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Abstract

Background: Brain oscillatory activities are stochastic and non-linearly dynamic, due
to their non-phase-locked nature and inter-trial variability. Non-phase-locked
rhythmic signals can vary from trial-to-trial dependent upon variations in a subject’s
performance and state, which may be linked to fluctuations in expectation, attention,
arousal, and task strategy. Therefore, a method that permits the extraction of the
oscillatory signal on a single-trial basis is important for the study of subtle brain
dynamics, which can be used as probes to study neurophysiology in normal brain
and pathophysiology in the diseased.

Methods: This paper presents an empirical mode decomposition (EMD)-based
spatiotemporal approach to extract neural oscillatory activities from multi-channel
electroencephalograph (EEG) data. The efficacy of this approach manifests in
extracting single-trial post-movement beta activities when performing a right index-
finger lifting task. In each single trial, an EEG epoch recorded at the channel of
interest (CI) was first separated into a number of intrinsic mode functions (IMFs).
Sensorimotor-related oscillatory activities were reconstructed from sensorimotor-
related IMFs chosen by a spatial map matching process. Post-movement beta
activities were acquired by band-pass filtering the sensorimotor-related oscillatory
activities within a trial-specific beta band. Signal envelopes of post-movement beta
activities were detected using amplitude modulation (AM) method to obtain post-
movement beta event-related synchronization (PM-bERS). The maximum amplitude
in the PM-bERS within the post-movement period was subtracted by the mean
amplitude of the reference period to find the single-trial beta rebound (BR).

Results: The results showed single-trial BRs computed by the current method were
significantly higher than those obtained from conventional average method
(P < 0.01; matched-pair Wilcoxon test). The proposed method provides high signal-
to-noise ratio (SNR) through an EMD-based decomposition and reconstruction
process, which enables event-related oscillatory activities to be examined on a
single-trial basis.

Conclusions: The EMD-based method is effective for artefact removal and extracting
reliable neural features of non-phase-locked oscillatory activities in multi-channel EEG
data. The high extraction rate of the proposed method enables the trial-by-trial
variability of oscillatory activities can be examined, which provide a possibility for
future profound study of subtle brain dynamics.
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Background
Neural network in the human brain is a dynamic system, responding to external or

internal trigger events in a fraction of a second. The event-related changes in neural

oscillatory activities usually contain significant physiological information, which can be

either phase-locked or non-phase-locked reactive to the trigger stimuli. These oscilla-

tory activities usually exist in specific spatial locations and in particular frequency

bands [1]. Event-related power changes in oscillatory activities occur in specific fre-

quency bands which may reflect the synchrony of certain activated neurons in the

underlying neuronal population. Many clinical diagnoses report the human cortical

sensorimotor rhythms, observed over the sensorimotor area and characterized by

dominant frequencies in ~10 and ~20 Hz bands, as an efficacious index [2-13]. The

power changes in ~20 Hz range mainly originate in the anterior bank of the central

sulcus, and the ~10 Hz component is concentrated dominantly in the cortex posterior

to the central sulcus. In normal subjects, voluntary movements result in a power

decrease approximately 2 sec preceding movement-onsets and followed by a fast post-

movement beta rebound in ~20 Hz (beta band). Previous researches have suggested

that the power decrease, owes to the decrease of synchrony in the underlying neural

substrate, serving as physiological meaning of motor planning and movement prepara-

tion, while the increase of power in the post-movement beta band may reflect deactiva-

tion/inhibition during the recovery phase in the movement process. Due to fast

temporal changes in brain oscillatory activities, EEG (Electroencephalogrpahy) and

MEG (Magnetoencephalography), with temporal resolution of a millisecond, are often

chosen as powerful tools to study these oscillatory activities.

To quantify the event-induced oscillatory changes, several efficient measures have

been developed for analyzing event-related oscillatory activities. Pfurtscheller et al.

[6,14-16] developed an event-related desynchronization/synchronization (ERD/ERS)

technique to analyze event-induced oscillatory activities of sensorimotor rhythms gen-

erated in the primary sensorimotor cortex. Clochon et al. utilized amplitude modula-

tion (AM) method to delineate the signal envelopes of oscillatory activities [17].

Klimesch et al. further removed the rectified phase-locked components from ERD/ERS

by calculating the inter-trial variance [18]. Florian and Pfurtscheller modeled the signif-

icant frequency components in oscillatory signals by means of the autoregressive (AR)-

based method [19]. Salmelin et al. proposed the temporal-spectral evolution method

(TSE) to filter oscillatory signals in pre-defined equi-bandwidth frequency bands fol-

lowed by a rectifying and averaging process [20]. These aforementioned approaches

presume a stereotypical frequency band and temporal characteristics across trials and

require an average of dozens of trials for ERD/ERS calculations [21] which are unable

to account for subtle trial-by-trial dynamics.

At least three techniques have been developed to extract single-trial event-related

oscillatory activities. Pfurtscheller et al. utilized adaptive autoregression (AAR) and

minimum Mahalanobis distance (MDA) to discriminate EEG oscillatory activities

induced from four different limb movements [22,23]. Lee et al. proposed an indepen-

dent component analysis (ICA)-based approach to extract post-movement beta oscilla-

tory activities [21] and has been utilized to diagnose Parkinson’s Patients [24]. Qin and

He applied the Morlet wavelet to extract temporal-frequency features of movement-

induced ERD/ERS while subjects performed motor imagery tasks [25]. Nevertheless,
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these methods extract oscillatory activities with presumed basis functions or pre-speci-

fied statistical models for signal extraction, which might be too stringent to represent

single-trial information.

This paper presents an empirical mode decomposition (EMD)-based method to

extract single-trial event-related oscillatory activities from EEG data. The efficacy of

the proposed method has been manifested by single-trial extraction of post-movement

beta ERS (PM-bERS) during self-paced right index-finger lifting task in this study.

Since studies have suggested that brain oscillatory activities be stochastic and non-line-

arly dynamic, EMD, a powerful tool for analyzing nonlinear and nonstationary time

series, might be helpful for extracting event-related oscillatory activities [19,26,27].

First, this work decomposed each EEG epoch recorded at the channel of interest (CI)

into a finite number of intrinsic mode functions (IMFs) using EMD based on a sifting

process [28]. Second, the spatial map of each IMF was created using the spatial weight

distribution of each IMF on different EEG channels. Third, the IMFs, which retain

high correlation values between their spatial maps and a pre-set spatial template, were

chosen as sensorimotor-related IMFs for reconstructing noise-suppressed sensorimo-

tor-related oscillatory activities. Finally, the reconstructed oscillatory activities were

band-pass filtered within a trial-specific beta band and then rectified to detect single-

trial beta rebound (BR).

This study presents an EMD-based method for extracting oscillatory activities in sin-

gle-trial multi-channel EEG data. The salient feature of the proposed method is the

use of a spatial map creation process to represent the spatial weights of IMFs on differ-

ent EEG sensor sites, so that sensorimotor-related IMFs can be chosen by means of a

spatial map matching process. The present approach requires no pre-defined statistical

model or basis, which may provide a window to study intricate brain dynamics on a

trial-by-trial base.

Methods
A. Subjects and experiments

Five healthy right-handed subjects (20-30 years old) participated in this study. The

research was carried out in compliance with Helsinki declaration. All subjects gave

informed consent, and the study was approved by the Ethics Committee of Institu-

tional Review Board (IRB), Taipei Veterans General Hospital, Taiwan. All measure-

ments were noninvasive and the subjects were free to withdraw at any time without

any penalty. Subjects were asked to perform self-paced right index finger lifting

approximately once every 8 seconds. Each movement was requested to be performed

briskly for a duration of 200 to 300 ms, monitored by surface electromyogram (EMG)

on extensor digitorum communis, with a range of finger movement around 35° ~ 40°.

To prevent subjects from falling fatigue, a 5-minute break was given every 30 trials

and 150 trials were acquired in each subject. EEG data were acquired by a 32-channel

whole-head EEG system (band-pass, 0.05-100 Hz; sampling rate, 1000 Hz; Quick

Amp., Brain Products, Co., Munich, Germany). Bipolar vertical and horizontal electro-

oculograms (VEOG and HEOG) were placed below and above the left eye and at the

bilateral outer canthi to monitor eye movements and blinks. Epochs were segmented

from EEG recordings from -4 s to 3 s anchored to movement onsets [2,20] and only

those artifact-free epochs (EOG < 100 μV) were subjected to EMD decomposition.
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B. Data Analysis

Empirical mode decomposition of single-trial EEG epoch

Empirical mode decomposition (EMD) attempts to sequentially decompose a signal

into the sum of a finite number of intrinsic mode functions (IMFs) [28-30]. Each IMF

is decomposed with the following definitions: (1) the number of local extrema (includ-

ing local maxima and local minima) and the number of zero-crossings must be either

equal or differ at most by one, and (2) the mean value of the envelope defined by the

local maxima and the envelope defined by the local minima is zero. This study mani-

fests feasibility of the present method in extracting oscillatory activities during the

right index-finger lifting task. EEG signal acquired at C3 channel (see Figure 1(a)),

overlying the primary sensorimotor area (SMI) in the left hemisphere, was chosen as

the channel of interest (CI) for the EMD process [14,15].

For each single movement, a single-trial EEG epoch contains M channels (M = 32)

and N time points (N = 7000), arranged as an M × N matrix B. The ith row (i ≤ 32)

contains the measured epoch at the ith EEG channel, and the jth column in B contains

the EEG data measured at the jth time point across all EEG channels. The data vector

measured at CI, denoted as x , is decomposed by the following EMD steps [28-30]

(1) identifying all the local extrema in

x , including local maxima and local minima;

(2) connecting all the local maxima/minima by a cubic spline to generate the

upper/lower envelope;

(3) generating a local mean curve,

m , by averaging the upper and lower envelopes;

(4) calculating the pre-IMF,

h( )1 , by subtracting the local mean,


m , from


x , i.e.,

  
h x m( ) ( )1 1= − ;

(5) continuing steps (1) to (4) for k iterations until the difference of two continuing

pre-IMFs, SDk, reaches a user-defined stoppage criterion, ε , i.e.,

SD
h k h k

h k
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where || . || denotes the Euclidean distance;

(6) setting
 
c hk1 = as the first IMF;

(7) calculating r x c
  

= − 1 ;

(8) replacing

x in step (1) by


r and repeating steps (1) to (7) (sifting process), to

find other IMFs,

c2 ,


c3 ,..., and


c J ;

(9) stopping the sifting process until the residue function
  
r x c j

j

J

= −
=
∑

1
becomes a

monotonic function where no more IMFs can be extracted.

After applying the EMD process to a single EEG epoch (see Figure 2), the signal, x(t),

can be represented by a monotonic residue function, r(t), plus a set of posteriori-

defined IMF basis,

c1 ,


c2 ,..., and


c J , where J is the number of IMFs extracted from


x

and each

ck , 1 ≤ k ≤ J, is a 1 × N vector. The IMFs can be arranged into a J × N

matrix, C, where each row

ck represents the kth IMF [11,18,19]:
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Creating a spatial map for each IMF by calculating the correlation coefficients between

measured EEG data and each IMF

To obtain sensorimotor-related IMFs, this work proposes a spatial map creation

process to study the spatial representation for each IMF. For each single trial, the

Figure 1 The creation of spatial templates. (a) The EEG montage used in this paper where C3 is marked
by a red circle. (b) Conventional ERSs obtained from four subjects (template generation group) using AM
method. (c) The common spatial template is created by averaging the post-movement BRs across subjects
(400 trials, 100 trials for each subject, 4 subjects pooled).
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correlation coefficients between each IMF and the EEG epoch B are calculated. The

correlation coefficient between the epoch data at the ith EEG channel (

bi ) and the jth

IMF (

c J ), denoted as p(i, j), is calculated as

( , )i j
bi E bi c j E c j

T

bi E bi c j E c j

=
− ⎡

⎣
⎤
⎦( ) − ⎡

⎣
⎤
⎦( )

− ⎡
⎣

⎤
⎦ ⋅ −

   

   2
⎡⎡
⎣

⎤
⎦

2
, (2)

where E c j
⎡⎣ ⎤⎦ and E b j


⎡
⎣

⎤
⎦ are the mean values of


c J and


bi , respectively. The

correlation coefficients between all EEG channels and the jth IMF are arranged into a

Figure 2 Flow-chart of the EMD-based spatiotemporal approach.
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vector

S j , in which


S j j M jj

T= [ ]  ( , ) ( , ) ( , )1 2 , and is designated as the

spatial map for the jth IMF.

Selecting sensorimotor-related IMFs by matching the spatial map between each IMF and the

spatial template using K-means

Since unilateral index-finger movement can induce changes of oscillatory activities

dominantly in the contralateral sensorimotor area [3-6], cortical activities generated

from the left sensorimotor area (C3 channel) were examined in the right index-finger

lifting movement study. To facilitate the selection of sensorimotor-related IMFs, we

propose a spatial map matching process by correlating the spatial map of each IMF

with a pre-defined spatial template. The pre-defined spatial template has focal spatial

distribution over the left sensorimotor-related area, created by computing conventional

ERS (see below). Those IMFs surviving high correlation-coefficient values in the spatial

map matching process are then chosen for constructing noise-suppressed sensorimo-

tor-related oscillatory activities. The correlation-coefficient value between the spatial

map of the ith IMFs (

Si ) and the spatial template (


St ) is calculated as

 i

Si E Si
T

St E St

Si E Si St E St

=
− ⎡⎣ ⎤⎦( ) − ⎡⎣ ⎤⎦( )
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where E Si


⎡⎣ ⎤⎦ and E St


⎡⎣ ⎤⎦ are the mean values of


Si and


St , respectively. The cor-

relation-coefficient values obtained between all IMFs and the spatial template are

further categorized into highly-, middlely- , and lowly-correlated groups using the K-

means classifier [31]. The K-means classifier determines three centriods for the three

clusters by minimizing an objective function

V i j

Sj i j

= −( )
∈=
∑∑  


2

1

3

(4)

where the three clusters Sj, j = 1, 2, 3 are corresponding to highly-, middlely- , and

lowly-correlated groups, and μj is the centroid or mean of the all the correlation coeffi-

cients belonging to the jth cluster (riÎSj). Only those IMFs belonging to the highly-cor-

related group are taken as sensorimotor-related IMFs and subjected to the subsequent

reconstruction of sensorimotor-related oscillatory activities and the other IMFs are

regarded as noise from bad channels. After selecting the appropriate IMFs, the sensori-

motor-related oscillatory activities can be reconstructed by summating the chosen IMF

portions in all EEG data matrix B as

B
B ci

T

ci
crecon

i S

i=
⋅

⋅
∈
∑






2
1

, (5)

where s1 is a group containing the index number of IMFs belonging to the highly-

correlated group (see Figure 3).

Detecting trial-specific frequency band and extracting post-movement beta activities

With the benefit of the aforementioned procedure for selecting sensorimotor-related

IMFs, sensorimotor-related oscillatory activities can be well-extracted in each single

Yeh et al. BioMedical Engineering OnLine 2010, 9:25
http://www.biomedical-engineering-online.com/content/9/1/25

Page 7 of 17



trial. The trial-specific beta band is determined in each single trial to optimize the

extraction of post-movement beta activities. The current work determines trial-specific

beta band by comparing two Fourier spectra, one obtained from the reference period

(-3.5 s ~ -2.5 s) and the other from the post-movement period (0.5 s ~ 1.5 s). The

trial-specific beta band for post-movement beta activities is defined as the frequency

range covering all beta-frequency components with significant modulation in terms of

post-movement amplitude increase (above 95% confidence level; i.e., Z > 3.09, P <

0.01) in the differential amplitude spectrum (see Figure 4) [32]. The reconstructed sen-

sorimotor-related oscillatory activities are band-pass filtered within the trial-specific

beta band [6] to obtain MBP, and rectified by computing their AM waveforms (envel-

opes) using amplitude modulation (AM) method [17]. AM method detects the

Figure 3 Examples of IMF selection and signal reconstruction procedure. IMF waveforms, Fourier
spectra and spatial maps of IMF waveforms obtained from one single-trial epoch using EMD. Only IMF 3
and IMF 4, having high correlation with the spatial template, are selected for signal reconstruction.

Yeh et al. BioMedical Engineering OnLine 2010, 9:25
http://www.biomedical-engineering-online.com/content/9/1/25

Page 8 of 17



envelope by computing the Hilbert transform (HT) of post-movement beta activities,

represented as

m t M t H M tBP BP( ) ( ) ( ( ))= +2 2 (6)

where M BP (t) is the band-pass filtered EEG signal, H(MBP(t)) is its Hilbert trans-

form and m(t) is the calculated AM waveform. The beta rebound (in C3 channel) is

detected to evaluate the performance of the extracted post-movement beta ERS (PM-

bERS). The maximum amplitude within the post-movement period (0.5 s ~ 1.5 s) in

Figure 4 Detecting trial-specific beta band for extracting sensorimotor-related oscillatory activities.
a) The reconstructed sensorimotor-related oscillatory activities in figure 3. (b) The trial-specific beta band
was determined by comparing the post-movement Fourier spectrum (solid line) with the one estimated
from baseline period (dashed line). (c) The subtracted spectrum and the trial-specific beta band (15~20 Hz).
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the AM waveform is then subtracted by the mean amplitude of reference period

(-3.5 s ~ -2.5 s) to find the reactive activity in beta band, and only the value in the

channel with maximum beta-band reactive activity is defined as beta rebound (BR) for

subsequent statistics of inter-individual comparisons (see Figure 5).

Creating a spatial template based on conventional event-related synchronization (ERS) to

facilitate the selection of sensorimotor-related IMFs

This study utilizes an electrode montage analogous to the EEG international 10¬20

system [33]. Since the EEG international 10-20 system was developed to ensure the

reproducibility of EEG experiments by standardizing each EEG channel to a specified

brain region, neural activities generated from a particular brain region might be able to

be recognized from its spatial weight distribution over different EEG channels. This

study focuses on studying the single-trial BR in the contralateral sensorimotor area.

Accordingly, a spatial template, created by computing post-movement beta rebounds

(post-movement BRs) in conventional event-related synchronization (ERS) over all

EEG channels, was utilized to facilitate the selection of sensorimotor-related IMFs.

To demonstrate the feasibility of this standardized spatial template, four out of the

five recruited participants in this study are used for generating a spatial template (tem-

plate generation group), while the last participant (subject V) is used for validation

(validation group). The conventional ERS technique [6,34] filters EEG data within the

task-specific beta bands [6,21] and rectifies (see Figure 1(b)) the filtered signals using

AM method [17] to obtain signal envelopes (see Eq. 7). The task-specific beta band is

determined by the contrast between two 1-s amplitude spectra calculated over about

100 event-related EEG trials at the CI channel [6], one (serving as rest reference) is

computed over the duration from -3.5 to -2.5 s preceding the onset of movement, and

the other (serving as reactive target) from 0.5 to 1.5 s after the onset of movement

Figure 5 Example of the time course of one single-trial PM-bERS in C3 channel (after filtering
within 15~20 Hz) during the right index-finger lifting task.
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(see Figure 4). Post-movement BR is then computed as the difference in amplitude

between the maximum amplitude of ERS for each sensor site in the post-movement

(0.5 to 1.5 s) interval and the mean activity between -3.5 and -2.5 s [35]. The BRs are

averaged across the subjects (400 trials, 100 trials for each subject, 4 subjects pooled)

to create a common spatial template (see Figure 1(c)).

Results
Figure 3 shows an example of the EMD process in subject V. One EEG epoch (-4 s ~

3 s) recorded at C3 position was decomposed into nine IMFs. The temporal wave-

forms, Fourier spectra and spatial maps of IMFs are shown in the second, third, and

fourth columns, respectively. The correlation coefficients between the spatial maps of

IMFs and the spatial template are 0.24, 0.35, 0.62, 0.81, 0.30, -0.03, 0.24, 0.33 and 0.40

for IMF1 to IMF9, respectively. The IMF3 and IMF4 (marked in red), with correlation

coefficients categorized as the highly-correlated group (correlation coefficients are 0.62

and 0.81, respectively), were designated as sensorimotor-related IMFs for further pro-

cessing. Other IMFs, which are middlely- or lowly-correlated with the spatial template,

were considered as sensorimotor-unrelated IMFs and should be excluded in the follow-

ing data reconstruction process to avoid deteriorating the signal-to-noise ratio. The

proposed spatial map matching process provides an effective way for identifying sen-

sorimotor-related IMFs. For example, the IMF1 and IMF2, having widely-spread spatial

maps with frequencies close to 60 Hz, can be inferred as environmental electricity

noise. Other IMFs (IMF5 to IMF9), whose oscillatory frequencies are low and beyond

the frequency range of sensorimotor rhythms (10 Hz ~ 26 Hz [22]), might be belonged

to low-frequency disturbance drifts and should be removed. Accordingly, the sensori-

motor-related IMFs (IMF3 and IMF4) can be recognized by checking their spatio-tem-

poral characteristics to reconstruct noise-suppressed sensorimotor-related oscillatory

activities.

Using the aforementioned IMF selection process, sensorimotor-unrelated IMFs can

be removed. The retention of high SNR in the reconstructed signals allows the detec-

tion of beta rebound (BR) could be achieved by the determination of reactive frequency

band in each single trial. Figure 4(a) shows a reconstructed noise-suppressed sensori-

motor-related oscillatory activity with two defined time intervals, the baseline (-3.5 s ~

-2.5 s) and post-movement (0.5 s ~ 1.5 s) periods. In Figure 4(b), the post-movement

Fourier spectrum (solid line) was subtracted by the one estimated from the baseline

period (dashed line) to determine the trial-specific beta band. The subtracted spectrum

is shown in Figure 4(c), where the threshold indicated by the dashed lines was

obtained by two times the standard deviation of the subtracted spectrum, and only

those frequencies in the beta band emerging from the threshold were designated as the

trial-specific beta band.

By filtering the sensorimotor-related oscillatory activities within the trial-specific beta

band (see Figure 4(c)) and rectifying them using AM method, rectified post-movement

beta ERS (PM-bERS) were obtained (see Figure 5). The peak with maximum amplitude

within the post-movement period (0.5 s ~ 1.5 s) was detected and subtracted by the

mean amplitude of the baseline period (-3.5 s ~ -2.5 s) to calculate the beta rebound

(BR) (3.28 μv in Figure 5). Since the PM-bERS can be single-trial extracted with the

help of the aforementioned IMF decomposition and data reconstruction process, the
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inter-trial variation in extracted PM-bERSs can be examined. Figure 6(a) shows the

raster plot of PM-bERSs extracted from 40 single trials in subject V, where PM-bERSs

were sorted by the latencies of their amplitude peaks, with amplitudes normalized to

their peak amplitudes. The dashed line marks the timing of movement onset. Jittering

was observed in the latencies of amplitude peaks in PM-bERSs across different trials

(mean ± sd. = 1.64 ± 0.46 s).

Since the inter-trial latency jittering within the post-movement period varied across

trials, simple averaging, such as conventional ERD/ERS methods, might attenuate and

smear the resultant BR values. The amplitudes of BRs are 3.28, 1.57, 1.32, and 0.97 μV

after averaging PM-bERSs over 1, 10, 25, and 40 trials, respectively (see Figure 6(b)).

This demonstrates that latency jittering and inter-trial variability can inevitably lower

the estimated value of beta rebound (BR).

Figure 6 Smearing of EEG profile and decrease of BRs due to latency jittering. (a) The raster plot of
PM-bERSs extracted from 40 single trials in subject V, where PM-bERS were sorted by the latencies of their
amplitude peaks, with amplitudes normalized to their peak amplitudes. (b) The amplitudes of BRs are 3.28,
1.57, 1.32, and 0.97 μV after averaging PM-bERSs over 1, 10, 25, and 40 trials, respectively.

Yeh et al. BioMedical Engineering OnLine 2010, 9:25
http://www.biomedical-engineering-online.com/content/9/1/25

Page 12 of 17



Using the proposed EMD-based single-trial method, the current work permits BR

value to be detected in a single trial which avoids the smear of BR value caused by cross-

trial averaging in conventional ERS process [6,34]. The values of BRs obtained from our

EMD-based method were 1.98±0.95, 1.31±0.55, 1.93±0.79, 1.87±0.44, and 1.32±0.56 μV

with peak latencies of 1.64±0.46, 1.26±0.32, 1.22±0.19, 1.39 ±0.40, and 1.32 ±0.25 in the

five subjects (Table 1), respectively. In contrast with BRs obtained from the conventional

method, BRs amplitudes were 0.91, 0.40, 1.48, 0.53, and 0.89 μV, respectively. The sin-

gle-trial BRs computed by our EMD-based method were significantly higher than the BR

obtained from the conventional average method (P < 0.01; matched-pair Wilcoxon test).

The statistical results over all the five subjects are listed in Table 1.

Discussion
Human brain rhythms are stochastic whose amplitudes, frequencies and phases can

vary from trial to trial. The inter-trial fluctuations are usually contingent on a subject’s

performance and states, which may be linked to fluctuations in parameters of expecta-

tion, attention, arousal, and task strategy [36-41]. Therefore, those methods, such as

conventional ERD/ERS techniques, using stereotypical frequency-ranges across trials

for extracting neural oscillatory activities in EEG/MEG recordings, may cause single-

trial reactive frequency ranges to fall out the fixed filter window [6,20] and result in

misleading conclusions. This study develops an EMD-based spatiotemporal approach

on EEG data to detect post-movement beta activities in a single trial. EMD is a data-

driven analysis method that separates the signal into a number of IMFs without requir-

ing prior knowledge [28]. Each IMF is an analytic and self-constructed function with

time-varying frequencies. The IMF presents great flexibility to adapt itself for featuring

frequency changes in a local time period [28,29]. In contrast with other conventional

integration transform techniques, such as short-time Fourier transform (STFT) and

wavelet-based methods, the temporal-frequency characteristics of a signal are analyzed

by setting a pre-defined basis within fixed time windows, which may be too stringent

to express the subtle dynamic in brain oscillatory activities. Accordingly, the proposed

method may help unveil the subtle dynamics in intricate neural networks.

Table 1 Comparison of BRs and trial-specific beta bands between the proposed EMD-
based method and the conventional filtering method

EMD based method Conventional filtering method

Subject
index

Beta rebound
(μV)

Trial-specific
beta band (Hz)

Single-trial
latency (sec)

Beta
rebound
(μV)

Task-specific
beta band

(Hz)

Latency of beta
rebound peak

(sec)

I 1.98 ± 0.95 17.25 ± 1.63 ~
20.43 ± 2.60

1.64 ± 0.46 0.91 16.7~23.1 1.62

II 1.31 ± 0.55 16.62 ± 2.43 ~
21.26 ± 2.64

1.26 ± 0.32 0.40 14.5~22.8 1.29

III 1.93 ± 0.79 16.12 ± 2.83 ~
21.03 ± 3.00

1.22 ± 0.19 1.48 15.2~25.8 1.17

IV 1.87 ± 0.44 17.06 ± 2.70 ~
21.96 ± 2.82

1.39 ± 0.40 0.53 15.4~25.2 1.10

V 1.32 ± 0.56 17.37 ± 2.79 ~
20.47 ± 3.37

1.32 ± 0.25 0.89 15.2~23.8 1.22

Average 1.682 16.88 ~ 21.03 1.37 0.842 15.4~24.14 1.28
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The proposed EMD-based method determines the trial-specific beta band for each

single trial which permits extracting sensorimotor-related oscillatory activities in a sin-

gle trial. Compared to conventional methods which discount subtle inter-trial changes,

the task-related frequency band for band-pass filtering is fixed across all trials and the

rectified oscillatory activities are averaged over a large number of trials [6]. Figure 6

shows that inter-trial jittering in latencies of amplitude peaks causes resultant BR sup-

pression in the PM-bERS (see Figure 6(b)). Due to inter-trial variation in amplitudes,

phases and oscillatory frequencies, using an ensemble average across trials is inade-

quate to resolve intricate neural dynamics. Table 1 demonstrates the superiority of the

single-trial approach over the conventional ensemble average methods [6,34] by com-

paring BR values (p < 0.01).

The current proposed method is different from other EMD-based approaches

[2,17,20,28,29,35,42-45]. One distinct feature is the use of spatial information (spatial

map) for selecting sensorimotor-related IMF. The spatial map for each IMF is created

based on the premise that any two distinct rhythmic brain signals are usually indepen-

dent and uncorrelated with each other [46-49]. The distinct feature is different from

other single-channel EMD studies which provide only the temporal-frequency informa-

tion of IMFs. The lack of spatial information might not be comprehensive enough and

could result in misleading consequences in selecting sensorimotor-related IMFs. For

instance, signals outside the sensorimotor area with frequencies overlapping the beta

band might be difficult to discern from temporal-frequency representations only.

Owing to the benefit of the EEG international 10-20 system, which standardizes each

EEG channel to a specified brain region, researchers can render electric potentials,

generated from a specific brain region, recorded by an EEG international 10-20 elec-

trode system into a spatial map with particular spatial weight distribution. Unlike other

EMD-based studies which selected sensorimotor-related IMFs by examining signal fea-

tures on temporal waveforms only, we screened IMFs relevant to a specific brain

region by comparing their spatial weight distribution with a customized designed spa-

tial template. This present approach avoids the pitfall that temporal waveforms of EEG

activities vary from trial-to-trial contingent upon variations in a subject’s performance

and state. This paper focuses on studying movement-induced beta EEG oscillatory

activities in the right index-finger lifting task, and creates a spatial template with high

spatial weights over the left sensorimotor area (EEG C3 channel) to facilitate selecting

sensorimotor-related IMFs. Classifiers, such as K-means, artificial neural network

(ANN) etc. can then automatically select sensorimotor-related IMFs. Such a combined

approach is efficient for removing artifacts and extracting reliable neural features in

single-trial multi-channel EEG data (see Figure 3). It is worthy to notice that this tem-

plate-based IMF screening approach is simple with great flexibility. EEG activities in

other brain regions can be extracted by choosing a CI for EMD computation, and

designing a spatial template relevant to the interested brain region. For example, sen-

sorimotor rhythmic activities in the right hemisphere can be extracted by designing a

spatial template with spatial weight focusing on the right sensorimotor area.

Conclusions
This paper presents an EMD-based method to extract single-trial oscillatory activities

in multi-channel EEG data. The EMD-based method manifests several advantages in
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neurophysiological studies and clinical applications. 1) It is effective for artifact

removal and extracting reliable neural features in single-trial multi-channel EEG data.

2) The method accounts for subtle trial-by-trial dynamics to preserve inter-trial varia-

bility of rhythmic activities and investigates the transitory or intermittent states in

brain dynamics. 3) The single-trial approach permits an effective alternative in cases

where participants cannot endure lengthy procedures or in clinical settings where

patients have attention problems or are incapable of sustaining long experiments. 4)

The high extraction rate of oscillatory activities could also be beneficial for brain com-

puter interface (BCI) [6,15,50,51] which requires recognizing brain signals as control

signals in few trials.
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