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Neuromodulators are endogenous neurochemicals that regulate biophysical

and biochemical processes, which control brain function and behaviour, and

are often the targets of neuropharmacological drugs. Neuromodulator effects

are generally complex partly owing to the involvement of broad innervation,

co-release of neuromodulators, complex intra- and extrasynaptic mechanism,

existence of multiple receptor subtypes and high interconnectivity within the

brain. In this work, we propose an efficient yet sufficiently realistic compu-

tational neural modelling framework to study some of these complex

behaviours. Specifically, we propose a novel dynamical neural circuit model

that integrates the effective neuromodulator-induced currents based on various

experimental data (e.g. electrophysiology, neuropharmacology and voltamme-

try). The model can incorporate multiple interacting brain regions, including

neuromodulator sources, simulate efficiently and easily extendable to large-

scale brain models, e.g. for neuroimaging purposes. As an example, we

model a network of mutually interacting neural populations in the lateral hypo-

thalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of

neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrena-

line, respectively, and which play significant roles in regulating many

physiological functions. We demonstrate that such a model can provide predic-

tions of systemic drug effects of the popular antidepressants (e.g. reuptake

inhibitors), neuromodulator antagonists or their combinations. Finally, we

developed user-friendly graphical user interface software for model simulation

and visualization for both fundamental sciences and pharmacological studies.
1. Introduction
Neuronal activities, through the firing of action potentials and synaptic trans-

missions, can be modulated by endogenous neurochemicals called

neuromodulators, acting through biophysical and biochemical processes [1,2].

These neuromodulators are released by a distinct population of neurons, and

the neuromodulators act on specific receptors which are distributed throughout

the brain [3]. Major neuromodulators include serotonin, dopamine, norepi-

nephrine (NE; or noradrenaline), acetylcholine, orexin (or hypocretin),

endorphins and octopamine [3]. As a consequence of neuromodulation,

neural circuit function can be altered, which in turn can affect cognition,

mood and behaviour [3]. In neuropharmacological drug treatment of neurologi-

cal and neuropsychiatric illnesses, the monoaminergic systems (especially that

of serotonin, dopamine and NE) are often targeted [4]. These are achieved,
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Figure 1. LHA, DRN and LC interactions. Arrows: effective excitatory connec-
tions between any two areas; circles: inhibitory connections. Different colours
denote different brain areas and their respective connection types and the
targeted areas [27 – 31,35].
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for example, by altering the affinity of the associated recep-

tors that influences the release and reuptake mechanism of

the monoaminergic systems [5,6]. As neuromodulators can

also influence the biophysical properties of the neurons and

synapses via multiple receptors with differential affinities,

the complexity level in a neuronal circuit function can be sub-

stantial [7,8]. Experimental work often focuses on a specific

brain region or system (e.g. certain receptor subtype) or

employs a specific experimental methodology specific to the

single level of biological organization (e.g. whole-cell record-

ing at the neuronal level or voltammetric recording at specific

brain region). Thus, it is difficult to reconcile their systemic

implications.

Sufficiently realistic computational neural models can

help us to integrate various data types from different studies,

and can also generate testable predictions. However, model-

ling the detailed biophysical effects of neuromodulators can

be complex and computationally costly [9–11]. In particular,

neuromodulation often involves intracellular signalling pro-

cesses at the pre-synaptic and post-synaptic sites, and can

subsequently affect neuronal firing activities [12,13]. Hence,

such computational models that incorporate these biological

processes can be time-consuming to develop, and with the

multiple model parameters and equations, computationally

intensive to evaluate while posing a considerable challenge

in scalability.

In this work, we propose a novel neural circuit modelling

framework to circumvent such difficulties. To develop a scal-

able model, we make use of neural population-averaged

activity (mean-field like) or firing-rate-type models that describe

how the neural population activities depend on the averaged

effective neuromodulator-induced currents. The latter are deter-

mined by neuromodulators’ concentration levels and the

corresponding receptor affinities. Compared with other more

abstract population-averaged firing-rate-type models [14–17],

our model parameters describing the input–output functions

and temporal dynamics are informed and constrained by

data integrated from a variety of experiments, which include

electrophysiology, neuropharmacology, radioimmunoassay,

voltammetry and microdialysis.

We discuss such modelling approach in the context of

developing and simulating a neural circuit model intercon-

nected among the dorsal raphe nucleus (DRN), locus

coeruleus (LC) and lateral hypothalamus areas (LHA),

which are major sources of the important neuromodulators

serotonin (5-HT), NE and orexin, respectively. The motiv-

ations for selecting these brain systems to model are that

they are important in regulating physiological functions

especially in arousal, are known to interact mutually with

each other, and are the targets of several drugs [13,18–21].

In particular, the neuropeptide Ox is known to play an

important role in energy homeostasis, food intake and appe-

tite regulation, neuroendocrine functions and sleep–wake

regulation [22–24]. The monoamine NE is suggested to be

responsible for numerous functions, including stress

response, attention, emotion, motivation, decision-making,

learning, memory and regulation of sleep (e.g. REM) [25–30],

whereas the monoamine 5-HT can affect several physiological

functions that include eating behaviour, emotion, and sleep

regulation [31–33]. Abnormal 5-HT or NE levels are implicated

in mood disorders and anxiety [18,34].

