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Abstract

Most people with cerebral palsy (CP) suffer from impaired walking ability and pathological gait 

patterns. Seeking to improve the effectiveness of gait training in this patient population, this study 

developed and assessed the feasibility of a real-time biofeedback mechanism to augment 

untethered ankle exoskeleton-assisted walking performance in individuals with CP. We selected 

step length as a clinically-relevant gait performance target and utilized a visual interface with live 

performance scores. An adaptive ankle exoskeleton control algorithm provided assistance 

proportional to the real-time ankle moment. We assessed lower-extremity gait mechanics and 

muscle activity in seven ambulatory individuals with CP as they walked with adaptive ankle 

assistance alone and with ankle assistance plus step-length biofeedback. We achieved our technical 

validation goal by demonstrating a strong correlation between estimated step length and real step 

length (R = 0.771, p < 0.001). We achieved our clinical feasibility goal by demonstrating that 

biofeedback-plus-assistance resulted in a 14% increase in step length relative to baseline (p ≤ 

0.05), while no difference in step length was observed for assistance alone. Additionally, we 

observed near immediate improvements in lower-extremity posture, moments, and positive power 

relative to baseline for biofeedback-plus-assistance (p < 0.05), with none, or more-limited 

improvements observed for assistance alone. Our findings suggest that providing real-time 

biofeedback and using step length as the target can be effective for increasing the rate at which 

individuals with CP improve their gait mechanics when walking with wearable ankle assistance.

Index Terms—

Biofeedback; exoskeleton; rehabilitation; walking ability

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/
licenses/by/4.0/

Corresponding author: Zachary F. Lerner. zachary.lerner@nau.edu. 

This article has supplementary downloadable material available at https://doi.org/10.1109/TNSRE.2021.3055796, provided by the 
authors.

HHS Public Access
Author manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 March 17.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2021 ; 29: 442–449. doi:10.1109/TNSRE.2021.3055796.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


I. Introduction

INDIVIDUALS with cerebral palsy (CP) experience movement and posture impairment that 

negatively affects their mobility and physical activity levels [1], [2]. They often exhibit 

pathological gait patterns that can involve excessive knee and hip flexion during stance and 

reduced ankle plantarflexion prior to push-off. These gait patterns are associated with slow 

walking speed, reduced step length and increased energy cost of transport [3]–[5]. Many 

children with CP experience a steady decline in mobility across their lifespan [6].

Functional gait training has received significant attention from clinical researchers aiming to 

develop effective interventions for children with CP [7], [8]. There is a growing consensus 

that functional gait training interventions must reinforce improved movement patterns 

resulting from enhanced engagement as opposed to passive repositioning of limbs through 

the use of robot-assisted gait trainers [9]. As such, gait training with biofeedback is a 

technique that has been used with some success to incentivize individuals to volitionally 

change their walking behavior. Improvement in joint angles [10], [11], spatiotemporal 

characteristics [12] and muscle activity [13] are possible when these parameters are used as 

direct biofeedback targets in gait training for people with CP. Recently, step length has been 

found to be an intuitive and effective feedback modality that also enhanced ankle power 

generation in CP [14].

Wearable assistive devices also have potential to reinforce favorable movement patterns and 

increase training dose by making walking easier for people with neuromuscular conditions 

[15], [16]. We previously demonstrated that an untethered ankle exoskeleton can increase 

ankle plantarflexion power, improve walking posture, and reduce the metabolic cost of 

treadmill walking in individuals with CP [16]. However, our research has demonstrated that 

repeated practice is required to observe improved gait biomechanics during walking with 

assistance [17] and, when assistance is tuned to reduce the metabolic cost of transport, 

individuals with CP walk with reduced stance phase ankle plantar-flexor muscle activity 

[18]. A logical concern is that users may become reliant on wearable assistance over time, 

leading to muscle atrophy and reduced function.

Incorporating biofeedback with body-weight-supported or tethered robot-assisted (i.e., 

Lokomat) gait training has been found to facilitate anticipated favorable rehabilitation 

benefits in people with stroke [19], [20], spinal cord injury [21], and in children with CP 

[22]. However, we are not aware of any study that has integrated biofeedback with wearable 

(i.e., untethered) powered assistive devices to promote training outcomes. Integrating 

biofeedback techniques with wearable interventions that can deliver both daily mobility 

assistance and functional gait training holds potential to facilitate long-term functional gains 

in clinical and home settings.

