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Abstract

Background—Disruption of tight junctions (TJ) predisposes to bacterial translocation, intestinal 

inflammation, and necrotizing enterocolitis (NEC). Previously studies showed that hyaluronan 

(HA), a glycosaminoglycan in human milk, maintains intestinal permeability, enhances intestinal 

immunity, and reduces intestinal infections. In this study, we investigated the effects of HA 35 

kDa, on a NEC-like murine model.

Methods—Pups were divided into Sham, NEC, NEC + HA 35, and HA 35. Severity of intestinal 

injury was compared using a modified macroscopic gut scoring and histologic injury grading. The 

effect of HA 35 on intestinal permeability was determined by measuring FITC dextran and 

bacterial translocation. RNA and protein expression of TJ proteins (claudin 2, 3, 4, occludin, and 

ZO-1) were compared between the groups.

Results—Pups in the NEC + HA 35 group had increased survival and lower intestinal injury 

compared to untreated NEC. In addition, HA 35 reduced intestinal permeability, bacterial 

translocation, and proinflammatory cytokine release. Ileal expression of claudins 2, 3, 4, occludin 

and ZO-1 was upregulated in NEC + HA 35 and HA 35 compared to untreated NEC and shams.
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Conclusion—These findings suggest that HA 35 protects against NEC partly by upregulating 

intestinal TJs and enhancing intestinal barrier function.

INTRODUCTION

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that primarily 

affects premature infants of less than 32 weeks gestation. The incidence of NEC is between 

7 to 12% and is gradually increasing in frequency, due in part to the increasing number of 

premature infants surviving each year [1]. Although the pathogenesis of NEC is still unclear, 

evidence suggest that prematurity, altered intestinal microbiome, and intestinal barrier 

dysfunction are major contributors to the disease. Disruption of intestinal barrier has been 

shown to be an important factor in the development of intestinal inflammation [2, 3], and in 

combination with an altered intestinal microbiome, can lead to translocation of bacteria and 

bacterial products, increased inflammation, intestinal necrosis, and in severe cases sepsis and 

death [4]. Thus, identifying strategies or interventions that protect intestinal integrity and 

modulate inflammation is critical in preventing NEC.

Evidence suggest that exclusive human milk (HM) feeding decreases the risk of NEC in 

premature infants [5, 6]. Several protective factors are present in HM including lactoferrin, 

oligosaccharides, and growth factors [7]. HM also contains glycosaminoglycans (GAGs) at 

5–10 times the concentration of bovine milk [8]. Hyaluronan (HA), a GAG composed of 

repeating disaccharides of β- D-glucuronic acid and N-acetyl-β-D-glucosamine, is present in 

HM with the highest concentration during the first months after birth [9]. HA is produced at 

cell surfaces by hyaluronan synthases (HAS1, HAS2 and HAS3) generally as high 

molecular weight HA and can be degraded in response to injury [10]. The degraded 

fragments can either have pro- inflammatory or anti-inflammatory effects depending on the 

tissue environment or the size and molecular structure of the HA fragments [11].

Recently, HA from HM or purified HA of average molecular weight 35 kDa (HA 35) was 

shown to prevent intestinal bacterial infection and reduce intestinal inflammation in various 

mouse models mainly through maintaining the intestinal barrier defenses and function [9–

13]. Since both factors are involved in the pathogenesis of NEC, we sought to determine the 

effect of HA 35 on survival, intestinal permeability, and histological injury in a NEC-like 

model. We then determined the effect of HA 35 on tight junction protein expression in ileal 

tissue. Finally, the effect of HA on proinflammatory cytokine release and bacteremia was 

compared between the groups.

MATERIALS AND METHODS:

All animal experiments (Protocol #04203AR) were approved by the Institutional Animal 

Care and Use Committee (IACUC) of the University of Oklahoma Health Sciences Center 

(Protocol#101502–16-024), and performed according to recommendations in the Guide for 

the Care and Use of Laboratory Animals [14].
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Experimental design and animal model of NEC

Pups were randomized to one of the following groups: 1) Sham, 2) NEC, 3) NEC + HA, and 

4) HA alone. Sodium hyaluronate (Lifecore Biomedical, LLC, Chaska, MN) with a 

molecular weight of ~35,000 kDa (HA 35) was given to pups in the NEC+ HA and HA 

group by gavage at a concentration of 15mg/kg or 30mg/kg body weight once daily for three 

days prior to induction of NEC and one hour prior to bacterial administration (Figure 1). The 

doses and intervals were based on previous studies done in large intestinal inflammation 

models [9, 11].