The overlapping roles of these neuromodulators are not sur-

prising, given their mutual interconnectivity, and any targeted
neurons could themselves be sources of neuromodulators

(figure 1). We have also purposefully selected the Ox system

as a case study to demonstrate how we can model a neural

system that may not be well characterized (when compared

with NE).

A comprehensive, biologically faithful, yet efficient com-

putational model at the neural circuit level would enable us

to conveniently evaluate, account and predict, at a systems

level, important measurable variables such as the concen-

tration levels of the neuromodulators, the neural population

firing rate activities, the effects of individual or combined

drugs (e.g. reuptake inhibitors or antagonists) and their

interdependencies.

The organization of the rest of the paper is as follows.

We first describe the general modelling framework. Then,

as an example, we demonstrate the steps in modelling

three mutually interacting brain regions and discuss the

simulation results including drug effects. Next, we describe

our user-friendly software for simulating and visualizing

the behaviour of such models. Finally, we summarize the

results and discuss the implications of this study.
2. Results
2.1. An integrated modelling framework
To develop a biologically compatible neural circuit model

would require knowledge of electrophysiological proper-

ties of the composing neurons in a specific brain region,

and the nature of the interactions among themselves and

with other neuronal groups. This can include neurons

which themselves release neuromodulators. Modelling the

release-and-reuptake/decay dynamics of the extracellular

concentrations of the neuromodulators would require infor-

mation inferred from in vivo voltammetry or microdialysis

studies at the targeted sites under neuronal stimulation. We

would also need to know how the variation in neuromodulator

concentration can in turn affect neural firing rate activities via

neuromodulator-induced currents, hence requiring knowledge

of firing rate–neuromodulator concentration or firing

rate–current relationships (figure 2). These neuromodulator-

induced currents typically involve relatively slow

metabotropic G-protein-coupled receptor (GPCR) types,

e.g. G-protein-coupled inwardly rectifying potassium (GIRK)

or transient receptor potential (TRP) type cation currents
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Figure 2. Incorporating afferent currents from neuromodulator concentration
levels. [ y1] . . . [ yn] denote the different neuromodulator concentrations. i
represents a particular targeted brain region. I j!i is the corresponding
induced currents to region i. iTotal, i is the total afferent current and fi is
the firing frequency in region i. For example, [ y1] and [ y2] may be the con-
centration levels of serotonin [5-HT] and norepinephrine [NE], and i can be
the lateral hypothalamus LHA. The big arrow denotes ‘closing the loop’ in the
modelling process.
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[36,37], on targeted neurons, which alter the neuronal

firing rate activities. As discussed, explicitly modelling such

signalling pathway mechanisms can be complex and compu-

tationally intensive if large-scale neural circuits are involved.

To circumvent such challenges, we turn to phenomenological

yet biologically faithful models to mimic the overall effects.

To begin the modelling process, we first model the neural

activity for each brain region using neural population-

averaged activity [38]. Because the time constant of the typical

neural population firing-rate dynamics is approximately

10–100 ms, it is much faster than the dynamics owing to

neuromodulators, which is approximately seconds to minutes

(table 1). Hence, we shall ignore the neural population

dynamics and assume the system to be dominated by the

slower neuromodulator-induced dynamics [57]. In general,

different neuronal types can respond differently (in terms

of firing rate activity) to the same current injection. In

experiments, such relationship is demonstrated by the fre-

quency–current ( f 2 I) relationship. In a similar vein, we can

describe the ith neural population by the population firing

rate–current ( f 2 I) curve or input–output function [58]:

fi ¼ FiðItotal,iÞ, (2:1)

where fi is the population firing rate, Fi is the input–output

function and Itotal,i is the total averaged afferent current.

Under typical physiological ranges, it suffices to use a

threshold-linear function [58]:

FiðItotal,iÞ ¼ Ki ½Ii � I0,i þ Ibias,i�þ, (2:2)

where [x]þ ¼ x if x . 0, and 0 otherwise. Ki is the constant gain

or slope of the input–output function, I0,i is the threshold cur-

rent for non-zero firing and Ibias,i is the current coming from

other brain areas. Thus, after a specific threshold value of the

averaged afferent current, the neural population will be acti-

vated, and there is a linear relationship between the neural

firing rate and the overall afferent current. We shall later

show that this function fits the experimental data for Ox,

5-HT and NE neurons.

In general, the afferent current Ii can consist of several

different types of currents mediated by the different modu-

lators and their receptor subtypes. Each of these currents

will be determined by the corresponding neuromodulator

concentration levels and the receptor affinities (figure 2).
For example, suppose a neuromodulator y from region j
induces a current I j!i on target region i, then we can describe

the dynamics of the current by

t j!i
dI j!i

dt
¼ �I j!i þ G j!ið½y�Þ, (2:3)

where [y] is the neuromodulator concentration level, and t j!i

is the effective time constant owing to the applied neuro-

modulator which can be estimated from experiments. (If

there are more than one receptor subtypes mediated by the

same neuromodulator over the same brain regions, then we

can specify the above variables further, e.g. by defining

t j!i,R and I j!i,R for a receptor subtype R.) The value of t j!i

can be deduced from the response dynamics of the induced

current (or neural firing rates, if the induced current data

are not available) upon infusion of specific neuromodulator

at the targeted neurons. The input–output function G j!i

can be described by the sigmoid-like function commonly

used in pharmacology [59]

G j!ið½y�Þ ¼ p j!i,LR

þ
p j!i,UR

1þ exp(� log10ð½y� þ p j!i,LSÞ=p j!i,SÞ
, (2:4)

where p j!i,LR and p j!i,UR determine the range of the neuro-

modulatory effect on the currents, and p j!i,LS and p j!i,S

control the lateral shift and the slope of the neuromodulator

response current function, respectively. The values of these

parameters will be fitted to experimental data through

firing rate–neuromodulator concentration or firing rate–

current relationships. We used the standard nonlinear

regression method, nlinfit from Matlab (The MathWorks

Inc., Natick, MA, 2000). This approach particularly allows

us to circumvent the complexity of actually simulating the

intracellular signal transduction at the post-synaptic neurons.