Working towards our overarching goal of increasing the effectiveness of gait training with 

wearable assistance, the purpose of this study was to develop and validate the feasibility of a 

real-time biofeedback mechanism to augment untethered ankle exoskeleton-assisted walking 

performance in individuals with CP. We hypothesized that combining step-length 

biofeedback with adaptive plantar-flexor assistance would encourage users with CP to walk 
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with longer strides through increased plantar-flexor muscle activity and greater positive joint 

power across the lower-extremity when compared to their baseline gait pattern and walking 

with ankle assistance alone.

II. Methods and Procedures

A. Overview

We sought to develop a practical, effective biofeedback system to augment walking with 

ankle exoskeleton assistance. The primary design criteria for our exoskeleton biofeedback 

system included (1) a clinically-relevant gait performance target, (2) a simple, intuitive user 

interface suitable for children, (3) the inclusion of simple gamification techniques to 

incentivize participation, and (4) ankle exoskeleton assistance that accommodated 

instantaneous changes in gait mechanics. The system we implemented utilized real-time step 

length information, the user’s instantaneous performance relative to a personalized goal, a 

visual interface with live performance score, and an adaptive ankle exoskeleton control 

algorithm that provided assistance proportional to the real-time ankle moment.

Step-length was selected as the gait performance target because it (1) is a common clinical 

goal for individuals with CP [5], (2) encourages ankle push-off and lower-extremity 

extension [23], (3) is relatively simple to implement and intuitive for users of all ages. A 

previous study on children with CP tried multiple biofeedback targets and concluded that 

step length was the most intuitive among all options, and which resulted in increased ankle 

power in their cohort [14].

B. Ankle Exoskeleton

An untethered ankle exoskeleton, customized for each participant (mass: 1.85 kg for the 

small size and 2.20 kg for the large size), was used to provide ankle assistance and collect 

information for real-time biofeedback. Detailed information about the adaptive controller 

[24] and electromechanical [25] design of the device has been provided previously. The 

fundamental premise of the system is to improve ambulatory function by augmenting 

plantar-flexor deficits in CP using a control strategy that automatically accounts for stride-

to-stride variation to achieve seamless synchronization between the device and user. In brief, 

a waist-mounted motor and control assembly remotely actuated carbon fiber ankle 

assemblies via a Bowden cable transmission (Fig. 1A, B). A finitestate-machine was used to 

identify each stance and swing phase using embedded foot sensors (force sensitive resistors; 

FSR). We estimated the real-time biological ankle moment using a previously-validated 

control strategy based on the FSRs [24]. During stance phase, the exoskeleton provided 

adaptive plantar-flexor torque proportional to the real-time estimate of the biological ankle 

moment, reaching a peak of 0.22 ± 0.06 Nm/kg, on average. During swing phase, 0.02 to 

0.11 Nm/kg of dorsiflexion assistance was provided based on user preference and visual 

assessment of toe clearance (Fig. 1C).

C. Real-Time Biofeedback

We developed a visual biofeedback system to provide real-time step length information to 

each user. The length of each step was approximated as follows:
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step lengtℎn = walking speed × (tn − tn − 1) (1)

where tn was the time at foot contact for the nth step. Time at foot contact, recorded 

bilaterally using the exoskeleton’s foot sensors, was transmitted via Bluetooth to a laptop 

computer running a MATLAB graphical user interface. The laptop was connected to a large 

(1.42 m by 0.80 m) display that was placed 3 m in front of the treadmill (Supplemental Fig. 

3). On the visual interface, symbols moved up and down with their vertical position 

representing the relative length of the left and right step. A horizontal bar indicated the target 

step length, which was set 10% greater than during baseline walking. The display showed 

the two-step moving average, and was updated every two strides (Fig. 2A). The user’s score 

was reported at the top of the display. Points were earned if the average length of the last two 

steps exceeded the target (Fig. 2B).

D. Participants and Study Design

Seven individuals with CP between 6 and 31 years of age participated in the study (Table I). 

Inclusion criteria included diagnoses of CP; the ability for participants to walk on a treadmill 

with or without a walking aid for at least 6 minutes; gross motor function classification 

system (GMFCS) level I, II, or III; at least 20° of passive ankle plantarflexion range of 

motion; no knee extension or ankle dorsiflexion contractures greater than 15°; no orthopedic 

surgery completed in the prior 6-month; and the absence of any medical condition other than 

CP that would affect safe participation. The study was approved by the Institutional Review 

Board of Northern Arizona University (NAU) under protocol #986744 on 5/13/2019 as a 

part of NCT04119063. Participants over 18 years old read and signed an informed consent 

document. For each minor, we obtained assent and informed written consent from a parent.