NEC was induced using the Paneth cell disruption and Klebsiella infection NEC-like model 

[15, 16]. Crl:CD1(ICR) pups (Charles River) at P14 to P16 days of age received an 

intraperitoneal injection of dithizone (33 mg/kg) diluted in ethanol/ammonium hydroxide, 

followed by gavage administration of 1×108 CFU Klebsiella pneumoniae /kg (ATCC#10031, 

Manassas, VA). Pups were monitored for 10 hours after gavage for clinical illness and 

survival [17]. At the end of the experiment, surviving pups were euthanized, and blood and 

tissues were harvested for further analysis.

Macroscopic and microscopic evaluation of intestinal injury: Small intestines of 

pups were removed and visually inspected for macroscopic signs of NEC. Images were 

obtained using Amscope MU1803 microscope and digital camera (Irving, CA). Severity of 

gut injury was graded by a blinded investigator using a modified macroscopic gut scoring 

[17] with a 3-point scoring system based on gut color and dilatation as follows: 0: no 

discoloration or dilatation; 1: patchy discoloration; 2: extensive discoloration and gut 

dilatation. For histological injury scoring, the terminal ileum was removed and fixed in 10% 

formalin buffer, then paraffin-embedded and stained with hematoxylin and eosin for 

microscopic examination. Severity of intestinal injury was assessed based on a five point 

scoring system previously developed by Jilling et al [18]; Grade 0: intact; Grade 1: distal 

epithelial sloughing; Grade 2: mid villus sloughing; Grade 3: complete villus necrosis with 

preservation of the crypts; and Grade 4: transmural necrosis. Scores were based on the 

highest score observed on three to five sections in a specimen. A score of 2 or above was 

defined as NEC.

In Vivo Intestinal Permeability: To assess the effect of HA 35 on intestinal permeability 

in vivo, fluorescein isothiocyanate (FITC) labeled dextran (molecular weight 4,000) (Sigma-

Aldrich Inc. FD4, St. Louis, MO) was used as previously described [19]. Mice pups from 

each group received 44mg/100gm body weight FD4, suspended in sterile PBS by orogastric 

gavage. Four hours later, pups were euthanized and serum levels of FD4 were measured by 

spectrophotofluorometry (Tecan, Maennedorf, Switzerland) at an excitation wavelength of 

480 nm and emission wavelength of 520 nm after standard concentration curves were 

established.

Inflammatory cytokine quantification at plasma and intestine

Proinflammatory cytokines/chemokines (IL-1β, TNF-α, IL-6, IL-12 p70, IFN-γ, CXCL) 

and anti-inflammatory (IL-10) cytokines were measured in plasma and intestine using 

ProcartaPlex Mouse Cytokine & Chemokine Panel (bioscience, San Diego, CA, USA) based 
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on Luminex technology as per manufacturer’s instructions. Small intestinal samples were 

homogenized using a bead beater (Next Advance INC, Troy, NY) in a buffer containing 

Calbiochem phosphatase and protease inhibitors (524625 and 535140, Millipore, 

Burlington, MA) and PMSF (93482, Sigma-Aldrich, St. Louis, MO). Samples were run on a 

BioPlex 200 (Bio-Rad, Hercules, CA) and results were calculated based on a 7-point 

standard curve for each analyte. Final cytokine levels were normalized to total protein 

concentration (mg/ml) and reported as picogram/ml for plasma and picrogram/mg for tissue 

levels.

Immunohistochemistry (IHC): IHC was performed according to manufacturer’s 

protocol using Leica Bond-IIITM Polymer Refine Detection system (DS 9800). Polyclonal 

antibodies claudin 2, −3, −4 and Z0–1 (Catalog #36–4800 and PA5–28858, ThermoFisher, 

Waltham, MA) and occludin (Catalog #40–4700, Invitrogen, Carlsbad, and CA) were used. 

FFPE tissues were sectioned at desired thickness (4–8µm) and mounted on positively 

charged slides. The slides were dried overnight at room temperature and incubated at 60°C 

for 45 minutes followed by deparaffinization and rehydration in an automated multistainer 

(Leica ST5020). Subsequently, these slides were transferred to the Leica Bond-III™, treated 

for target retrieval at 100°C for 20 minutes in a retrieval solution, either at pH 6.0 or pH 9.0. 