This post-synaptic current depends upon the extracellular

neuromodulator release which is, in turn, dependent on the

(pre-synaptic) neural population firing rate of the source

neurons. Thus, to close the loop in the model, we have to

mathematically describe how the release-and-reuptake

dynamics are affected by the neural firing rate of the neuro-

modulator source. We follow a mathematical form similar

to that estimated from voltammetric measurements [40]:

d½y�
dt
¼ ½y� p,j!i fj �

Vmax½y�
Km þ ½y�

, (2:5)

where ½y� p,j!i is the per stimulus [y] release (at the targeted

area i from source j ). The rightmost term in equation (2.5)

represents the reuptake rate, and is approximated from

the Michaelis–Menten equation. Here, Km and Vmax are the

Michaelis–Menten constants, with Vmax defined as the maxi-

mum uptake rate and Km is the substrate concentration where

the uptake proceeds at half of the maximum rate. The value

for both of these parameters can be obtained from exper-

iments [40]. In voltammetry experiments, fj is typically an

artificially applied high current stimulus frequency to stimu-

late the release of y. However, following our previous work

[60], we can redefine it as the neural firing frequency of the

neuromodulator source. Hence, the value of ½y� p,j!i has to

be adjusted from that in voltammetry experiments, and the

exact value in the model can be obtained by constraining

the overall basal activity levels of the system to be within

the observed experimental ranges (see below).



Table 1. Basal firing rate, neurotransmitter levels, dynamical time constants, and other model parameters for the LHA – DRN – LC circuits. Asterisk: [39],
assuming Vmax, and per stimulus release at dorsal lateral geniculate (DLG) and LC will be same. Hash: [40]. Plus: parameter values are tuned to obtain the
basal values close to those in experiments.

parameter description value reference, remarks

fDRN basal firing rate of 5-HT neurons in DRN 0.8 Hz [41], in vitro

fLC basal firing rate of NE neurons in LC 2.15 Hz [42], in vitro

fLHA basal firing rate of Ox neurons in LHA 2.3 Hz [37], in vitro

kLHA gain of the input – output function for

LHA neurons

0.2 Hz pA21 [43]

KDRN gain of the input – output function for

DRN neurons

0.033 Hz pA21 [10,44,45]

kLC gain of the input – output function for

LC neurons

0.058 Hz pA21 [46]

I0,LHA threshold current for non-zero firing of

LHA neurons

0 pA [43]

I0,DRN threshold current for non-zero firing of

DRN neurons

24.82 pA [10,44,45]

I0,LC threshold current for non-zero firing of

LC neurons

0.028 pA [46]

Ibias,LHA afferent current to LHA neurons 11.5 pA [43]

Ibias,DRN afferent current to DRN neurons 24.82 pA [10,44,45]

Ibias,LC afferent current to LC neurons 37.41 pA [46]

[5-HT]LHA basal [5-HT] level in Ox neurons 1.6 nM [47]

[5-HT]LC basal [5-HT] level in Ne neurons 6.7 fM min21

approximately 0.11 fM s21

[48]

[NE]DRN basal [NE] level in 5-HT neurons 500 pg mg21

approximately 2.95 mM

[49], assuming baseline

5-HT levels at dorsal and

rostral raphe are same

[NE]LHA basal [NE] level in Ox neurons 0.83 nM [50], assuming baseline NE

levels at hypothalamus and

LHA are the same

[Ox]DRN basal [Ox] level in 5-HT neurons 10 pg mg21

approximately 3.4 nM

[51], assuming baseline Ox

level at pons and DRN are

the same

[Ox]LC basal [Ox] level in Ne neurons 2 pg mg21

0.56 nM

[51]

t[5-HT]! LHA time constant of the effect of [5-HT] on

Ox neurons

2 s [36]

t[5-HT]! LC time constant of the effect of [5-HT] on

Ne neurons

20 s [52]

t[Ox]! DRN time constant of the effect of [Ox] on

5-HT neurons

60 s [53]

t[Ox]! LC time constant of the effect of [Ox] on

Ne neurons

20 s [54]

t[NE]! DRN time constant of the effect of [NE] on

5-HT neurons

20 s [55]

t[NE]! LHA time constant of the effect of [NE] on

Ox neurons

1 s [56]

(Continued.)
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Table 1. (Continued.)