Following the consent process, we determined each participant’s baseline preferred treadmill 

walking speed and step length and explained the concept of biofeedback and the visual 

interface. Next, participants completed the following three walking conditions at the fixed, 

pre-determined baseline-preferred speed in random order: baseline – walking wearing shoes 

and orthoses if they were prescribed by a physician; assistance alone – walking with the 

exoskeleton as it provided bilateral plantar- and dorsi-flexor assistance; biofeedback-plus-

assistance – walking with biofeedback wearing the exoskeleton as it provided both plantar- 

and dorsi-flexor assistance. Participants walked for two minutes under each condition and 

for one minute between conditions wearing the exoskeleton with no biofeedback or 

assistance as a washout. Breaks were provided as needed. This validation study was 

completed on a treadmill to isolate the effects of biofeedback and exoskeleton assistance 

when walking at the same speed.

We collected motion, force, and muscle activity data for the final 20 seconds of each 

condition. A ten-camera motion capture system (120 Hz; Vicon) with a custom marker set 

was used to record kinematics data [16], [26]. We placed markers bilaterally on the mid-toe, 

heel, 5th metatarsal, medial and lateral malleolus, medial and lateral epicondyle, anterior 

and posterior superior iliac spine, and acromion process, and on the sternum and 7th cervical 

vertebra. Clusters with four markers were placed on the shank and thigh of each leg. We 

collected ground reaction force using an instrumented treadmill (980 Hz; Bertec). Muscle 
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activity was recorded from the soleus and vastus lateralis using a wireless electromyography 

(EMG) system (1926Hz; Delsys). Experimental data were recorded simultaneously in the 

Vicon system and its Nexus software and synchronized with exoskeleton data (100 Hz) 

using a trigger signal.

E. Data Analysis

We identified gait events (heel strike and toe-off) in Vicon Nexus and calculated the length 

of each step based on the coordinates of left and right heel markers at heel strike. We used 

OpenSim 3.3 [27] to derive joint kinematics and kinetics. We first scaled a generic 

musculoskeletal model [28] for each participant, and then computed the joint angles and 

moments across the lower-extremity using the inverse kinematics and inverse dynamics 

analyses. We derived the support moment by summing the time-series data of ankle, knee, 

and hip moments [29], [30]. Joint power (W) was calculated as the product of the joint 

moment (Nm) and the respective joint angular velocity (rad/s). Stance-phase average 

positive power was calculated by integrating the positive area of the joint power curve and 

dividing by stance time.

EMG data were band-pass filtered between 15 and 380 Hz, rectified, and low-pass filtered 

with a 7 Hz cutoff to generate the linear envelope [31]. We normalized the filtered EMG 

signal for each muscle by the peak value from walking with the device unpowered (zero 

torque). EMG data were then segmented into gait cycles. The area under the EMG curve 

(integrated EMG, iEMG) was summed for the stance phase and divided by the period as an 

indication of muscle work [32].

Primary outcomes included step length; peak ankle plantarflexion, knee extension, and hip 

extension during stance phase; peak stance phase ankle, knee, hip, and support moments; 

average positive individual and summed ankle, knee, and hip power during stance; and 

stance phase soleus and vastus lateralis iEMG. Total (combined muscle and exoskeleton 

contributions) and biological (muscle contribution) joint moment and power at the ankle 

were computed for exoskeleton-assisted trials [16]. The torque (measured using torque 

sensors) and power (product of measured torque and angular velocity) from the device were 

subtracted from the joint moment and power, respectively, from inverse dynamics, as in [33] 

to derive biological moment and power. Kinetic outcomes were normalized by body mass. 

All outcomes were averaged within limbs and across all gait cycles of the 20-second data 

collection.