Endogenous peroxidase was blocked using peroxidase-blocking reagent, followed by the 

selected primary antibody incubation for 60 minutes diluted at (Occludin-1:200, ZO-1, 

1:100, Claudins 1:100). For the secondary antibody, post-primary IgG-linker and/or Poly-

HRP IgG reagents was used. Detection was done using 3, 3′-diaminobenzidine tetra 

hydrochloride (DAB), as chromogen and counterstained with hematoxylin. Completed slides 

were dehydrated (Leica ST5020), and mounted (Leica MM24). Antibody specific positive 

control and negative control (omission of primary antibody) were parallel stained. IHC 

slides stained for the specific tight junction (TJ) protein were read by a blinded pathologist.

Real Time RNA PCR: RNA was isolated from the terminal ileum tissue using RNeasy 

Plus Mini Kit (74134, Qiagen, Germantown, MD) per manufacturer’s instructions and 

reverse transcribed with a High Capacity cDNA Reverse Transcription Kit (4368814, 

Applied Bio systems, Foster City, CA). Samples were run in triplicate on ZO-1 

(Hs01551861_m1), occludin (Hs00170162_m1), claudin-4 (Hs00976831_s1), claudin-3 

(Hs00265816_s1) and claudin-2 ( Hs00252666_s1), and values were normalized to ACTB 

(Hs01060665_g1) using a ΔΔCt analysis of the TaqMan assays and reported as fold-change 

from sham.

Statistics: All data were analyzed and graphs created using Graph Pad Prism software 

version 6.00 for Windows (LA Jolla, California USA www.graphpad.com). Survival curves 

to assess mortality were obtained using the Kaplan Meier Survival Analysis. Data obtained 

from each group are presented as mean ± standard error of mean (S.E.M.) and analyzed 

using either unpaired t- test or one-way analysis of variance (ANOVA) with Turkey multi-

comparison test, as appropriate. P-value of < 0.05 was considered significant.
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RESULTS

Oral HA 35 reduces mortality and severity of NEC like intestinal injury

To determine if HA 35 protects against experimental NEC, mice pups were given HA 35 

(15mg/kg or 30mg/kg), once daily, for three days prior to induction of NEC. NEC was 

induced using the Paneth cell ablation and Klebsiella Infection model as described above 

[15]. Pups were then monitored for a total of 10 hours for survival and signs of distress. Pups 

in the NEC + HA 35 had increased survival in a concentration dependent manner (Fig 2A) 

with a survival of 90% in the NEC + HA 35 at 30 mg/kg compared to 70% in the NEC + HA 

35 at 15 mg/kg, and 50 % in untreated NEC with a p value 0.04 and 0.05 respectively.

Based on the mortality data, we next assessed the effect of HA 35 at only the 30 mg/kg dose 

on the incidence and severity of intestinal injury in the NEC model. Compared to the small 

intestines of pups in the sham group, the NEC group exhibited signs of inflammation, 

discoloration, and distension (Fig. 3). HA 35 resulted in improved overall gross appearance 

with reduced signs of dilation and discoloration (Fig-3 A) with a mean ± S.E.M. score of 

2.125 ± 0.31 compared to 3.25 ± 1 in untreated NEC (p <0.01). (Fig-3C). H&E examination 

of the ileal section in the sham group showed normal, healthy villi and submucosal structure. 

In contrast, sections from the NEC group showed signs of moderate to severe injury with 

separation of the submucosa and in certain cases transmural necrosis (Fig.3 B). Notably, HA 

35 administration in NEC was associated with attenuated histological injury (Fig.3 D) with a 

mean ± S.E.M. scoring of 1.2 ± 0.25 compared to 2.3 ± 0.15 in the NEC group (p <0.01).