parameter description value reference, remarks

Vmax,[NE]! LC maximum uptake rate for the [NE] release in

LC neurons

74 nM s21 *

Km,[NE]! LC substrate concentration for the [NE] release in

LC neurons

400 nM *

Vmax,[NE]! DRN maximum uptake rate for the [NE] release in

DRN neurons

74 nM s21 *

Km,[NE]! DRN substrate concentration for the [NE] release in

DRN neurons

400 nM *

Vmax,[NE]! LHA maximum uptake rate for the [NE] release in

LHA neurons

74 nM s21 *

Km,[NE]! LHA substrate concentration for the [NE] release in

LHA neurons

400 nM *

Vmax,[5-HT]! DRN maximum uptake rate for the [5-HT] release

in DRN neurons

1800 nM s21 #

Km,[5-HT]! DRN substrate concentration for the [5-HT] release

in DRN neurons

170 nM #

Vmax,[5-HT]! LHA maximum uptake rate for the [5-HT] release

in LHA neurons

1800 nM s21 #

Km,[5-HT]! LHA substrate concentration for the [5-HT] release

in LHA neurons

170 nM #

Vmax,[5-HT]! LC maximum uptake rate for the [5-HT] release

in LC neurons

1800 nM s21 #

Km,[5-HT]! LC substrate concentration for the [5-HT] release

in LC neurons

170 nM #

a[Ox]! LC rise factor for [Ox] release in LC neurons 0.2314 nM þ
h[Ox]! LC decay rate for [Ox] release in LC neurons 0.85 s21 þ
a[Ox]! DRN rise factor for [Ox] release in DRN neurons 1.405 nM þ
h[Ox]! DRN decay rate for [Ox] release in DRN neurons 0.85 s21 þ
[5-HT]p,LHA per-stimulus [5-HT] release in LHA neurons 12.14 nM þ
[5-HT]p,LC per-stimulus [5-HT] release in LC neurons 0.852 fM þ
[NE]p,DRN per-stimulus [NE] release in DRN neurons 27.272 nM þ
[NE]p,LHA per-stimulus [NE] release in LHA neurons 0.0642 nM þ
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For the case of Ox, there is a lack of available experimen-

tal data, particularly its release and reuptake dynamics.

Hence, we adopt the simplest mathematical form to describe

the [Ox] dynamics [60], with only two parameters:

d[Ox]

dt
¼ a fLHA�h½Ox�, (2:6)

where a is the rise factor and h is a constant decay rate, and

both considered to be free parameters. The value of a is

selected, so that the release of [Ox-A/B] at DRN or [Ox-A]

at LC is close to the observed basal value (table 1).

A summary of the general model construction process is

summarized in figure 2. Such a modelling approach can allow

multiple brain regions to be constructed, simulated and ana-

lysed. (See Methods for a simpler approach when only two

brain regions are considered.) Overall, we have proposed an effi-

cient and scalable approach by incorporating neuromodulator

properties and dynamics into traditional firing-rate-type
models. We shall next apply this approach to develop a neural

circuit model involving multiple interacting neuromodulators.

2.2. An example with three interacting
neuromodulators

We shall now demonstrate, as an example, the steps towards

developing a neural circuit model of three interacting neuro-

modulator systems (lateral hypothalamus, DRN and LC)

through three corresponding neuromodulators (Ox, 5-HT

and NE), based on available experimental data and equations

(2.1)–(2.6). These brain regions were chosen mainly because

(i) they consist of different neuromodulator systems that

can directly influence each other, (ii) they were targets of

existing drugs, and (iii) we can demonstrate how one could

model with incomplete information. It is important to bear

in mind that different datasets from various experiments

are used for model construction and validation.
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First, the frequency–current ( f 2 I) curves for neurons from

the three brain regions are determined according to the avail-

able electrophysiological data ( f 2 I curves and typical

baseline firing rate ranges). Using the threshold-linear function

(equation (2.2)), the fitted parameter values for the LC’s

NE neuronal f 2 I curve are kLC ¼ 0:058 Hz pA�1,
I0,LC ¼ 0:028 pA and Ibias,LC ¼ 37:41 pA [46]; that for DRN’s

5-HT neuron are kDRN ¼ 0:033 Hz pA�1, I0,DRN ¼ 0:13 pA

and Ibias, DRN ¼ 24:82 pA [10,44,45]; and that for LHA’s Ox

neuron are kLHA ¼ 0:2 Hz pA�1, I0,LHA ¼ 0 pA and

Ibias, LHA ¼ 11:5 pA [43].

Next, parameters of the induced currents and associated G
functions are fitted to the experimental data through the

concentration–response relationships for the change in firing

rate induced by the neuromodulator. For example, the total

afferent current induced by neuromodulators on DRN’s neur-

ons can be rewritten as a sum: IDRN ¼ ILHA!DRN þ ILC!DRN.

The terms on the right are the currents owing to Ox-A/B

from LHA and NE from LC (for simplicity, we ignore the cur-

rent owing to autoreceptors and interneurons within each brain

region, see [17,61]). The dynamics for each induced current are

dependent on the concentration of the neuromodulator.

The Ox-induced current on DRN neurons (when NE-induced

current on DRN is clamped) can be described by

tLHA!DRN
dILHA!DRN

dt
¼ �ILHA!DRN

þ GLHA!DRNð½Ox�Þ, (2:7)

where tLHA!DRN is the effective time constant owing to the

injected Ox deduced from experiments. The GLHA!DRN
function (from equation (2.4), with units of currents) par-

ameters are fitted to experimental data [53], such that

pLR ¼ 0 pA, pUR ¼ 65 pA, pLS ¼ �2:08 nM, pS ¼ 0:452 nM

and tLHA!DRN ¼ 60 s. With these values, we obtain the best

fit for the overall firing rate–concentration function

(figure 3a), having the induced currents becoming an implicit

function.

Similarly, we can obtain the parameter values for the

other currents: ILC!DRN, ILHA!LC and IDRN!LC. The fitted

parameter values for ILC!DRN are pLR ¼ 0 pA, pUR ¼ 57 pA,

pLS ¼ �3:7 nM, pS ¼ 0:193 nM and tLC!DRN ¼ 20 s (figure 3b)

[55]. Parameter values for the incoming current from LHA

to LC neurons ILHA!LC are found to be pLR ¼ 3:8 pA,

pUR ¼ 54 pA, pLS ¼ �2:3 nM, pS ¼ 0:341 nM and

tLHA!LC ¼ 20 s [62] (figure 3c). For IDRN!LC: pLR ¼ 0 pA,

pUR ¼ 40 pA, pLS ¼ 4:214 nM, pS ¼ 0:347 nM and

tDRN!LC ¼ 20 s (figure 3d). With these parameter values, we

were able to obtain reasonable fits with respect to experiments

for the various input–output functions.

We now proceed to model the effects of 5-HT on LC’s

NE neurons. However, there is a lack of experimental data

on the direct effects of 5-HT on LC’s NE neurons (exper-

iments typically focused on how different 5-HT2 receptor

agonists affect the firing rate of LC neurons [63]). Thus, to

estimate the 5-HT-dependent input–output function of

firing frequency, we approximate the input–output function

from other experimental data by restricting the basal activi-

ties to [5-HT] � 0.11 fM and fLC � 2.15 Hz (table 1). We

considered the same sigmoidal shape (as defined in equation

(2.4)) for all the neuromodulator-dependent firing-rate
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function which is defined as

H j!ið½y�Þ ¼ q j!i,LR

þ
q j!i,UR

1þ exp(�log10ð½y� þ q j!i,LSÞ=q j!i,SÞ
, (2:8)

where q j!i,LR and q j!i,UR determine the range of the neuro-

modulatory effect on the firing rate, and q j!i,LS and q j!i,S

control the lateral shift and the slope of the neuromodulator

concentration-dependent firing-rate function H j!i, respect-

ively. Considering these baseline values, the estimated

parameter values are qLR ¼ 2:15 Hz, qUR ¼ �2:15 Hz,

qLS ¼ 4:273 nM and qS ¼ 0:3 nM [42].

Similar to the 5-HT modulating effect on LC, the 5-HT

response direct firing–frequency curve was not available

for LHA neurons. Thus, we approximate the input–output

function from other experimental data [37,47] and restricting

the basal activities to [5-HT] � 1.6 nM and fLHA � 2:3 Hz.

Then, the estimated parameter values are qLR ¼ 2:3 Hz,

qUR ¼ �2:3 Hz, qLS ¼ 0:9 nM, qS ¼ 0:1 nM [36]. Then,

we approximated the parameters for IDRN!LHA to be:

pLR ¼ 0 pA, pUR ¼ 36 pA, pLS ¼ �1:55 nM and pS ¼ 0:4 nM.

With these values, we observe that there is no Ox neuronal

firing even for 10 mM of [5-HT] (figure 3e). This is due to

the strong inhibition caused by the induced inward GIRK

current (approx. 32 pA), which eventually saturates (at

approx. 35 pA) for higher [5-HT] levels.
As the model has a hard threshold in the f–I curve,

there is a sharp change within the 10–100 nM of [5-HT].

Thus, we could not obtain a perfect fit for the functions

GDRN!LHAð½5-HT�Þ and hence the fLHA � ½5-HT� curve. Simi-

larly, the fitted parameters for the NE-induced GIRK

currents on LHA, ILC!LHA, are pLR ¼ 0 pA, pUR ¼ 120 pA,

pLS ¼ �5:39 nM, pS ¼ 0:4 nM and tLC!LHA ¼ 1 s [56]. We

encounter a similar issue for higher [NE] level, i.e. no perfect

fit for GLC!LHAð½5-HT�Þ (figure 3f ).

Compared with the effect of 5-HT on the target areas, esti-

mating the parameter values (q’s) for the effect of NE/Ox on

the target areas was relatively straightforward. As experimental

data related to neuromodulator-dependent firing-rate input–

output function were available, we approximated the q-values

for the Ox effect of DRN as qLR ¼ 0:8 Hz, qUR ¼ 2:2 Hz,

qLS ¼ �2:072 nM, qS ¼ 0:4463 nM [62]. q-values for the

Ox effect of LC are qLR ¼ 2:35 Hz, qUR ¼ 3:15 Hz,

qLS ¼ �2:3066 nM, qS ¼ 0:3468 nM [62]. Similarly, q-values

for the NE effect of LHA are estimated as qLR ¼ 2:3 Hz,

qUR ¼ �2:3 Hz, qLS ¼ �4:235 nM, qS ¼ 0:302 nM [56]. For NE

effect on DRN they are qLR ¼ 0:8 Hz, qUR ¼ 0:193 Hz,

qLS ¼ �3:711 nM, qS ¼ 0:208 nM [64].