F. Statistical Analysis

To evaluate the accuracy of the biofeedback mechanism, we calculated the root mean square 

error (RMSE) and Pearson’s correlation coefficient (R) between real-time estimate and 

motion-capture-measured step length of all participants; coefficients of 0.7 – 0.9 were 

considered strong correlations [34]. We used paired two-tailed t-tests to compare outcomes 

between the biofeedback-plus-assistance and assistance alone conditions, between 

biofeedback-plus-assistance and baseline, and between assistance alone and baseline. We 

calculated Pearson’s correlation coefficient (R) between baseline peak biological ankle 

moment and change in peak biological ankle moment during biofeedback-plus-assistance 
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relative to baseline. Kolmogorov-Smirnov tests were used to check the normality of the 

outcomes in each comparison (Supplemental Table I). For parameters that were not normally 

distributed, we used Wilcoxon signed-rank tests to evaluate statistical significance. A fixed 

significance level of α ≤ 0.05 was used for this feasibility study.

III. Results

A. Biofeedback Efficacy

There was a strong correlation between the step length estimated from the real-time 

biofeedback system and the step length computed from motion capture (R = 0.771, p < 
0.001); the RMSE between estimated and measured values was 6.3 ± 3.3% across the seven 

participants (Fig. 2C).

B. Effect of Biofeedback During Walking With Assistance

Participants increased their step length by 13.8 ± 11.8%, averaged across both limbs, when 

they walked with biofeedback-plus-assistance compared to baseline (p = 0.05); step length 

was similar between walking with biofeedback-plus-assistance and assistance alone (p = 

0.114) and between assistance alone and baseline (p = 0.096, Fig. 3).

Walking with biofeedback-plus-assistance contributed to a more extended lower-extremity 

posture. Late-stance hip extension increased by 4.2 ± 5.1° compared to walking with 

assistance alone (p = 0.028) and by 5.5 ± 4.7° compared to baseline (p = 0.018, Fig. 4). 

Additionally, walking with biofeedback-plus-assistance increased stance phase knee 

extension by 3.9 ± 3.6° compared to assistance alone (p = 0.028). Late-stance peak ankle 

plantarflexion angles were similar across conditions (Fig. 4).

Walking with biofeedback-plus-assistance resulted in increased lower-extremity extensor 

moments and powers. Compared to baseline, stance phase peak hip extension and ankle 

plantarflexion moments increased by 50.6 ± 42.9% (p = 0.041) and 15.7 ± 17.7% (p = 0.03), 

respectively. Walking with biofeedback-plus-assistance increased the peak support moment 

summed across the lower-extremity by 31.7 ± 35.1% (p = 0.039) compared to baseline; 

similarly, total (biological + exo) lower-extremity positive power increased 29.1 ± 25.3% (p 

= 0.03) and summed biological positive power increased 26.5 ± 25.3% (p = 0.045). Walking 

with ankle assistance alone did not result in an increased peak support moment or summered 

lower-extremity power, but did increase peak hip and ankle moments by 36.5 ± 32.9% (p = 

0.036) and 20.0 ± 19.0% (p = 0.023), respectively. There were no statistically significant 

differences between biofeedback-plus-assistance and assistance alone conditions with 

respect to joint moments or powers (Fig. 5, Supplemental Fig. 1 & 2). We observed a 

negative relationship between baseline biological ankle moment and relative changes in 

biological ankle moment measured when walking with biofeedback-plus-assistance (R = 

0.758, p = 0.048, Fig. 7).

There were no significant differences in soleus or vastus lateralis iEMG across conditions 

(Fig. 6).

Fang and Lerner Page 6

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. Discussion

The overarching goal of this study was to develop and validate a real-time biofeedback 

mechanism to augment untethered ankle exoskeleton-assisted walking performance in 

individuals with CP. As the first study combining untethered exoskeleton assistance with 

real-time biofeedback in individuals with CP, we achieved our goal of establishing the 

feasibility of this gait training intervention and improving clinically-relevant outcomes. 

Fulfilling our validation goal, there was a strong correlation between the step length 

estimated from the real-time biofeedback system and the step length computed from motion 

capture (R = 0.771), with low average RMSE (6.3%). We partially accept our hypotheses. 

Combining step length biofeedback with ankle assistance elicited longer steps, a more 

extended lower-extremity, and increased joint moments and powers. However, there were no 

statistically significant changes in muscle activity across conditions.

Our participants, with ages ranging from 6 to 31 years old and GMFCS levels between I to 

III, were able to understand and safely walk with the biofeedback system and ankle 

exoskeleton. We did not find a significant relationship between either age (R2 = 0.494, p = 

0.078) GMFCS level (R2 = 0.365, or p = 0.151) to changes in step length. Anecdotally, we 

observed that enthusiasm for the biofeedback “game” positively influenced performance. 