HA 35 protects intestinal barrier function in NEC model

Disruption of the intestinal epithelial barrier predisposes to bacterial translocation, intestinal 

inflammation, and NEC [3, 20, 21]. Previous studies have shown that HA 35 maintains 

intestinal integrity and decreases intestinal permeability in vivo in various murine colitis 

model [12]. To determine the effect of HA 35 on intestinal permeability in NEC, serum 

levels of FITC-dextran were measured in all surviving pups 4 hours after administration of 

FD4. As expected, pups in the NEC group had elevated serum levels of FITC compared to 

shams with a mean ± S.E.M 5,274 ± 389 ng/ml versus 1,730 ± 250 ng/ml respectively 

p<0.0001, indicating an impaired barrier function in the NEC group (Fig. 2B). HA 35 

treatment in NEC significantly decreased FITC levels in serum in a concentration- 

dependent manner with a mean ± S.E.M. of 1,554 ± 250 ng/ml in the NEC + HA 35 at 30 

mg/kg vs 2,456 ± 212 ng/ml in the NEC+ HA 35 at 15mg/kg (p<0.000). Based on these 

results, we next determined the effect of HA 35 on bacteremia associated with the NEC 

model. In a separate experiment, blood culture was collected by intracardiac puncture an 

hour after oral Klebsiella administration. HA 35 treatment was associated with two-fold 

reduction in bacterial CFU/ml in the blood compared to untreated NEC, with a mean ± 

S.E.M. of 5,426 ± 378 CFU/ml compared to 12,722 ± 1519 CFU/ml in the untreated NEC 

group (Fig. 2C; p<0.0001). Live bacteria were undetected by culture methods in liver and 

spleens of pups from all groups (data not shown). Altogether, these results indicate that HA 

35 administration in NEC leads to reduced intestinal permeability and bacteremia.
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HA 35 decreases levels of NEC-induced inflammatory cytokines levels in pups with NEC

Cytokine/ chemokine dysregulation plays an important role in the pathogenesis of NEC as 

demonstrated in human and animal models of NEC where increased expression of 

inflammatory mediators such as tumor necrosis factor (TNF), interleukin (IL)-Iβ, IL-6, and 

IL-8 and others were seen in both intestinal tissues and plasma. Studies also suggest that 

cytokines released in NEC could further damage the epithelial barrier. We therefore 

determined the effect of HA 35 on pro-inflammatory and anti-inflammatory cytokine 

expression in plasma and intestines of all the groups. Pups treated with HA 35 at both doses, 

15mg/kg and 30mg/kg, had lower plasma levels of IFN-γ (15mg/kg, not significant; 

30mg/kg, p=0.0149), TNF- α (p= 0.0483, p=0.0018), Gro-α (p=0.0003, p<0.0001), 

IL-12ρ70 (p =0.0003), and IL-6, (p<0.0001) as compared to pups in the untreated NEC 

group respectively (Fig. 4). Cytokine expression in the intestine for TNF- α, IFN-γ, IL-6, 

CXCL, and IL-1β showed a lower trend for the HA treated groups but did not achieve 

statistical significance. No significant differences in anti-inflammatory cytokine expression 

(IL-10) was noted between HA-treated NEC and untreated NEC, both in the plasma and 

intestines.

HA 35 increases tight junction expression in NEC

Intestinal epithelial integrity is maintained by tight junctions (TJs) which play a major role 

in regulating intestinal permeability. Alterations in expression or localization of TJ proteins 

occurs in intestinal inflammation models such as inflammatory bowel diseases and NEC [3, 

22]. Importantly, HA 35 administration maintained intestinal permeability and increased 

ZO-1 expression in both healthy and DSS-treated wild type mice [12]. We therefore sought 

to determine the effect of HA 35 on localization, intensity and expression of Claudins −2, 

−3, −4, occludin, and ZO-1. We found that in shams claudin −2 and ZO-1(Fig 5) staining 

was mainly located in the cytoplasm and apical region, while occludin, claudin −3 and −4 

were localized in the cytoplasm and lateral walls (Fig. 5). Similar to other studies, staining 

intensity of occludin was noted to be decreased in the NEC group compared to shams, while 

claudin −2 staining, a pore-forming tight junction, was increased in NEC. Intensity staining 

and localization of ZO-1 was not affected in NEC compared to sham. Importantly, HA 35 

treated pups had increased staining intensity for all tight junction proteins in the healthy and 

NEC challenged pups. Moreover, occludin and claudin −3 localization in HA treated groups 

were similar to shams, concentrated mainly in the cytoplasm and lateral cytoplasmic 

membrane at basal crypt regions. Claudin −4 staining was also increased in the HA treated 

pups and localized mainly at the tips of the villi in the lateral cytoplasmic membranous 

region. RNA expression by qPCR showed significantly up-regulated expression of all the 

tight junctions in the HA 35 treated in healthy and NEC+ HA 35 group compared to 

untreated NEC and shams. On the other hand, expression of claudin −2 and 3 was 

downregulated in the NEC group.

