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A B S T R A C T   

Computational models of gene regulations help to understand regulatory mechanisms and are extensively used in 
a wide range of areas, e.g., biotechnology or medicine, with significant benefits. Unfortunately, there are only a 
few computational gene regulatory models of whole genomes allowing static and dynamic analysis due to the 
lack of sophisticated tools for their reconstruction. Here, we describe Augusta, an open-source Python package 
for Gene Regulatory Network (GRN) and Boolean Network (BN) inference from the high-throughput gene 
expression data. Augusta can reconstruct genome-wide models suitable for static and dynamic analyses. Augusta 
uses a unique approach where the first estimation of a GRN inferred from expression data is further refined by 
predicting transcription factor binding motifs in promoters of regulated genes and by incorporating verified 
interactions obtained from databases. Moreover, a refined GRN is transformed into a draft BN by searching in the 
curated model database and setting logical rules to incoming edges of target genes, which can be further 
manually edited as the model is provided in the SBML file format. The approach is applicable even if information 
about the organism under study is not available in the databases, which is typically the case for non-model 
organisms including most microbes. Augusta can be operated from the command line and, thus, is easy to use 
for automated prediction of models for various genomes. The Augusta package is freely available at github.com/ 
JanaMus/Augusta. Documentation and tutorials are available at augusta.readthedocs.io.   

1. Introduction 

A Gene Regulatory Network (GRN), a static map of regulatory 
mechanisms, is defined as a graph where nodes represent genes and 
edges correspond to their interactions. The edges are typically directed, 
so the relation between pairs of genes clearly states the regulator, usu-
ally the transcription factor (TF), and the target gene (TG). As the GRN 
decodes one of the most crucial biological processes, regulatory in-
teractions, there are multiple approaches to infer GRNs [31]. In general, 
the approaches can be divided into two main types based on the input 
data. The first one relies on gathering already acquired knowledge from 
literature and databases. Although there are several databases of gene 
interactions [10,17,27,41], they currently contain only limited infor-
mation. Therefore, laboratory experiments remain irreplaceable in 
revealing new, unpublished interactions. The use of experimental data is 
typical for the second type of GRN inference methods, which are most 

typically designed to process gene expression measurements using 
high-throughput sequencing technologies. Five basic approaches using 
different computational techniques can be distinguished: Bayesian, 
Boolean, neural networks, regression-based, and information theory [3]. 
Among them, the information theory-based approach is an ideal solution 
for large-scale data, as it can study the global properties of networks 
with a high number of genes and is simple to use [3]. Several tools based 
on the information theory approach, specifically mutual information 
(MI) calculation, already exist, e.g. ARACNE [30], PREMER [42], or 
minet [32]. However, these algorithms are insufficient to process 
high-throughput genome-wide transcriptomic data and mostly do not 
distinguish whether the interactions of gene pairs are positive, i.e., a TF 
activates a TG, or negative, i.e., a TF inhibits a TG. Although other 
high-performance tools exist, e.g., Inferelator 3.0 [39], GRNBoost2, and 
Arboreto [33], they are typically designed for the use of single-cell 
RNA-Seq data which are mostly not available for non-model, poorly 
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studied, organisms due to their complicated cultivation. Therefore, 
inferring a large-scale, genome-wide network is still a tremendous 
challenge, and computational tools for genome-wide GRN inference are 
not widely adopted. This lack of available tools capable of processing 
standard RNA-Seq data motivated us to develop a new approach 
combining experimental data processing with database mining for GRN 
inference implemented in the introduced Augusta package. 

While a static biological network like GRN serves to study many 
properties [13], the ability to observe behavior that a network expresses 
over a time-course simulation takes knowledge much further. A Boolean 
Network (BN), also referred to as a Boolean Model, is a qualitative 

biological network serving to study the regulatory mechanisms by 
identifying gene-regulatory logic [25]. Only a few tools or databases 
deal with large-scale BNs. The examples include CellNOpt [15] used for 
converting networks to predictive logic models from perturbation 
signaling data, or SQUAD [5], which enables network simulations in a 
GUI environment. In terms of databases (DBs), Cell Collective (CC) [18] 
is a collaborative modeling software that contains a freely available 
database of curated BNs. Augusta addresses this lack of tools, and in 
addition to GRN inference offers a possibility to further combine the 
information obtained from a static GRN with Boolean logic while 
inferring a BN. Moreover, it leverages CC to adjust Augusta-inferred 