For example, children and young adults who showed an earnest interest in the biofeedback 

feature had higher scores and took longer steps, while the oldest participant (P2, 31 years 

old) was visibly disinterested and earned the lowest score and had minimal changes in gait 

outcomes (Fig. 2B). We purposefully kept the step-length target constant in this feasibility 

analysis to mitigate the effects of personalized or variable targets as a confounding factor. 

Future exploration should investigate the role of personalized targets on user engagement 

and performance. Similar to previous studies [11], [14], two-minute acclimation time under 

biofeedback conditions for CP is reasonable as it provides sufficient time to get used to the 

feature and prevents fatigue. Most participants maintained or improved their performance 

throughout the 2-minute trial (Fig. 2B).

Combining biofeedback with assistance was effective in eliciting near immediate 

improvements in clinically-relevant measures of gait mechanics. In agreement with prior 

studies that have reported improvements of 9 – 13% for step length biofeedback in 

individuals with CP [12], [14], our cohort walked with 13.8 % longer steps with 

biofeedback-plus-assistance. Compared to walking with assistance alone, all but one 

participant (P7) achieved longer steps during biofeedback-plus-assistance (Fig. 3). Step 

length as the feedback target encourages simultaneous increases in step length and lower-

extremity extension, while also giving users the autonomy to explore their own strategy to 

achieve that goal [14]. We found that our participants achieved longer steps during 

biofeedback-plus-assistance through increased hip (5.5°) and knee (3.9°) extension relative 

to baseline. Importantly, walking with biofeedback-plus-assistance increased the peak 

support moment summed across the lower-extremity (31.7%), and summed total (biological 

+ exo, 29.1%) and biological (26.5%) lower-extremity positive power, which were 

improvements not observed for assistance alone. Analysis of the biofeedback-only condition 

suggests that step-length biofeedback encouraged increased hip extension regardless of 

ankle assistance (Supplemental Table II).
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Part of our motivation for implementing biofeedback was to ensure user engagement during 

walking and prevent users’ reliance on the device. Our previous study observed reduced 

plantar-flexor muscle activity after over two hours of walking with the device [16]. 

Statistically significant changes in muscle activity across the lower-extremity were not 

observed, likely due, in part, to the inherent variability of this measure in this heterogeneous 

patient population. Still, the improvement in gait mechanics without an observed reduction 

in muscle activity during biofeedback-plus-assistance is an encouraging finding that 

suggests our intervention warrants additional investigation for functional gait training.

Our results indicate that biofeedback could be an effective tool to augment clinically-

relevant outcomes during walking with wearable assistance. In contrast with Booth et al. 
[14], we did not find an anticipated improvement in biological ankle power or moment 

compared to baseline or assistance alone. However, a comparison to walking with only 

biofeedback (Supplemental Table II) revealed that biofeedback-plus-assistance improved 

positive ankle power generation (both total and biological), which reinforces the anticipated 

benefits of this combined gait training modality. The lack of increased ankle power for 

biofeedback-plus-assistance vs. baseline in our study may be because the exoskeleton’s 

plantar-flexor torque immediately enhanced local function by increasing the total 

(exoskeleton + biological) ankle moment or power (Fig. 5, Supplemental Fig. 1). This theory 

is further supported by our finding that participants with biological plantar-flexor moments 

during baseline that were most similar to the typical range from unimpaired individuals had 

less improvement in this parameter when walking with biofeedback-plus-assistance (Fig. 7). 

This suggests an upper limit for which an individual may increase their total plantar-flexor 

moment for achieving longer steps.

A limitation of this validation study was the relatively small number of participants. 

However, the sample size (n = 7) was selected based on similar prior feasibility studies in the 

same population [15], [16], [36]. Our results suggest that step length biofeedback and ankle 

assistance was appropriate for a relatively broad range of individuals with CP; our cohort 

encompassed ages from 6 – 31 years old and GMFCS levels of I – III. We did not correct for 

multiple comparisons for this exploratory study. We did not test multiple trials for each 

condition. However, this design was consistent with previous biofeedback feasibility 

experiments in CP and older adults, where each condition lasted 1- or 2-minute and was 

tested only once [14], [37]. A necessary limitation was that the walking speed was kept 

constant for all conditions to isolate the biomechanical effects of biofeedback from changes 

induced by altered walking speed. We expect participants would have naturally walked faster 

when engaging with both steps length biofeedback and assistance. Increasing step length at a 

fixed speed on a treadmill would likely be a common implementation of this intervention in 

a rehabilitation setting because it provides a controlled, safe environment that allows users to 

concentrate on the feedback modality, focus on one aspect of their gait pattern, and 

maximize the number of high-quality steps. As user performance progresses with training, 

we expect assistance would decrease or the step-length target would increase as needed to 

maintain progress. Step-length biofeedback with ankle exoskeleton assistance could be used 

outside the laboratory. For treadmill walking, a therapist could specify the set speed into the 

feedback controller. For over-ground walking, a link-segment model and IMU-measured 

segment could be used to estimate step length and inform the feedback controller.
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V. Conclusion

In conclusion, our results suggest that providing real-time step-length biofeedback when 

walking with wearable ankle assistance may be an effective gait training tool in CP, 

particularly for individuals with moderate-to-severe plantar-flexor impairment. We observed 

near immediate improvements in lower-extremity posture, moments, and positive power 

relative to baseline for biofeedback-plus-assistance, with none, or more-limited 

improvements observed for assistance alone. Our findings support future research to 

investigate the longitudinal effects of gait training with combined biofeedback and ankle 

assistance.
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Fig. 1. 
A) Mechanical design of the ankle exoskeleton wore by the users. B) Components of the 

ankle assembly of the exoskeleton. C) The amount of plantarflexion and dorsiflexion torque 

received by each participant.
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Fig. 2. 
A) Depiction of the biofeedback visual interface. The vertical position of the two triangles 

indicated the average length of the most recent two steps for the left and right legs. The 

horizontal bar indicated the target step length. If a user reached the target, the background 

and target bar turned green and one point was added to the score. B) Cumulative scores 

achieved by each participant during walking with biofeedback-plus-assistance (BF+Assist) 

throughout the 2-minute trial and within the 20-second data collection period. C) Estimated 

step length by the foot sensor and experimentally measured step length from the motion 

capture system.
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Fig. 3. 
(Left) Group-level changes in step length relative to baseline during walking with assistance 

alone (Assist) and biofeedback-plus-assistance (BF+Assist) conditions (mean + standard 

error). * Indicates statistically significant difference from the baseline. (Right) Plots of step 

length (mean ± standard deviation) for each participant across conditions.
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Fig. 4. 
(Left) Group-level changes in stance-phase peak hip extension (top), peak knee extension 

(middle), and peak ankle plantarflexion (bottom) across both limbs for walking with only 

ankle assistance (Assist) and with biofeedback-plus-assistance (BF Assist) relative to 

walking wearing shoes (Baseline). * Indicates statistically significant difference from the 

baseline, and 9 indicates statistical significance between Assist and BF+Assist. Error bars 

indicate standard error. (Right) Plots of hip, knee, and ankle angle for each participant’s 

right leg across conditions. Shading depicts mean ± standard deviation.
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Fig. 5. 
A) Peak lower extremity total support moment (hip, knee, biological ankle, and exoskeleton) 

and peak lower extremity biological support moment (hip, and knee, biological ankle); B) 

peak stance phase hip extension moment, knee extension moment, ankle (biological and 

exoskeleton) plantarflexion moment, and biological ankle plantarflexion moment; C) 

summed positive power for the lower extremity (hip, knee, biological ankle, and 

exoskeleton) and biological lower extremity (hip, and knee, biological ankle); and D) 

positive joint power for the hip, knee, ankle (biological and exoskeleton), and biological 

ankle during the stance phase, across both limbs for baseline walking with shoes (Baseline), 

with only ankle assistance (Assist), and with Biofeedback-plus-Assistance (BF+Assist). * 

Indicates statistical significance. Error bars indicate standard error.
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Fig. 6. 
(Left) Group-level changes in stance phase integrated muscle activity (iEMG) for the soleus 

(top) and vastus lateralis (VL; bottom) across both limbs when walking with only ankle 

assistance (Assist) and biofeedback-plus-assistance (BF+Assist) relative to baseline walking 

with shoes (Baseline). Error bars indicate standard error. (Right) Plots of normalized soleus 

activity (top) and VL activity (bottom) of each participant’s right leg across conditions. 

Shading depicts mean ± standard deviation.
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Fig. 7. 
Correlation between baseline peak biological ankle moment and changes in peak biological 

ankle moment of biofeedback-plus-assistance relative to baseline.
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