DISCUSSION

Altogether our study shows that oral HA 35 increases survival, reduces incidence and 

severity of intestinal injury in Paneth cell ablation and Klebsiella infection NEC model. HA 

35 also reduced intestinal permeability, bacteremia, and systemic inflammatory response in 
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the NEC model. While the pathogenesis of NEC remains unclear, altered intestinal 

microbiome, immature intestinal defenses and barrier, and exaggerated inflammatory 

response play major roles in the disease [20]. Though increased intestinal permeability is a 

predisposing factor for developing NEC, intestinal inflammation itself can lead to increased 

gut permeability, resulting in a positive feedback loop. The net effect is increased 

inflammatory cytokine release, leukocyte infiltration, epithelial necrosis, and bacterial 

translocation across the lumen [4, 7, 23].

Research efforts have been ongoing to develop nutritional or pharmacological strategies that 

promote intestinal integrity and modulate intestinal inflammation in preterm infants. HM has 

been proven to be safe and protective in human studies [5]. Compared to formula, HM 

decreases intestinal permeability and enhances the underdeveloped physical barrier, likely 

due to its bioactive components such as lactoferrin, immunoglobulin, and oligosaccharides 

(HMOs). HM is also rich in GAGs (HA, chondroitin sulfate, heparin, heparan sulfate) early 

in lactation suggesting an important role of this component in the neonatal period [24]. We 

previously showed that chondroitin sulfate in HM protects against intestinal bacterial 

infection through a reduction in both invasion and translocation [25]. In addition, GAGs 

have been shown to play an important role in innate intestinal immunity as an antioxidant 

and by promoting microbial colonization of the intestine [26]. Specifically, HA is 

synthesized by one of the hyaluronan synthases and has either pro- or anti-inflammatory 

properties depending on the size and tissue environment. Mice pretreated intraperitoneally 
with HA <500 kDa are resistant to LPS-induced sepsis [27]. HA isolated from HM or 

commercially available HA 35 enhances intestinal innate immunity, decreases intestinal 

permeability in colitis models, and attenuates ethanol- induced gut and liver injury partly 

through maintaining intestinal barrier function [12, 24, 28]. Notably, of all the specific sized 

HA (HA 4.7kDa, 16kDa, 28kDa, 74kDa), HA 35 was the most potent inducer of TJ proteins 

and antimicrobial peptides expression in colonic epithelium in vitro. Importantly, large 

molecular weight (HA 2000 kDa) had no effect on TJ protein expression, suggesting that 

this effect is highly size specific [29]. Similarly, we found that prophylactic HA 35 was 

protective in NEC model and was associated with two-fold reduction in intestinal 

permeability as assessed by serum FITC level, and levels of bacteremia and systemic 

proinflammatory response. Several mechanisms could lead to the protective effect of HA in 

the NEC model we used in our study, including direct or indirect effects on bacteria such as 

competitive and direct binding of HA to bacteria, or inhibiting bacterial growth. In a clinical 

trial, the use of HA and chondroitin sulfate as a combination was superior to standard of care 

in preventing recurrence of urinary tract infection [30]. In vitro, high molecular weight HA 

( < 750 kDa) was shown to act as a bacteriostatic agent, with no bactericidal effects, mainly 

against gram positive bacteria [31][32]. Though not addressed in our study, HA 35 could be 

protective by acting as a bacteriostatic agent and dampening the effect of the Klebsiella 
challenge in the model, thereby reducing the levels of bacteremia, systemic inflammation, 

and mortality. It is also possible that the protective effects of HA 35 on NEC induced 

increase permeability and bacteremia is indirectly through reducing intestinal histological 

injury specifically cell necrosis and apoptosis.

Another potential protective mechanism of HA in NEC could be through its effect on TJs 

expression and localization. Claudins, occludin, and ZO-1, are complex transmembrane 
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proteins located at the apical and lateral ends of the cells and play a role in regulating 

selective intestinal permeability [22]. Increased endocytosis or decreased exocytosis of these 

proteins from cytoplasm to cytoplasmic membrane, or decreased expression can occur 

during intestinal inflammation resulting in disassembly of the junction, and translocation of 

antigens and bacteria [33]. Studies from humans and animal models of NEC confirm the 

importance of optimal localization and/or expression of these TJs in maintaining intestinal 

epithelial integrity and prevention of NEC [34]. Similar to others, we showed decreased 

intensity staining and altered localization of the barrier forming claudin −3, claudin −4, and 

occludin in the NEC group. Notably, HA 35 therapy was associated with increased staining 

intensity expression for most of the TJs studied in both heathy pups and pups challenged 

with NEC. These data support findings by others studies where HA 35 administration 

enhanced TJ expression in colonic epithelium of healthy and Citrobacter infected mice[12]. 