Fig. 1. Augusta pipeline: input files, a count table, and a GenBank file are used to optionally normalize the count table. Next, an initial Gene Regulatory Network 
(initial GRN) is inferred using a mutual information (MI) calculation. The initial GRN or a user-specified GRN is subsequently refined by searching for transcription 
factor binding motifs (TFBM) and databases (DBs). Moreover, the final GRN is converted into a Boolean Network (BN) by the Cell Collective (CC) database search and 
the addition of Boolean logic rules. As a result, the discovered motifs, the GRN in the form of an adjacency matrix, and the BN as an SBML-qual are exported. If the 
GenBank file is not provided, normalization, GRN refinement (TFBM and DBs search), and CC search are skipped. 

J. Musilova et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 23 (2024) 783–790

785

logical rules and therefore presents a new alternative to other tools used 
for BN inference. 

In this paper, we present Augusta, a Python package named after the 
famous mathematician and the first programmer, Augusta Ada King, 
Countess of Lovelace. Augusta combines experimental data with data-
base searching and further refines inferred networks by de novo tran-
scription factor binding motifs (TFBM) prediction. In addition to GRN 
inference, it offers the possibility to further transform this network into a 
BN. Augusta is a command-line interface (CLI) tool written in Python 
and is freely available under the MIT license as a source code and in a 
binary form from https://github.com/JanaMus/Augusta, as well as in 
binary form from the Python Package Index (PyPI) repository for easy 
installation. It is designed to be OS-independent, and thanks to CLI, it 
can be easily implemented into various shell pipelines. Moreover, the 
pipeline is designed to reconstruct whole-genome networks with low 
time complexity, and the most demanding computations are performed 
on publicly available servers. Therefore, a model for an average bacte-
rium can be reconstructed in a reasonable time with a standard office PC 
or laptop. 

2. Materials and methods 

2.1. Overview 

An initial Gene Regulatory Network is inferred from time-course 
gene expression datasets. Specifically, a set of gene expression data in 
the form of a time series of counts (a count table) is a required input that 
is used for the mutual information calculation. A GenBank file is an 
optional, yet highly recommended input providing additional informa-
tion necessary for data normalization and a two-step initial GRN 

refinement by searching for transcription factor binding motifs, fol-
lowed by searches in databases of TFs. Possibly, initial GRN inference 
can be skipped and a user can input his own GRN inferred by any tool to 
continue with the two-step refinement. The inferred final GRN is the 
main output of Augusta. Nevertheless, this GRN can be further con-
verted into a Boolean Network. Finally, both of these networks can be 
exported in the form of an adjacency matrix and an SBML-qual file [7], 
respectively. Moreover, TFBM discovered de novo during GRN refine-
ment are exported as well. Individual steps are shown in Fig. 1 and 
further described in the following subsections. 

2.2. Gene expression data preprocessing 

The study of gene expression provides insight into the cell’s physi-
ology at the transcriptomic level. The expression level of a gene is 
measured by a number of sequencing reads mapping to the particular 
gene. To achieve meaningful data analysis, normalization of the ob-
tained raw counts is a crucial initial step. Normalization methods aim to 
eliminate systematic experimental bias and correct technical variations 
such as sequencing depth, library size, or gene length [28]. 

Several methods have been developed to normalize raw read count 
datasets. Since each method has its own strengths and limitations, the 
choice of normalization method depends on the research question and 
the nature of the data [12,14,24,28]. Therefore, Augusta offers several 
options for input data normalization. If a GenBank flat file, an optional 
input, is provided, the count table can be normalized using one of the 
provided methods [43]: Counts per Million (CPM), Reads per Kilobase 

Million (RPKM), and Transcripts per Million (TPM). Otherwise, an 
already normalized count table can be provided and a normalization 
step can be skipped. 

2.3. Network inference with information theory approach 

Information theory (IT) is a mathematical framework for quantifying 
and analyzing information. The main concept is based on a measure-
ment of uncertainty, also known as entropy. Specifically, for a discrete 
random variable X, i.e., gene X in the input count table, the entropy H(X) 
is calculated as follows: 

H(X) = −
∑

X∈x
P(x)logbP(x)# (1) 

In the Eq. 1, P(x) is the probability of event x, which corresponds to 
the expression level of the gene X. The base of the logarithm b represents 
the unit of entropy. Here, b is equal to the Euler number e representing 
the natural unit of information (nats). 

The entropy of two discrete random variables, i.e., genes X and Y, the 
so-called joint entropy H(X, Y), is the entropy of the joint probability 
distribution defined as: 

H(X, Y) = −
∑

X∈x

∑

Y∈y
P(x, y)logbP(x, y)# (2) 

Mutual information (MI), a subset of information theory, determines 
the nonlinear dependency between a pair of variables, which is very 
common in nature. Therefore, it is an attractive approach for studying 
the communication of biological systems, such as interaction/relation-
ship between gene pairs. In detail, the MI is a measure of the additional 
information known about one variable when given another:  

To determine the relationship between two genes, MI can be calcu-
lated from the gene expression dataset. However, the normalized count 
table contains continuous values of expression levels. Therefore, 
binning, or the transformation of continuous values to discrete ones, is 
necessary. The optimal number of bins has been identified as 10 for most 
cases [4,22]. However, a too large number of bins relative to the number 
of genes in the input dataset may lead to estimation errors for the joint 
distribution. Augusta, therefore, uses an approach for small datasets that 
simulates adaptive distributions [6]. Specifically, the number of bins D is 
set according to the number of genes n to be 10 or less using the equation 
as follows: 

D = min
(

⌊
̅̅̅̅̅̅̅̅
n/5

√
⌋, 10

)
# (4) 

Mutual information itself only reveals a relationship between two 
genes, i.e., proposes an edge between two nodes. The type of relation-
ship, i.e., TF-TG or edge direction, as well as the regulation type, i.e., 
positive or negative, can be subsequently evaluated based on the tran-
scriptional time lag [45]. The lag can be understood as the time needed 
for the TF gene to be translated into its protein product and the tran-
scription of the TG to be affected by this regulatory protein. Thus, the 
evaluation is performed by identifying the most significant difference 
(MSD) among all adjacent pairs of time points in the measured time 
series of particular genes. The position of the MSD serves for the edge 
direction determination: 

MI(X;Y) =
∑

X∈x

∑

Y∈y
P(x, y)logb

P(x, y)
P(x)P(y)

= H(X) − H(X|Y) = H(Y) − H(Y|X)

= H(X) + H(Y) − H(X,Y)
# (3)   
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e =

{
(v1, v2) if i < j

(v2, v1) if i > j
, i = argmax

x∈(1,n)

( ⃒
⃒DM1,x

⃒
⃒
)
, j = argmax

x∈(1,n)

( ⃒
⃒DM2,x

⃒
⃒
)

#

(5)  

where e is an edge between nodes v1 and v2; DMm,n is a matrix of dif-
ferences between adjacent time points of the count table of m genes and 
n + 1 time points. Furthermore, the sign of the MSD corresponds to the 
type of regulation. As the example in Fig. 2 shows, the P gene has the 
MSD in T2-T1 and the change is a positive value, which corresponds to 
the gene activation. Regulation of the gene E is lagged in comparison to 
P, as its MSD is captured in T3-T2. Therefore, P is considered to be the 
TF, and E is considered to be the TG in their relationship. As the captured 
change is also positive, P is considered to be an activator, i.e., the 
regulation is positive. Similarly, the highest regulation of S is lagged in 
comparison to both P and E. Therefore, both genes are considered to be 
TFs for S. Moreover, both of these TFs are repressors of S because the 
captured difference is negative. 

2.4. Network refinement: motifs and databases search 

While networks of living systems inferred solely by mathematical 
computations can provide useful predictions, accuracy is dependent on 
the quality and completeness of the input data. The networks only 
approximate reality from measured time series of genome-wide 
expression profiles whose sampling may not be sufficient to perfectly 
capture the complexity and interactions of the whole system. Moreover, 
these profiles summarize transcription in many cells present in the 
examined culture and are therefore biased. By incorporating additional 
knowledge on gene regulation, networks can better reflect the under-
lying mechanisms and interactions of biological systems, leading to 
more accurate predictions. Therefore, the topology of a GRN inferred by 
MI using Augusta can be further refined by de novo defining and 
searching for transcription factor binding motifs and by supplementing 
additional knowledge stored in curated databases associated with the 
organism under study. 

A transcription factor binding motif, a short genomic sequence 

located in the promoter region of the gene, plays a crucial role in gene 
regulation. In order to initiate transcription, the TF binds to the pro-
moter of the TG based on a specific motif pattern. A single TF most 
typically regulates several TGs that form its regulon. Therefore, the 
TFBM in gene promoters present in the same regulon are the same or 
very similar. The first step in a GRN refinement is based on de novo TFBM 
discovery, as shown in Fig. 3. Upstream sequences of genes in particular 
regulons are used to define new motifs recognized by TFs with the 
MEME Suite Docker image [2]. The default length of promoters, i.e., the 
upstream sequence to be analyzed, is set to 1000 bp [9,23,40]; however, 
the value can be adjusted by the user. In addition, only regulons that 
contain five or more genes are used to define new TFBMs. Subsequently, 
inferred motifs are searched in promoters of all other genes present in 
the network to reveal additional TF-TG relationships. The presence of 
the TFBM itself does not provide a type of regulation. Therefore, the 
transcriptional time lag is used again to determine whether the partic-
ular TF activates or inhibits the TG. In addition to the network refine-
ment, TFBMs, which are unknown for most transcription factors, 
especially in non-model organisms, are also uncovered and reported as 
an auxiliary output. 

The second step in GRN refinement is secured by database (DB) 
search. Manually curated DBs containing interactions of genes or pro-
teins, particularly OmniPath [41], Signor [27], SignaLink [10], and 
TRRUST [17] are searched for the interactions corresponding to the 
organism under study. The organism name and the gene names, 
extracted from the input GenBank file, are further extended by other 
corresponding scientific and common names using the EcoName-
Translator Python package [11] to reveal all DB information. All regu-
latory relationships available in the DBs for a given organism are then 
added to the GRN. In the case a mismatch occurs between an edge type 
in the inferred GRN and in the DBs, information from the DBs is 
preferred as only curated databases are searched and thus considered 
reliable. In case of a mismatch between individual DBs, the type with the 
larger number of references is incorporated into the network; if the 
number of references is equal, no information is retrieved from the 
database. As a result, the final GRN presenting the main output of the 
Augusta package is constructed and exported in the form of an adjacency 
matrix in a.csv file format. 

2.5. Boolean network inference 

A Boolean Network, also referred to as a Boolean model, is a 
computational model used in the field of systems biology to analyze 
complex biological systems over time. The model serves to understand 
the dynamics of the regulatory mechanism as it gains insight into how 
different elements of the network influence each other and how the 
system responds to changes in input signals. Network inference involves 
assigning a Boolean function to each of the interacting network elements 
based on its regulatory interactions with other elements. In particular, 
the function for each target node is defined in terms of the logical op-
erators AND, OR, NOT, and their combinations. 

Fig. 2. Principle of determining a type of relationship between pairs of genes, i. 
e., the definition of the TF-TG and positive-negative type of regulation. 

Fig. 3. GRN refinement by searching for transcription factor binding motifs (TFBMs). Initially, the upstream sequences of regulons defined by the initial GRN are 
utilized to define new motifs. The inferred motifs are then searched in the promoters of all other genes within the network. While some of the edges present in the 
initial GRN are filtered out due to the missing sequence motif in the promoter of a given regulon (TF-O edge in the example), other edges might be introduced in the 
refined GRN when newly defined motifs are found in the promoters of genes outside the given regulon, such as TF-E and TF-S pairs. 

J. Musilova et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 23 (2024) 783–790

787

Augusta uses Boolean logic to transform the final GRN into a BN by 
specifying a Boolean function for every node in the network. The func-
tion is acquired in two ways depending on the availability of the data in 
the Cell Collective (CC) database: by using already published Boolean 
functions in the CC or by creating new generic functions. Regarding the 
former way, the process starts with the selection of available models. 
Since the transformation is organism-specific, only models for a studied 
organism are extracted from the CC database. Unlike GRN inference, 
where analysis is TF-oriented, BN inference is rather TG-oriented, as 
Boolean functions define input functions of particular regulated genes. 
For a given node, i.e., a TG, a Boolean function is transferred from the CC 
to the network being inferred only when a given TG and all its TFs in the 
final GRN are present in the extracted CC model. In the case the 
extracted model contains only partial information, the function for the 
TG cannot be transferred and the latter way of the function acquisition, i. 
e., creating a new generic function, needs to be employed. The generic 
function added to the TG node is created regarding the most commonly 
observed regulation processes: the logical OR operator is applied if only 
negative/positive interactions influence the TG (e.g. A = B or C; D = not 
(E or F)). On the contrary, the logical AND operator is applied if both 
negative and positive edges influence the TG to represent the dominance 
of the negative regulation (e.g. G = (not H) and I). 

Finally, the inferred BN is outputted in the SBML-qual file format. 
The format, an extension of the XML-based SBML, is a standardized 
format in biological modeling [19] and was designed specially to store 
qualitative models to which the Boolean networks belong [7]. The file is 
generated using the CellNOpt Python package (Cokelaer and 
Saez-Rodriguez, 2014), which has been extended for compatibility with 
the Augusta package by conversion into Python 3, and by adding a 
function for preserving nodes that are not connected to the rest of the 
network. As there are currently only a few reference BNs in the CC 
database, the BN inference in the Augusta pipeline is intended as a 
starting point for further development of various models utilizing pri-
marily generic functions. These models can be manually refined, 
enhanced, and transferred to compatible software platforms, such as 
Cell Collective [18], BoolNet [34], or CellNOpt [15], which offer the 
possibility of running additional simulations. 

2.6. Performance assessment 

Benchmarking of Augusta was performed on several datasets and the 
results were compared to several tools for GRN inference: GENIE3 [20], 
TDAracne [44], and KBoost [21]. All analyses were performed on the 
same desktop PC with AMD Ryzen 3 3100 4-Core Processor with 
3.59 GHz, 4 cores and 8 logical cores, and 32 GB of RAM. All tools were 
tested with default parameters. The required input parameter of TDAr-
acne specifying a number of bins in percentile normalization or in rank 
normalization was set to 10 [22]. Performance was evaluated by 
measuring execution time, sensitivity, specificity, and accuracy. 

First of all, we used the dataset obtained from the DREAM 4 In Silico 
Network Challenge [29] to evaluate Augusta’s performance using an 
artificial gold standard network designed specifically for the comparison 
of GRN inference algorithms. Specifically, the first experiment of the 
time-series dataset consisting of 100 genes in 21 samples was used. To 
utilize all of Augusta’s features, we downloaded the complete annotated 
genome sequence of Escherichia coli BW25113 [16] in the GenBank file 
format, as the DREAM 4 dataset was created based on this bacterium. 
Due to the fact that the gold standard dataset network does not contain a 
type of gene interactions, i.e., the GRN consists of directed edges but 
activating/inhibiting type of edges is not specified, the network inferred 
by Augusta had to be simplified by not considering the interaction types 
and all negative edges were converted to positive ones. Subsequently, 
binary classification was applied, in which a confusion matrix was 
computed to compare the predicted values of the benchmarking tools 
with the actual/true values provided by the gold standard. Using the 
confusion matrix, sensitivity is calculated as the proportion of correctly 

inferred interactions (true positives), while specificity measures the 
proportion of correct true negatives. Finally, accuracy is obtained as the 
overall proportion of correct predictions made by the benchmarked tool. 
Furthermore, we performed benchmarking of the count table normali-
zation methods available in the Augusta pipeline, such as CPM, RPKM, 
and TPM. 

Second, the Bacillus subtilis 168 RNA-Seq time-series dataset [35] 
consisting of 3997 genes in seven samples already normalized by the 
RPKM method, genome sequence (GenBank ID: AL009126.3) [26], and 
the gold standard GRN [1] containing both activating (positive) and 
inhibiting (negative) interactions were used for the evaluation based on 
the whole-genome data. Although the performance formula remained 
unchanged from that used for the DREAM 4 dataset, the confusion 
matrix was expanded to a 3 × 3 grid as the gold standard network 
contains an additional type of edge representing negative regulation 
(minus one). Therefore, multiclass classification was applied. Addi-
tionally, sensitivity and specificity metrics were calculated separately 
for each class, i.e., the type of the edge, and the resulting values were 
averaged. We also used the dataset to evaluate the time required for 
individual steps in the Augusta pipeline. 

Finally, to demonstrate Augusta’s ability to reconstruct networks for 
non-model organisms, we used a time series dataset from RNA-Seq that 
covers six time-points of Clostridium beijerinckii NRRL B-598 [38] con-
sisting of 5442 genes and its complete genome sequence [37]. Since the 
GRN of C. beijerinckii is unknown, the parameters describing Augusta’s 
performance could not have been calculated in this case. However, we 
compared the predicted GRN to the available gene ontology annotation 
of C. beijerinckii [36] to summarize Augusta’s capabilities. 

3. Results 

Augusta’s primary function, Gene Regulatory and Boolean networks 
inference, results in four outputs: (i) a GRN (adjacency matrix in.csv file 
format); (ii) identified motifs (in Stockholm.sto file format); (iii) all in-
teractions found in the databases related to the input organism (list in. 
csv file format); (iv) a BN (in SBML-qual file format). Furthermore, the 
package offers secondary functions such as inferring only a GRN from a 
count table or inferring a BN from an existing GRN. Examples, test 
datasets, tutorials, and instructions are summarized in the documenta-
tion available from augusta.readthedocs.io or directly from GitHub 
github.com/JanaMus/Augusta. 

To assess Augusta’s performance, we conducted several evaluations. 
Initially, we benchmarked Augusta against existing tools for GRN 
inference using datasets containing gold standard GRNs. In addition, we 
tested Augusta in two different ways. Firstly, GRNs were inferred using a 
complete pipeline, i.e., an initial GRN was inferred by MI calculation and 
refined by TFBM and DBs search (labeled as Augusta in Table 1 and  
Table 2). Secondly, GRNs were inferred solely by MI calculation (labeled 
as Augusta no refinement in Table 1 and Table 3) to compare the per-
formance with other tools, as their algorithms also rely on the inference 
without any refinement using sequence or database information. The 
RNA-Seq data normalization step was not performed as the remaining 
tools do not provide such an option. In addition to the benchmarking, we 
tested the functionality of the complete pipeline, i.e., both GRN and BN 

Table 1 
Comparison of different tools using the DREAM 4 challenge dataset. Augusta 
was tested both by refining the network by TFBM and DBs search (column 
labeled Augusta) and without providing GenBank file, i.e., GRN was inferred 
solely by MI calculation (column labeled Augusta no refinement).   

Augusta Augusta no 
refinement 

GENIE3 TDAracne KBoost 

Time [s]  714.18  3.07  4.62 2894.92  0.30 
Sensitivity  0.06  0.38  1.00 0.15  1.00 
Specificity  0.91  0.54  0.01 0.96  0.01 
Accuracy  0.89  0.54  0.03 0.95  0.03  
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inference, using two whole-genome bacterial datasets. 
The first benchmarking was performed using the DREAM 4 challenge 

dataset for E. coli. The performance of the Augusta was compared with 
the existing tools for GRN inference, as shown in Table 1. Overall, the 
benchmarking results demonstrate that Augusta achieved the second 
best performance after TDAracne in terms of specificity and accuracy, 
but extremely better results in computational time. On the contrary, 
GENIE3 and KBoost achieved the lowest time and perfect sensitivity. 
However, their specificity and accuracy values were notably low due to 
the presence of edges connecting all gene pairs in the inferred GRNs. 

Additionally, we performed the benchmarking of individual 
normalization methods using the DREAM 4 dataset. We compared the 
network’s performance using the count table without normalization and 
the count table normalized by methods available in the Augusta, i.e., 
Counts per Million (CPM), Reads per Kilobase Million (RPKM), and 
Transcripts per Million (TPM). As shown in Table 2, CPM and RPKM 
techniques slightly improved specificity and accuracy of the GRN 
inference while considerably reducing sensitivity in comparison to the 
non-normalized data. On the other hand, TPM preserved high specificity 
and accuracy while improving sensitivity. This is not surprising, as 
initial MI calculation requires a comparison of adjacent time points, i.e., 
samples. Although CPM and RPKM are widely used techniques to 
normalize RNA-Seq-based count tables, they may not be optimal for 
comparison between different samples. On the contrary, TPM allows the 
most precise comparison of samples, i.e., the most precise MI calcula-
tion. Nevertheless, as results showed, while TPM can be generally rec-
ommended as the first choice, there is no versatile technique and 
particular results show tradeoff between sensitivity and specificity. 

To demonstrate the performance on a real, whole-genome dataset, 
we performed the second benchmarking using the B. subtilis dataset, 
which contains 3997 genes. The results are provided in Table 3. Simi-
larly to the previous results, TDAracne achieved the best specificity and 
accuracy, but the computations took almost six days, which is much 
longer than the other tools. Conversely, Augusta with no refinement by 
TFBM and DBs search achieved the best sensitivity, and in comparison to 
GENIE3 and KBoost also considerably higher accuracy. Moreover, the 
accuracy of Augusta became even higher by involving refinement steps. 
Overall, Augusta appears to be a promising tool for GRN inference, of-
fering a good trade-off between accuracy and computational efficiency, 
even on a challenging whole-genome dataset. Computational 
complexity of Augusta‘s core algorithm is O(mn2D2). Here, m corre-
sponds to the number of time points in the input count table, expected to 

be in the order of units to tens at maximum, and n represents the number 
of genes. D equals the number of bins and is a constant of value 10 ac-
cording to Eq. (4) if n is equal or higher than 500. 

We also evaluated the time required for Augusta to perform indi-
vidual steps in GRN and BN inference using the B. subtilis dataset. We 
show the time consumption on a whole-genome dataset consisting of 
3997 genes, as well as on smaller sub-datasets. The results are provided 
in Fig. 4. While the initial GRN inference step consisting of data import 
and MI calculation is done in seconds to minutes, the subsequent GRN 
refinement consumes the highest amount of time. In particular, the 
TFBM search is the most time-consuming step. In addition to extracting 
promoter sequences from the genome and resulting data from the files, 
the sequences are sent to the MEME Suite web server for custom anal-
ysis, where the job is often queued. In return, validation fundamentally 
enriches the network, not only by obtaining the actual motifs for a given 
TF but also by improving its performance, as demonstrated by the 
comparison of inferred networks with gold standards (see Table 1 and 
Table 3). 

Finally, to demonstrate the functionality of the Augusta pipeline on a 
whole-genome dataset of an exotic organism, we utilized the dataset of 
non-model bacterium C. beijerinckii. The final network comprises 2864 
transcription factors (TFs) and 1880 target genes (TGs). This refined 
network outperformed the initial GRN obtained solely by the calculation 
of mutual information (MI), which consisted of 4684 TFs and 4529 TGs. 
The significant improvement achieved through network refinement 
highlights its importance. To further validate the biological accuracy of 
the network, we conducted a Gene Ontology (GO) enrichment analysis. 
Although it is evident that the number of predicted TFs is overestimated 
probably almost 10 times, GO terms related to transcription factor ac-
tivity of the molecular function (MF) and biological process (BP) cate-
gories were within the top 100 terms enriched among predicted TFs, 
particularly MF term GO:0008134: transcription factor binding, top 43, 
p-value 0.14 (Fischer’s exact test) and the BP term GO:0006355 (regu-
lation of DNA-templated transcription), top 57, p-value 0.06 (Fischer’s 
exact test). Although the statistical significance of these enriched terms 
is questionable, it is necessary to take into account that the whole 
network was constructed from six time points only, as time-series 
transcription data for non-model organisms are usually very sparse. 
Despite that, some of the believed to be TFs were still predicted. 

4. Conclusions 

We present the Augusta tool, a simple but effective approach suitable 
for observing the structural and dynamical properties of regulating 
mechanisms within the whole genomes. The main purpose of the 
Augusta is to infer a Gene Regulatory Network (GRN) enriched by the 
edges type (activating/inhibiting) and a draft Boolean Network (BN). 
Moreover, networks are refined by adding additional information based 
on transcription factor binding motifs (TFBM) and curated databases 
(DBs) search to increase network prediction performance. The tool is 
available as a Python package, so it can be used either standalone or 
incorporated into custom scripts. We believe Augusta can be of great use 
for biologists and biotechnologists who deals primarily with non-model 
bacteria that are difficult to work with using current lab protocols. 
Especially the fact that Augusta presumes the use of bulk RNA-Seq opens 
the possibility of GRN inference for a wide range of organisms. Besides 
GRN inference and definition of regulons for particular TFs, Augusta 
explicitly provides sequence motifs in inducible promoters, which is 
utilizable in genome engineering and synthetic biology in general. At 
last, not least, BN inference can be appealing not only for lab scientists 
looking for time course simulation of phenotype manifestation but also 
for computational systems biologists who propose new algorithms for 
BN analyses as this field remains underdeveloped due to the low amount 
of available models. Nevertheless, BNs provided by Augusta should be 
treated with caution as they rather present first drafts than final BNs. 

Although benchmarking was done on prokaryotic datasets as we 

Table 2 
Comparison of the performance achieved without a normalized dataset (column 
None) and datasets normalized using individual methods available in the 
Augusta pipeline: Counts per Million (CPM), Reads per Kilobase Million (RPKM), 
and Transcripts per Million (TPM). The DREAM 4 challenge dataset was utilized 
for the benchmarking.   

None CPM RPKM TPM 

Sensitivity  0.06  0.02  0.02  0.09 
Specificity  0.91  0.93  0.93  0.91 
Accuracy  0.89  0.91  0.91  0.90  

Table 3 
Comparison of different tools using the B. subtilis dataset. Augusta was tested 
both by validating the network by TFBM and DBs search (column labeled 
Augusta) and without providing GenBank file, i.e., GRN was inferred solely by 
MI calculation (column labeled Augusta no refinement).   

Augusta Augusta no 
refinement 

GENIE3 TDAracne KBoost 

Time [h]  69.38  1.09  0.08  134.30  3.00 
Sensitivity  0.33  0.35  0.34  0.33  0.33 
Specificity  0.66  0.60  0.62  0.66  0.65 
Accuracy  0.95  0.60  0.42  0.99  0.00  
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aimed Augusta to be utilizable primarily on non-model bacteria, its 
potential extends to other organisms, as we verified during alpha testing 
on several other organisms. Although the refinement of an initial GRN 
may be computationally very demanding, it is computed on remote 
server and there is no restriction on the size of an input data. As we 
showed, a GRN for typical bacterial genome can be inferred in very 
reasonable time. Moreover, the refinement step can be omitted which 
leads to rapid inference of an initial GRN thanks to the low time and 
computational complexity of the core algorithm. Therefore, the infer-
ence is possible also for much more complex organisms than bacteria. 
Other advantage is that networks are inferred solely from a dataset of 
bulk time-series RNA sequencing, straightforward and commonly per-
formed technique without high experimental complexity compared to 
other methods for measuring expression profiles, such as single-cell 
RNA-Seq [8]. Although refining steps cannot be performed without 
additional knowledge of a genome, Augusta can be used for the first 
approximation of networks even without the complete genome sequence 
and lack of data in databases for the particular organism, which is very 
common for non-model organisms known for the absence of available 
information. 

Augusta has demonstrated promising performance. However, the 
inferred networks should be considered as approximations and not as 
perfectly accurate representations of biological systems regulations, 
particularly BNs, which are intended as drafts for further development. 
Although performing laboratory and computational experiments brings 
constantly expanding information, gaps disabling inferring perfect net-
works still exist. For example, inferring autoregulations remains a sig-
nificant challenge not only in the field of network inference. Besides 
focusing on the listed limitations, Augusta’s future directions involve 
processing multiple RNA-Seq experiments obtained by measuring gene 
expression during various environmental conditions during a single 
computation in tandem with incorporating the parallelization and thus 
reducing the computational time. In addition, future work includes the 
capability to enrich networks with additional information, such as 
known operon structures, as well as employing enhancements to the 
network inference process, especially in terms of BNs. 
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