After determining the input–output functions and

dynamics for all the currents, the final step is to integrate

all three brain regions and their interactions. In general, the
activities for the combined system will be different from the

individual isolated systems. Thus, the baseline activities of

the coupled system will be different from that observed

from the individual systems. However, the remaining set of

parameters, the neuromodulator release per stimulus fre-

quencies, i.e. the [y]p’s, can be adjusted to resolve this. We

found that for values of ½5-HT� p,LHA, [5-HT] p,LC, [NE] p,DRN

and [NE] p,LHA at 12:14 nM, 0:852 fM, 27:272 nM and

0:0642 nM, respectively, and Ox rise factor and decay rate

(a and h) for DRN are 1.405 and 0.85 l s21 while for LC are

0.2314 nM and 0.851 s21, the overall basal firing rates and

concentration levels are reasonably within the experimental

ranges (table 1). Note that the baseline activities are obtained

after sufficiently long simulation to attain their (stable) steady

states (see figure 4 for a sample trial).

After successfully constructing the LHA–DRN–LC circuit

model, we shall demonstrate simulating neuropharmacologi-

cal drug effects in the system. In particular, we shall focus

on effects of Ox-1 receptor antagonist (SB-334867-A), SSRIs

and/or SNRIs on the LHA–DRN–LC circuit.
2.3. Drug effect simulations
Pharmacologically, antagonists can be classified into two

categories: competitive and irreversible antagonists [65].

Pre-treatment or application of competitive antagonist can

shift the baseline dose–response curve horizontally. This

shift towards the higher doses (of neurotransmitter) increases

the effective dose (ED50) value of the dose–response curve

(where 50% of the maximal response of the dose is being

observed). Conversely, application of an irreversible antagon-

ist can cause shifts in the maximum range of the antagonist

effect and does not affect the ED50 value [66].

Ox-1 receptor antagonists have been suggested to encou-

rage sleep, as well as treatment and prevention of many

psychiatric disorders [67]. In particular, the Ox-1 receptor

antagonist, SB-334867-A, acts as a competitive antagonist

which rightward shifts the Ox-A response curve in 5-HT

and NE neurons in DRN and LC [62,68]. Thus, we can

easily incorporate the effect of SB-334867-A, by simply

laterally shifting the function GLHA!DRN=LC ð½Ox� A�Þ.
Selective serotonin/norepinephrine reuptake inhibitors

(SSRIs/NRIs) are some of the commonly known pharmaco-

logical agents that are used for the treatment of various

psychiatric disorders. The basic (acute) actions of these

drugs are similar: primarily to increase the extracellular con-

centration level of their respective neuromodulator

concentration by inhibiting the uptake process and reduce

the synaptic clearance in the extracellular space [69]. There

have been numerous studies conducted to understand the

effects of uptake inhibitors on [5-HT] uptake [69,70]. In
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particular, John et al. [70] show that monoamine uptake

inhibitors can affect the values of the Michaelis–Menten

constants Km and Vmax in the limbic part of the brain.

For example, 10 mM of fluoxetine, an SSRI (when applied to

the substantia nigra area), increased the value of Km by

about a factor of 5 but did not alter the value of Vmax signifi-

cantly [69]. Thus, to incorporate the influence of SSRIs/NRIs

in our model, we can mimic the different doses of SSRIs by

varying the different values of Km. For simplicity, our

model will ignore chronic or other long-term secondary

actions such as receptor density changes.

As we increase the value of Km,[5-HT] (mimic SSRI), [5-HT]

linearly increases in both the targeted areas LHA and LC

(figure 5a,h solid blue). This increase in [5-HT] level causes

a significant decrease in fLHA (figure 5c, solid blue), which

is consistent with experimental findings [36]. This in turn

causes a decrease in [Ox-A/B] levels in the DRN and LC

areas (figure 5d,g solid blue). Interestingly, because of the net-

work effect, there is a subsequent decrease in fDRN (figure 5f,
solid blue), consistent with [71] even when we did not incor-

porate any inhibitory 5-HT autoreceptors [72,73]. However,

5-HT’s effect on LC’s NE neurons is minimal, consistent

with [74], and therefore, fLC does not alter the [NE] levels

in the DRN and LHA significantly (figure 5i, solid blue).

These effects remained to be validated in the intact brain.

Next, we simulate the combined effects of SSRIs and

NRIs, by increasing the value of Km,[NE] to three and five

times its control value (400 nM) while varying Km,[5-HT] as

previously. The model shows that for higher values of

Km,[NE] more [5-HT] and [NE] are released in the targeted

areas in the LHA and LC when compared with controls

(figure 5a,h dashed red and dotted-dashed pink). This

suggests that other than Km,[5-HT], [NE] release in DRN also
helps stimulate the release of [5-HT] in these targeted areas,

consistent with [75]. This rise in the [5-HT] level significantly

affects fLHA, ½Ox� A=B�DRN, [Ox� A]LC, ½NE�DRN and

½NE�LHA while there is little impact on fLC (figure 5b–e,g,i).
Finally, to assess the combined effect of SSRIs, NRIs and

SB-334867-A, we set Km,[NE] to be five times the control value

and mimic the influence of 10 mM SB-334867-A on DRN and

LC (by changing the pLR value from 3.8 to 2 pA, pUR from

54 to 51 pA, shift factor pLS from 22.3 to 24.192 nM, and

slope factor pS from 0.341 to 0.592 in LC). For DRN, pLS is

changed from 22.08 to 22.97 nM and pS from 0.452 to

0.367. We find that this triple-drug combination can cause

a further decrease in the fDRN and fLC, and a substantial

reduction in [NE]DRN levels (figure 5e,f,i solid green),

whereas the rest are not significantly affected by the addition

of SB-334867-A (figure 5a–d,g,h solid green).
2.4. Software for model simulation and visualization
Using Matlab, we have designed and developed a software,

called ‘NModC’ (neuromodulator circuit), with friendly

graphical user interface (GUI) for simulation, analysis and

visualization of the types of models described. The software

is easy to use, and can easily be generalized to additional

brain regions, other neural subpopulations and neuromodu-

lator types. The user can visualize the activities of multiple

brain regions dynamically and simultaneously. These brain

regions are embedded in a rotatable three-dimensional glass

brain using standard Montreal Neurological Institute (MNI)

coordinates (figure 6a). The user can also further specify

brain regions of interest to find the dynamical variables’

time courses and mutual relationships (figure 6b) for more

detailed analysis. The model parameters can be easily altered



(a)

(c)
(b)

Figure 6. Screenshot of the NModC software. A user-friendly GUI of neuromodulator neural circuit model that can simulate, analyse, visualize and edit. (a) Users can
run the model to visualize the results within a rotatable three-dimensional glass brain after pressing the ‘Start’ button. The user can stop the simulation using the
‘Stop’ button. Simulation time parameters can be controlled using ‘Time’ and ‘Sim scale’, and the GUI can be closed using ‘Close’ buttons. (b) Model variables’ time
courses and their mutual relationships can be observed using the ‘Outputs’ button. (c) Model variables’ exact values can be found and model parameters edited
upon pressing the ‘Parameters’ button. ‘Default’ returns to default model parameters and ‘Simulate’ re-runs the model after editing the parameter values.
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to visualize the variation in the steady-state values of the

transients of neuromodulator concentration level and firing

rates, and can also compare the firing rates of the two brain

regions (figure 6c). Further details are described in the

Methods section, and the software is available at https://

github.com/vyoussofzadeh/NModC.
3. Discussion
In this work, we have proposed a new computational model-

ling framework for incorporating essential biological features

of neuromodulation in neural circuits. This provides a
computational platform to link from low-level neurobiology

to large-scale brain activities.

Our framework is based on the population-averaged firing-

rate type of model which has model parameters constrained by

neurobiology. This is to be compared with other firing-

rate-type models without such constraints [14–16]. The

model integrates pharmacological and electrophysiological

data from separate experimental studies to constrain the

input–output neuronal functions, and also the timescale and

profile of the effective neuromodulator-induced currents.

Another key difference in our modelling approach is the

consideration of the release-and-reuptake/decay dynamics

of the extracellular neuromodulator concentration level

https://github.com/vyoussofzadeh/NModC
https://github.com/vyoussofzadeh/NModC
https://github.com/vyoussofzadeh/NModC
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that can be inferred from voltammetry. By doing this, we cir-

cumvented modelling the complex intracellular biochemical

processes, but instead, directly modelled the concentration-

dependent effect on neural firing rate activity based on

pharmacological–electrophysiological data.

In particular, to allow our approach to be generalizable

to multiple interacting brain regions, we introduced neuro-

modulator-induced currents to bridge the gaps between

neuromodulator concentration levels and targeted neural firing

rate activities—afferent influences from different brain regions

can be accounted for by their summed currents. The timescale

and response curve of the neuromodulator concentration-

dependent currents were constrained by data from combined

pharmacological and electrophysiological experiments.

We demonstrated our modelling approach with the

example of a neural circuit that involves three mutually inter-

acting brain regions (LHA, DRN and LC), which are also

sources of three different neuromodulators: orexin, serotonin

and NE, respectively. The transient and steady-state dynamics

of the experimentally measurable variables (neural firing rates

and neuromodulators’ extracellular concentration levels) could

be easily simulated. In particular, our model supported the

coexistence of the observed (steady-state) baseline firing rates

and neuromodulator levels found in separate experiments.

An important application of our model was the prediction

of the effects of neuropharmacological drugs on neural circuits.

We simulated the effects of SSRIs, NRIs and Ox-1 receptor

antagonist on the LHA–DRN–LC model. We first showed

that SSRIs could have a wide effect on the neural circuit,

except the LC–NE system. Interestingly, SSRI could inhibit

the DRN (decrease in fDRN), the source of 5-HT, even though

we did not implement its inhibitory autoreceptors. This effect

was essentially owing to the direct effects on serotonin hetero-

receptors on the LHA and LC, which in turn inhibited the DRN.

Similar circuit-based effects could be explained for the addition

of NRIs and/or Ox-1 receptor antagonists.

The constructed LHA–DRN–LC circuit model turned out

to be dominated by a unidirectional influence between any

pair of interacting brain areas (figure 5). Hence, these result

in monotonic relationships (either increased or decreased)

as the model parameters (e.g. Km’s) were varied. However,

this need not generally be the case. For example, a more

balanced (especially excitatory–inhibitory) coupled network

could easily lead to emergent circuit oscillations or even

non-monotonic effects [8,76]. In the latter case, it might

then be possible to search for the optimal drug dosage. In

fact, we had shown evidence of such nonlinear emergent be-

haviour when the model incorporated autoreceptors and

non-principal (e.g. inhibitory GABAergic) interneurons (to

mediate indirect connections) [17]. Moreover, the excit-

atory–inhibitory balance of the network can also be

influenced by the co-release of the neurotransmitters (e.g.

glutamate) [77,78]. In this case, our framework can still

accommodate this by introducing additional dynamical

equations to describe the effects of glutamate or GABA (for

the same pre-synaptic firing rate).

Our work has also shown that administration of multiple

drugs (serotonin/NE reuptake inhibitors and Ox-A antagon-

ist) simultaneously can be simulated in neural circuits to

search for the optimal mixture of drugs. However, the results

remain to be validated as there is a lack of such work done in

experiments. Hence, this will form model predictions that can

help experimentalists in designing future studies. For
example, multielectrode array in vivo recordings can be

designed to study the wide-ranging effects of drugs on differ-

ent brain areas. It would also be interesting to use the model

to minimize the side effects of drugs, which is an important

issue in neuropharmacology.

Our modelling framework is scalable to incorporate mul-

tiple brain regions and hence can be used to study large-scale

brain effects. This includes studying the changes in REM/

non-REM stages or sleep–wake cycle [15,16], cortical dynamics

[8] and cognitive–emotional processing [8,76]. This would

require extending our current GUI software by including cor-

tical brain structure and their connectivity with the

neuromodulator sources. Thus, these models could poten-

tially reveal insights into the relationships among various

brain and behavioural disorders (depression, addiction, anti-

depressants and sleep disorders). Importantly, neuroimaging

data, especially from positron emission tomography and

functional magnetic resonance imaging, could potentially

be incorporated into our modelling framework, bridging

across multiple scales and modalities, similar in spirit to the

popular dynamic causal modelling approach [79]. Interest-

ingly, recent whole brain molecular imaging (functional

magnetic resonance imaging (MRI)) of serotonin transporter

to characterize 5-HT dynamics in humans before and after

(e.g. SSRI) drug administration is now possible [80], opening

up another possible application of our modelling framework.

In summary, we have proposed a promising new compu-

tational modelling framework that can integrate various

experimental neurobiological data into a computationally

efficient large-scale neural circuit model for simulating, test-

ing and predicting the effects of multiple endogenous

neuromodulators and neuropharmacological drugs.
4. Methods
4.1. A simpler modelling approach for modelling two

brain regions
Note that if one is only interested in the mutual interactions of

two brain regions, then one may ignore the induced current

implementation step (figure 2, second column), and directly

model the influence of [y] on the firing rates fi [60], i.e.

t j!i
dfi
dt
¼ �fi þ Kið½y�Þ, (4:1)

where t j!i is the effective time constant owing to the injected

neuromodulator y on the ith neural population. Ki([y]) can

follow a similar form as the G function in equation (2.4).
4.2. Model parameter and baseline values
A summary of the LHA–DRN–LC model parameter values and

baseline activities are shown in table 1.
4.3. Numerical simulations
The neural circuit model simulation for the interaction of the

three brain areas is computed by using the forward Euler

numerical integration method which is applied to the set of the

first-order differential equations. A time step of 1 ms was

used. Smaller time steps were tested without affecting the

results. These simulations can also be extended to other (e.g.

second-order or fourth-order Runge–Kutta) numerical schemes.

Simulations were run until stable steady states are obtained.
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4.4. Graphical user interface software
To begin the software, the user presses the ‘Start’ button on the

starting window of the GUI. This will result in the model outputs

of the interacting brain regions (figure 6a). The outputs appear in

the form of normalized neural (firing rate) at the specified brain

regions, e.g. red colour represents relatively higher activity,

whereas blue colour represents lower activity. The range of the

colour map is based on the absolute range of [0 255] Hz. These

colours of activity can change over time, reflecting their

dynamics. The regions are embedded in locations based on the

MNI coordinates in a glass brain. Three-dimensional rotation of

the brain is also allowed in the software. Although the structure

of the glass brain is currently based on normal human MRI data,

it can be easily replaced by an animal (e.g. rodent) glass brain

using the appropriate brain atlas.

Once the model is converged after simulation, upon clicking

on the ‘Outputs’ button in the starting window, the dynamical

variables for the selected regions will appear in a new window

(figure 6b). The variables are the (absolute) neural firing rates

and neuromodulator concentrations of the selected brain regions.

Both the individual variable’s temporal dynamics and mutual

relationships between the variables can be plotted. Upon clicking

the ‘Parameters’ button in the starting window, a new window

appears in which the model parameter values and the initial

numerical values of the variables are shown. The model par-

ameter values can be edited within this window. Once this is

done, the user can resimulate the new model by pressing the

‘Simulate’ button within the same window. This generates the

transients of baseline firing rates and concentration levels and

shows the relationship among them (e.g. firing rates). For default
values, all the transient activities eventually attain their stable

steady states. These steady-state values of the system parameters

vary as we change the model parameters. For example, to mimic

the complex drug effects of SSRIs, Km is varied and correspond-

ing changes in the steady-state values are analysed separately

(see §2.3). If a mistake is made, then the user can always retrieve

back the initial values of the parameters by clicking on the

‘Default’ button.
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