Similar to studies from human patients with NEC, staining intensity for claudin −2, a pore 

forming TJ, was higher and more localized within crypts in the NEC group compared to 

sham [2]. HA 35 prevented the increased localization of claudin- 2 in the NEC animals, 

however in contrast to the IHC staining data, gene expression for claudin - 2 was higher in 

the HA treated groups. However, this gene expression increase was not associated with 

increased intestinal permeability in vivo.

Our study has several limitations. First, the effect of HA on the intestinal microbiome was 

not evaluated. Similar to other glycans, HA is non-digestible and has been shown to prevent 

bacterial adhesion and inhibit bacterial growth [26, 35–38]. Moreover HA 35 administration 

was protective in a bacterial infection model by increasing β- defensin expression in 

intestinal epithelium in vivo and in vitro [10]. These data raise an intriguing possibility that 

HA could act as a prebiotic and could potentially alter the intestinal microbial composition 

of neonatal pups, thereby preventing the development of NEC. Second, our study did not 

address the mechanism by which HA 35 affect TJ expression in the NEC model. It’s well 

known that HA exert it’s effect by interacting with the signaling pathway receptors Toll-like 

receptor 4 and 2 (TLR4 and TLR2) and CD44 [9]. In an ethanol induced liver injury model, 

HA 35 given orally restored Toll-interacting protein (Tollip) and decreased TNF-α 
expression. Tollip is ubiquitously expressed protein that form a complex with the 

interleukin-1 receptor-associated kinase 1 (IRAK1) and impairs the activation of NF-κB. 

Tollip also decreases TLR4 and TLR2-mediated inflammation by direct interaction with the 

receptors [28]. Interestingly, NEC is characterized by an imbalance between TLR4 

activation and its negative regulators. Specifically, TOLLIP expression is lower in both 

immature enterocytes [23] and in NEC models leading to the exaggerated inflammatory 

response in immature intestines as compared to term infants and adult. Third, only specific 

size HA 35 was used in our study based on the previous studies [9, 11, 24]. Data on lower 

molecular or higher molecular weight HA in the NEC model is currently unknown. 

Moreover, only used 15 and 30 mg/kg dosing was used in the study based on prior studies in 

larger intestinal models [9, 11, 24]. Further studies are needed to determine if higher doses 

are more beneficial or determinantal in NEC. Lastly, the Paneth cell disruption and 

Klebsiella infection model used in this study has some limitations. Similar to other murine 

NEC models, it does not encompass all the risk factors that contribute to NEC. However, it 

offers the advantage of challenging pups at P14 with the intestinal developmental age similar 
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to that of infants at highest risk if developing NEC [39]. In addition, it results in an end point 

of impaired barrier function, intestinal inflammation, bacterial dysbiosis, and histological 

injury similar to that seen in the classical hypoxia/hypothermia model and that of human 

infants with NEC [15, 40].

In conclusion, we have demonstrated that HA 35 administration prevents mortality and 

reduces intestinal permeability in a NEC-like intestinal injury model. This protective effect 

of HA 35 in the model was at least in part due to enhanced intestinal barrier function and 

preservation of the TJ expression and localization. These data support the concept that oral 

HA may be effective as a prophylactic treatment that promotes intestinal barrier function in 

premature infants and prevents the development of NEC. Further studies are needed to 

elucidate the mechanism of action, and determine its effects in other NEC models, and on 

the intestinal microbiome.
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Figure-1: HA 35 administration in Dithizone/Klebsiella murine NEC model.
Pups were randomized to one of the following groups: Sham; NEC; NEC + HA, and HA 

alone. HA 35 was given to pups in the NEC+ HA and HA group by gavage at a 

concentration of 15mg/kg or 30mg/kg body weight once daily for three days prior to 

induction of NEC and one hour prior to bacterial administration. NEC was induced using the 

Paneth cell disruption and Klebsiella infection NEC-like model. I.P. injection of dithizone 

