedance spectroscopy (EIS) measurements were conducted in sandwich-
type cells with N719 dye, AN-50 electrolyte, Pt counter electrode, and working electrode
under simulated sunlight illumination (AM 1.5 G, 100 mW/cm2). The amplitude of the
sinusoidal voltage was 10 mV, and the examined frequency range was 7 MHz to 1 Hz. Mott–
Schottky plots were measured using a three-electrode system (a Pt wire counter electrode
and saturated calomel reference electrode) in the frequency range of 300–3000 Hz.

3. Results and Discussion

Figure 1 shows a scheme of the synthesis process of ZSO/ZnO radial HNA on the
FTO substrates. First, the ZnO nanoparticle film was deposited by sol-gel spin-coating
(2500 rpm, 1 cycle) of the ZnO precursor solution (0.06 M), followed by annealing at 350 ◦C
for 30 min to form a ZnO seed layer on the FTO substrate. The ZnO nanowire array
(NW) was then grown on the ZnO-seeded FTO substrate using a hydrothermal method
at 100 ◦C for 2 h. Subsequently, the ZnO NW were treated with vapors of the Zn and
Sn mixture evaporated thermally at 700 ◦C in a vacuum (1 mTorr). Finally, they were
annealed at 550 ◦C in air to form a crystalline ZSO shell layer on the ZnO NW. Notably,
the thickness and morphology of the ZSO shell layer could be controlled by adjusting the
thermal evaporation time.
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Figure 1. Synthesis of the Zn2SnO4/ZnO heterostructured nanowires array (HNA). Step 1. Sol-gel spin-coating of the ZnO
seed layer on the FTO substrate. Step 2. Hydrothermal growth of ZnO NWs at 100 ◦C for 2 h. Step 3. Thermal evaporation
of Zn and Sn mixture at 700 ◦C for 1 h in vacuum (1 mTorr), followed by post-annealing at 550 ◦C for 1 h.
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Figure 2 shows the SEM images of the synthesized ZnO NW and ZSO/ZnO HNA.
The growth conditions of the hydrothermal process (e.g., NH4OH amount, growth time,
and cycle) were optimized to obtain dense and vertical ZnO NW on the FTO substrate (see
Figures S1–S3). The resulting ZnO NW exhibited a high-density and vertically aligned
nanowire morphology, with an average length of approximately 3.5 µm (Figure 2a). In
addition, the nanowires exhibited close contact with the FTO substrate. Notably, the
nanowires had a smooth surface and tapered morphology near the tip (Figure 2b). As
shown in Figure 2c, the ZSO/ZnO HNA also exhibited a comparable length of 3.6 µm.
However, the ZSO/ZnO HNA exhibited a slightly larger nanowire diameter than the
ZnO NW. Interestingly, their surface was much rougher than the ZnO NW because of the
formation of nanoparticles at the surface (Figure 2d).
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Figure 2. Morphological characterization. Cross- and top-view SEM images of (a,b) ZnO NW and (c,d) ZSO/ZnO HNA.
The ZSO/ZnO HNA exhibited rough and lumpy surface.

XRD and Raman spectroscopy were performed to confirm the formation of the ZSO
shell layer on the ZnO NW (Figure 3). Figure 3a shows the XRD patterns of the ZnO NW
and ZSO/ZnO HNA. The ZnO NW exhibits a strong (002) peak intensity, indicating a
preferred growth orientation along the [00l] direction. The ZSO/ZnO HNA also exhibits
a high (002) peak intensity, retaining the [00l] preferred orientation of the ZnO NW. In
addition, three additional weak peaks are observed at 17.6, 29.2, and 34.3◦, which are
indexed to the (111), (220), and (311) planes of the cubic Zn2SnO4 phase, respectively [32].
Figure 3b shows the Raman spectra of both ZnO NW and ZSO/ZnO HNA. The ZnO NW
exhibits a broad peak centered at 443 cm−1, which corresponds to the E2 mode for ZnO [34].
After deposition of the ZSO shell layer, that is, for the ZSO/ZnO HNA, two peaks, at 443
and 673 cm−1, are observed, corresponding to the E2 mode for the ZnO and A1g modes
(stretching vibration mode of SnO6 octahedra) of spinel-type Zn2SnO4 [35]. Consequently,
a ZSO shell layer with nanoparticle morphology was successfully formed on the ZnO NWs
via thermal evaporation, followed by post-annealing.
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TEM analyses were conducted to investigate the microstructure and interface of both
ZnO NW and ZSO/ZnO HNA (Figure 4). Figure 4a,b show the TEM and high-resolution
TEM images of the ZnO NW, respectively. The ZnO NW exhibits tapered tips and a
smooth surface. The lattice fringes of 0.521 and 0.281 nm correspond to the (001) and (100)
planes of hexagonal ZnO, respectively. In addition, the fast Fourier transform and selected
area electron diffraction (SAED) patterns (Figure 4c) indicate that the ZnO NW has high
crystallinity and a preferred growth direction of [1].
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Figure 4d,e shows the TEM images of the ZSO/ZnO HNA. A thin nanoparticle layer
covers the surface of the ZnO NW, consistent with the SEM observation (see inset of
Figure 2d). They have an average thickness of ~15 nm (inset of Figure 4e). A high-
resolution TEM image of the ZSO/ZnO HNA at the interface region is shown in Figure 4f.
Notably, a highly crystalline layer with intimate contact with the ZnO NWs was formed.
The lattice fringes of 0.433 and 0.310 nm were indexed to the (002) and (220) planes of cubic
Zn2SnO4. TEM energy-dispersive spectroscopy indicated that the shell layer consisted of
both Zn and Sn (Figure S4). Therefore, it is concluded that a crystalline ZSO/ZnO HNA
with a high surface roughness and close interface was successfully synthesized on the FTO
substrate by thermal evaporation and subsequent post-annealing.

We tested different synthesis conditions, that is, (1) 30 min evaporation without post-
annealing, (2) 30 min evaporation with post-annealing at 550 ◦C for 1 h, (3) 2 h evaporation
with post-annealing at 550 ◦C for 1 h. As shown in Figure S5, an amorphous-like layer
(low crystallinity) was formed without post-annealing. For the sample prepared with an
evaporation time of 30 min and post-annealing at 550 ◦C/1 h, a much thinner crystalline
layer (~6 nm) with less surface roughness was formed. When the evaporation time was
increased to 2 h after post-annealing at 550 ◦C/1 h, a much thicker nanoparticle shell layer
(~40 nm) was synthesized. Accordingly, the thickness of the ZSO shell layer could be
controlled by adjusting the thermal evaporation time.

The conduction type, carrier concentration, and flat-band potential (Vfb) values of
ZnO NW and ZSO/ZnO HNA were determined from the Mott–Schottky measurements.
The following equation describes the straight line in the Mott–Schottky curves, [36]

C−2
sc =

2
qεεo ND

(
V − Vf b −

kT
q

)
where Csc is the space charge capacitance, q is the elementary charge (1.602 × 10−19 C), ND
is the carrier density, ε0 is the vacuum permittivity, εr is the dielectric constant, V is the
applied potential, Vf b is the flat-band potential, k is the Boltzmann constant, and T is the
temperature. The Mott–Schottky plots and corresponding linear fits of the ZnO NW and
ZSO/ZnO HNA are shown in Figure 5a. Both exhibit positive slopes, indicating that both
electrodes are n-type semiconductors with electrons as the majority carriers. The calculated
donor concentration (ND), which is inversely proportional to the straight-line slope of the
ZnO NW and ZSO/ZnO HNA was 5.6 × 1019 and 2.6 × 1019 cm−3, respectively. The
ZSO/ZnO HNA exhibited ND two times smaller than the ZnO NW, ascribed to the ZSO
shell layer. In general, ZnO exhibited a number of intrinsic defects, and thus it exhibited a
high charge carrier density even without additional treatments [37]. On the other hand,
the ZSO exhibited smaller donor concentration, which is attributed to the post annealing
that reduces the electron donors such as oxygen vacancies.

The Vfb is the electrochemical potential value at which the band bending disappears.
It is close to the conduction band edge position in the case of doped n-type semiconductor.
Notably, the Vfb of the ZnO NW and ZSO/ZnO HNA were −0.02 and −0.24 V vs. RHE,
respectively. The conduction and valence band-edge positions of ZnO and ZSO/ZnO NWs
were determined from the bandgap and Vfb values by assuming the difference between
the conduction band-edge and the Vfb to be insignificant. The ZSO/ZnO HNA exhibited a
significantly negative Vfb value, indicating that its conduction band edge was higher than
that of the ZnO NW. Figure 5b shows the estimated energy band edge positions of the ZnO
NW and ZSO/ZnO HNA. According to the results, both the conduction and valence band
edges of ZSO were positioned above those of the ZnO NW. Accordingly, the ZnO and ZSO
heterostructures had a staggered band edge; that is, they form a type-II heterojunction,
which improves the spatial charge separation [32,38].



Nanomaterials 2021, 11, 1500 7 of 9

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 9 
 

 

the ZSO exhibited smaller donor concentration, which is attributed to the post annealing 
that reduces the electron donors such as oxygen vacancies.  

 
Figure 5. (a) Mott−Schottky analysis. (b) Energy band position of ZnO NW and ZSO/ZnO HNA. (c) Electrochemical im-
pedance spectroscopy. (d) Scheme of the enhanced charge separation and transport in the ZSO/ZnO HNA. 

The Vfb is the electrochemical potential value at which the band bending disappears. 
It is close to the conduction band edge position in the case of doped n-type semiconductor. 
Notably, the Vfb of the ZnO NW and ZSO/ZnO HNA were −0.02 and −0.24 V vs. RHE, 
respectively. The conduction and valence band-edge positions of ZnO and ZSO/ZnO NWs 
were determined from the bandgap and Vfb values by assuming the difference between 
the conduction band-edge and the Vfb to be insignificant. The ZSO/ZnO HNA exhibited a 
significantly negative Vfb value, indicating that its conduction band edge was higher than 
that of the ZnO NW. Figure 5b shows the estimated energy band edge positions of the 
ZnO NW and ZSO/ZnO HNA. According to the results, both the conduction and valence 
band edges of ZSO were positioned above those of the ZnO NW. Accordingly, the ZnO 
and ZSO heterostructures had a staggered band edge; that is, they form a type-II hetero-
junction, which improves the spatial charge separation [32,38].  
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were evaluated by EIS measurements [39]. As shown in Figure 5c, the ZSO/ZnO HNA 
exhibited a smaller semicircle than the ZnO NW, indicating reduced charge transport and 
transfer resistance values [40]. In addition, the relative surface area was estimated using a 
dye-adsorption method (Figure S6), suggesting that the ZSO/ZnO HNA has a 130% larger 
surface area than the ZnO NW.  

As a result, the construction of the ZSO/ZnO HNA improved charge separation, 
transport, and transfer (injection) properties (Figure 5d), which is attributed to the for-
mation of type-II heterojunctions, intimate interfaces, and superior surface roughness 
compared to the ZnO NWs. 

Figure 5. (a) Mott−Schottky analysis. (b) Energy band position of ZnO NW and ZSO/ZnO HNA. (c) Electrochemical
impedance spectroscopy. (d) Scheme of the enhanced charge separation and transport in the ZSO/ZnO HNA.

The charge-transport properties of both electrodes (ZnO NW and ZSO/ZnO HNA)
were evaluated by EIS measurements [39]. As shown in Figure 5c, the ZSO/ZnO HNA
exhibited a smaller semicircle than the ZnO NW, indicating reduced charge transport and
transfer resistance values [40]. In addition, the relative surface area was estimated using a
dye-adsorption method (Figure S6), suggesting that the ZSO/ZnO HNA has a 130% larger
surface area than the ZnO NW.

As a result, the construction of the ZSO/ZnO HNA improved charge separation, trans-
port, and transfer (injection) properties (Figure 5d), which is attributed to the formation of
type-II heterojunctions, intimate interfaces, and superior surface roughness compared to
the ZnO NWs.

4. Conclusions

We successfully synthesized a ZSO/ZnO HNA via facile thermal evaporation and
post-annealing method. First, the ZnO nanowires array was grown on a ZnO nanoparticle-
seeded FTO substrate through a hydrothermal method. Then, an amorphous shell layer
composed of Zn-Sn-O was uniformly formed on the ZnO nanowire surface by the thermal
evaporation of the Zn and Sn mixture at 700 ◦C in vacuum, followed by post-annealing
at 550 ◦C in air to synthesize the crystalline ZSO shell layer. XRD and Raman analyses
confirmed the formation of the ZSO shell layer on the ZnO nanowires array. Interestingly,
the SEM and TEM analyses revealed that the deposited ZSO exhibits a highly crystalline
nanoparticle morphology and is closely in contact with the surface of the ZnO nanowires
without any voids. The optimally synthesized ZSO/ZnO HNA showed a higher sur-
face roughness and superior charge-separation/transport properties as compared with
the ZnO nanowires array. With further optimization of the ZSO layer (e.g., thickness),
our ZSO/ZnO HNA can be applied as an electron-transporting layer to various energy-



Nanomaterials 2021, 11, 1500 8 of 9

conversion devices, such as dye/quantum-dot sensitized devices, perovskite solar cells,
and photoelectrochemical cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11061500/s1, Figure S1: Effect of NH4OH amount on the morphology and length of
ZnO NWs, Figure S2: Effect of growth time on the morphology and length of ZnO NWs, Figure S3:
Effect of growth cycle on the morphology and length of ZnO NWs, Figure S4: TEM-EDS analysis of
ZSO/ZnO NW, Figure S5: TEM and HR-TEM images of ZSO/ZnO NWs. Figure S6: Amount of dye
adsorption (N719) measurement by UV-Vis spectroscopy.
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