(33 mg/kg) was given at P14–16, followed by gavage administration of 1×108 CFU 

Klebsiella pneumoniae /kg. Pups were monitored for 10 hours after gavage for clinical 

illness and survival.
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Figure 2. Kaplan-Meier survival curve (A) showing increased survival in HA administered 
groups.
Survival in low dose HA (15 mg/kg) at 70 %, high dose HA (30mg/kg) at 90 % as compared 

to untreated NEC at 50% (p=0.05 & p=0.04 respectively). (B) Serum FITC levels were 

lower in NEC + HA 35 treatment compared to NEC with mean ± S.E.M. of 1,554 ± 250 

ng/ml in NEC + HA 30 mg/kg, 2,456 ± 212 ng/ml in NEC + HA 15mg/kg, and 5,274 ± 389 

ng/ml in untreated NEC. **** p<0.0001. (C) Scatter plot of bacterial colony counts from 

blood cultures being significantly lower in NEC + HA 30mg/kg compared to untreated NEC 

(mean ± S.E.M of 5,426 ± 378 CFU/ml versus 12,722 ± 1519 CFU/ml respectively. 

***p<0.0001. One-way ANOVA with Turkey’s multi-comparison test.
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Figure-3: HA 35 reduces the severity of small intestinal injury in murine NEC.
Representative gross (A) and H&E images (B) of the small intestine from the groups. (C) 

HA 35 administration was associated with decreased gross appearance of injury with a mean 

± S.E.M macroscopic score of 2.125 ± 0.31 compared 3.25 ± 1 in the NEC group. ** p 
<0.01. (D) Histological NEC severity scores of a mean ± S.E.M of 1.2 ± 0.25 in the NEC + 

HA 35 group versus 2.3± 0.15 in the untreated NEC group. ** p <0.01. Data are in mean ± 

S.E.M. Results are representative of at least ≥ six animals and at least two separate 

experiments. One-way ANOVA with Dunnet’s multi-comparison test.
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Figure-4: HA 35 administration decreases the systemic (plasma) pro-inflammatory cytokine 
release in NEC-like model.
Pro-inflammatory cytokine levels of TNF α (*p= 0.0483, **p=0.0018), Gro-α (*** 
p=0.0003, **** p<0.0001), IL-12ρ70 (*** p =0.0003), IL-6 (****p<0.0001) were decreased 

in NEC + HA 35 compared to untreated NEC. Data are in mean ± S.E.M. Results are 

representative of at least > six animals and at least two separate experiments. One-way 

ANOVA with Turkey’s multi-comparison test.
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Figure-5: Immunohistochemical staining images (10x and 40x inserts) for TJ proteins and the 
corresponding qPCR RNA analysis.
HA 35 treated pups showed increased intensity of staining in healthy and NEC challenged 

pups for all TJ proteins. Insert 40 x images showing increased cryptal intensity of staining in 

HA 35 treated healthy and NEC challenged pups for TJ occludin (A) and claudin-3(C). 

Claudin −4 (B) staining was increased in the lateral cytoplasmic membranes of the tips of 

villi. Insert 40x images showing cytoplasmic staining for ZO-1 (D) in tips of villi in all 

groups and increased cytoplasmic cryptal staining for claudin −2 (E) noted in the NEC 

group. RNA PCR results showed upregulated expression of occludin, claudin −4, claudin 

−3, ZO-1, and claudin −2 in HA 35 and NEC + HA 35 groups compared to untreated NEC 

(F-J). Claudin −3 RNA expression was downregulated in the NEC group compared to sham 

(H), while RNA expression for ZO-1 and Claudin −2 was upregulated in HA 35 and NEC + 

HA 35 group compared to untreated NEC (I, J). Data represent mean ± S.E.M. Analysis was 

done by two-way ANOVA with Turkey’s multi-comparison test.

Gunasekaran et al. Page 16

Pediatr Res. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS:
	Experimental design and animal model of NEC
	Macroscopic and microscopic evaluation of intestinal injury:
	In Vivo Intestinal Permeability:

	Inflammatory cytokine quantification at plasma and intestine
	Immunohistochemistry (IHC):
	Real Time RNA PCR:
	Statistics:


	RESULTS
	Oral HA 35 reduces mortality and severity of NEC like intestinal injury
	HA 35 protects intestinal barrier function in NEC model
	HA 35 decreases levels of NEC-induced inflammatory cytokines levels in pups with NEC
	HA 35 increases tight junction expression in NEC

	DISCUSSION
	References
	Figure-1:
	Figure 2.
	Figure-3:
	Figure-4:
	Figure-5:

