
INTRODUCTION 

Sequential analysis is a statistical method in which the fi-

nal number of patients analyzed is not predetermined, but 

sampling or enrollment of patients is decided by a prede-

termined stopping rule such as satisfying a statistical sig-

nificance. Accordingly, the investigators may draw a con-

clusion earlier than that with the traditional statistical 

methods, reducing time, cost, effort, and resources. 

The concept and method of sequential analysis were in-

troduced and described as expeditious industrial quality 

control methods during World War II by Abraham Wald [1]. 

This concept was used to prove the desired or undesired 

intervention effects by analyzing data from ongoing trials. 

After World War II, Peter Armitage introduced a sequential 

analysis method to medical research and suggested apply-

ing a strict significance level to stop a trial before a prede-
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termined number of patients was reached [2]. 

A systematic review is a research method that attempts 

to collect all empirical evidence according to predefined 

inclusion and exclusion criteria to answer specific and fo-

cused questions [3]. It uses clear, transparent, and explicit 

methods to minimize bias, providing more reliable infor-

mation [4]. Meta-analysis is a statistical analytic method 

that integrates and summarizes the results from individual 

studies or examines the sources of heterogeneity among 

studies [5]. 

Systematic review and meta-analysis rank highest in evi-

dence hierarchy and provides evidence for clinical prac-

tice, healthcare, and policy development. Its use and appli-

cation in clinical practice have increased [6,7]; however, 

they are not free from errors and biases [8]. Many system-

atic reviews and meta-analyses have included too few 

studies and patients to obtain sufficient statistical power, 
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leading to spurious positive results [9]. Some positive find-

ings from the meta-analysis may be caused by a random 

error (by chance) rather than the true effects of the inter-

vention. Therefore, results from systematic reviews and 

meta-analyses may often increase the likelihood of overes-

timation (Type I errors) or underestimation (Type II errors) 

[10,11]. Furthermore, because meta-analysis can be updat-

ed when there is a new clinical trial, the inflation of Type I 

and II errors from multiple and sequential testing is of ma-

jor concern [12]. 

Trial sequential analysis (TSA) has been developed to re-

solve these problems. Conceptually, TSA adopts sequential 

analysis methods for systematic reviews and meta-analy-

ses. However, TSA is different from sequential analysis in a 

single trial in that the enrolled unit is not a patient but a 

study. Sequential analysis is performed at predetermined, 

regular intervals, although the number of enrolled patients 

did not reach predetermined number of patients. However, 

in TSA, the trials were included in chronological order, and 

analysis was performed repetitively and cumulatively after 

new trials were conducted. TSA also provided an adjusted 

significance level for controlling Type I and II errors. 

Therefore, the adaptation of TSA when performing and 

presenting a meta-analysis has been increasing recently 

[13,14]. 

This article aims to describe the history, background, 

principles, and assumptions behind the use and interpre-

tation of TSA. 

BACKGROUND AND PRINCIPLE OF TRIAL 
SEQUENTIAL ANALYSIS 

Required information size 

Meta-analysis is a statistical method used to synthesize a 

pooled estimate by combining the estimates of two or more 

individual studies. As the number of events or patients in-

crease, the power and precision of the intervention effect 

estimate also increases. Thus, a more reliable estimate can 

be obtained from meta-analysis than a single randomized 

controlled trial (RCT) [4]. 

A single RCT performs sample size calculation or power 

analysis to ensure that the study provides reliable statistical 

inference and targeted power. Similar to sample size calcu-

lation or power analysis in a single RCT, the required infor-

mation size (RIS) or optimum information size was pro-

posed and used in the meta-analysis. 

The RIS in meta-analysis is defined as the number of 

events or patients from the included studies necessary to 

accept or reject the statistical hypothesis [15]. 

The sample size calculation performed in a single RCT is 

based on the effect size, significance level, and power [16]. 

In a single RCT setting, predetermined homogenous pa-

tients, intervention, and methodology are used. However, 

in a meta-analysis setting, a wide range of patients, regi-

mens of intervention, different experimental environ-

ments, and quality of methodology may be applied in each 

study. Heterogeneity may arise across the included studies, 

which increases the sample size needed to accept or reject 

the statistical hypothesis. Therefore, the RIS in meta-analy-

sis should be adjusted considering the heterogeneity be-

tween included studies and should be at least as large as 

the sample size in a homogenous single RCT [15]. 

As in a single RCT, assumptions to calculate RIS should 

be predefined before the systematic review and meta-anal-

ysis. A single RCT with too few patients is thought to have 

low precision and power. Similarly, results from meta-anal-

yses with too few studies and patients are assumed to have 

an increased likelihood of overestimation or underestima-

tion due to lack of precision and power in the intervention 

effect [10,17]. Therefore, the use of appropriate RIS is im-

portant to increase the quality of meta-analysis. 

The TSA program (Copenhagen Trial Unit, Centre for 

Clinical Intervention Research, Denmark) provides a sim-

ple and useful way to calculate the RIS. The TSA program 

uses the heterogeneity-adjustment factor (AF) to adjust for 

heterogeneity among the included trials. AF is calculated 

as the total variance in a random-effects model divided by 

the total variance in a fixed-effect model as follows: 

AF =      

AF: heterogeneity-adjustment factor 

VR: total variance in a random-effects model 

VF: total variance in a fixed-effect model 

Because the total variance in a random-effects model is 

greater than or equal to the total variance in a fixed-effect 

model (VR ≥ VF), AF is always greater than or equal to 1. 

Finally, the RIS adjusted for heterogeneity between trials 

(random) is calculated by multiplying the non-adjusted 

RIS (fixed) with AF. 

Adjusted RIS =  AF ×  nonadjusted RIS 

www.anesth-pain-med.org 139

Trial sequential analysis



In the TSA program, RIS is automatically calculated by 

defining the statistical hypotheses, namely information 

size, Type I error, power, relative risk reduction, incidence 

in the intervention and control arms, and heterogeneity 

correction in the Alpha-spending boundaries setting win-

dow is activated in TSA tab and displayed in the TSA dia-

gram (Fig. 1). This will be discussed later in TSA tab sec-

tion. 

Alpha spending functions and monitoring boundaries 

Type I error, or false positive, is the error of rejecting a 

null hypothesis when it is true, and Type II error, or false 

negative, is the error of accepting a null hypothesis when 

the alternative hypothesis is true. Intuitively, Type I error 

occurs when a statistical difference is observed, although 

there is no statistically significant difference in truth, and 

Type II error occurs when a statistical difference is not ob-

served, even when there is a statistical difference in truth 

(Table 1). 

Multiple comparisons and multiple testing problems oc-

cur when data is sampled repeatedly from the same data 

set, data is analyzed simultaneously or multiple times, or 

data is analyzed sequentially by observing more results. 

Multiple comparisons inflate the possibility of a Type I er-

ror (α). For example, if statistical analysis is performed at a 

significance level of 5% and the null hypothesis for statisti-

cal analysis is true, there is a 5% chance for a Type I error. 

However, if statistical analyses were performed 100 times 

for the same situation, the expected number of Type I er-

rors would be 5, and the probability of occurrence of at 

least one Type I error would be 99.45% (Fig. 2). Therefore, 

it is very important to adjust the α level so that the overall 

Type I error remains within the desired level. 

An interim analysis before the completion of data collec-

tion may also cause inflation of Type I error in the absence 

of appropriate adjustment. During clinical trials, the re-

searchers may stop the trial early via predefined strategies, 

such as observation of clearly beneficial or harmful effects 

in the test group compared to the control group or if inter-

Fig. 1. Trial sequential analysis graph. The graph presents monitoring boundaries, futility boundaries, conventional boundaries and required 
information size. The graph is divided by monitoring boundary and futility boundary into four zones: area of benefit, area of harm, inner wedge, 
and not statistically significant zone.

Table 1. Type of Statistical Errors, Power and Confidence Interval

Decision

Accept H0 Reject H0

Reality H0 is true Correct (confidence level, 1–α) Type I error (α)

H0 is false Type II error (β) Correct (power, 1–β)

H0: null hypothesis.
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im analysis shows futile results. Trials with interim analysis 

inevitably have plans for two or more statistical analyses. 

Therefore, when planning an interim analysis, a plan for 

appropriate adjustment of the α-level considering inflation 

of Type I error from multiple comparisons should be con-

sidered. 

Several statistical methods have been proposed for ad-

justing the α-level. These methods generally require a sig-

nificance level for each comparison that is strict and con-

servative in adjusting the inflation of Type I error. 

Of these, the method proposed by Bonferroni is the sim-

plest and is most frequently used to adjust the statistical sig-

nificance threshold. The Bonferroni correction method is 

conducted by dividing the desired overall α-level by the 

number of analyses (hypothesis). However, it is based on the 

assumption that the data are independent and cannot be 

used for a dependent dataset, such as interim analysis or 

TSA. It has also been criticized for its conservativeness [18]. 

Group sequential analysis, proposed by Armitage and 

Pocock, is another method to adjust the significant thresh-

old. Similar to the Bonferroni correction method, the over-

all risk of Type I error is restricted within the desired overall 

α-level by dividing the desired overall α-level by the num-

ber of analyses performed. However, this method is used 

for data- dependent analyses such as interim analysis. In 

the method proposed by Richard Peto, the Type I error 

from four interim analyses is set at 0.001, and the Type I er-

ror in the final analysis at 0.05 [19]. However, these meth-

ods have a limitation in that the number of analyzed data 

should be predefined, and the analyzing interval should be 

equal. 

In a single RCT, an interim analysis is determined and 

planned before the start; thus, it is possible to know the 

number of analyses, including interim and final analysis 

and analysis intervals. However, meta-analyses are gener-

ally updated when new clinical trials are performed. Fur-

thermore, the intervals between trials are arbitrary and ir-

regular, and the number of included patients is unpredict-

able [12]. For these reasons, the methods proposed by 

Bonferroni, Armitage and Pocock or Peto are not applica-

ble for meta-analysis. For flexibility in analysis, in terms of 

interval and patients included, O’Brien and Fleming [20] 

proposed a method for interim analysis in a single RCT, 

and it was later developed further by Lan and DeMets [21–

23]. This method does not impose restrictions, such as the 

interval between analysis and the number of patients, but 

depends on the parameter chosen for the spending func-

tion. 

The TSA program provided statistical monitoring bound-

aries that show a sensible threshold for statistical signifi-

cance (alpha spending functions) based on methods de-

veloped by Lan and DeMets [21–23]. In the TSA program, 

alpha spending functions are automatically calculated, and 

statistical monitoring boundaries are displayed in the TSA 

diagram (Fig. 1). The monitoring boundaries presented in 

TSA are dependent on the RIS fraction, which was includ-

ed in the meta-analysis [15]. The lower the number of pa-

tients reached compared with RIS, the higher the interven-

tion uncertainty. In contrast, when the closer the number 

of patients that reach the RIS, the uncertainty decreases. As 

uncertainty increases, the statistical significance level de-

creases, and the significance interval widens. Thus, when 

the fraction of RIS is small, the interval between the moni-

toring boundaries becomes wider. 

Fig. 3A shows that the last point in the z-curve is outside 

of the conventional test boundary but within the monitor-

ing boundaries. Therefore, we can conclude that there is a 

statistical difference in the conventional meta-analysis, but 

we cannot conclude a statistical difference in TSA. When 

adding a new trial and updated TSA (with adding 79 pa-

tients, number of patients included in the TSA increased 

from 244 [Fig. 3A] to 323 [Fig. 3B or C]), the last point in the 

z-curve may remain within the monitoring boundaries 

(‘Not Statistically Significant Zone’) (Fig. 3B) or outside the 

monitoring boundaries to reach ‘Area of Benefit’ (Fig. 3C). 

Thus, the pooled estimates in TSA may become statistically 

nonsignificant (Fig. 3B) or significant (Fig. 3C) after the ad-

dition of the new trial. In that case, we either conclude that 
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Fig. 2. Probabilities according to the number of analyses. Dark line 
represents probability of overall Type I error and gray line represents 
probability of accepting null hypothesis.
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intervention has an effect (Fig. 3C) or further studies are 

needed as a conclusion could not be derived (Fig. 3B). The 

construction of the monitoring boundaries in the TSA pro-

gram will be discussed in TSA tab section. 

Beta spending functions and Futility boundary 

If the result of the meta-analysis was negative and the 

appropriate RIS was reached, we can easily conclude no 

effect of the intervention. However, if the result of the me-

ta-analysis was negative and appropriate RIS was not 

reached, two possibilities exist: no effect of the interven-

tion or lack of power. 

If we can assume that the intervention is unlikely to have 

an anticipated effect before reaching RIS, we can prevent 

spending time, money, effort, and limited resources on un-

necessary further trials. Therefore, TSA provides ‘Futility 

boundaries’ or ‘inner wedge’, which is the adjusted thresh-

old for non-superiority and non-inferiority tests (Fig. 1). It 

was originally developed for sequential analyses. If the 

pooled effect of the estimate lies within the futility bound-

aries, we can conclude that the intervention is unlikely to 

have an anticipated effect. If the pooled effect of the esti-

mate lies within the monitoring boundaries (statistical sig-

nificance), but outside the futility boundaries, we cannot 

conclude whether the negative effect arises from a lack of 

power or due to the unlikeliness of the intervention to have 

an anticipated effect.  

The possibility of inflating Type II errors also exists for 

multiple and sequential analyses in meta-analysis. Similar 

to the alpha spending function, the methods proposed by 

Lan and DeMets [21–23] can be extended to control Type II 

errors. In the TSA program, futility boundaries are provid-

ed using the methodology proposed by Lan and DeMets 

and reflect the uncertainty of obtaining a chance negative 

finding in relation to the strength of the available evidence 

(e.g., the accumulated number of patients). 

Fig. 4A shows that the last point in the z-curve stays out-

side the futility borders but within the conventional test 

boundaries. In this case, we cannot conclude whether the 

intervention is unlikely to have an anticipated effect. When 

adding a new trial and updating the TSA (with adding 101 

patients, number of patients included in the TSA increased 

from 346 [Fig. 4A] to 447 [Fig. 4B or C]), the last point in the 

z-curve is within the futility borders (‘inner wedge’) (Fig. 4B) 

or stays out of futility borders and within monitoring 

boundaries (Fig. 4C). In these cases, we can conclude that 

the intervention has no effect (Fig. 4B) or cannot conclude 

whether the negative effects arise from a lack of power or 

whether the intervention is unlikely to have an anticipated 

effect. 

The cumulative test statistic (Z-curve) 

The TSA program uses the Z-statistic or the Z-value, 

which is calculated by dividing the log of the pooled inter-

vention effect by its standard error (Fig. 1). Z-statistics are 

assumed to follow a standard normal distribution, with a 

mean of 0 and a standard deviation of 1. The larger the ab-

solute value of the Z-value, the larger the probabilities that 

the two interventions are different, and these differences 

cannot be explained by chance. As P value is the probabili-

ty of finding the difference between the observed differ-

ence or if the null hypothesis is true, P and Z-values are in-

terchangeable and can be inferred from Z-value (for exam-

ple, a two-sided P value of 5% represents Z-value of 1.96). 

Whenever a meta-analysis is updated, the TSA program 

calculates the corresponding Z-value and then provides a 

Z-curve that plots the series of consecutive cumulative 

Z-statistics. 

The law of the iterated logarithm 

Another approach to adjust the issues of repeated signif-

icance testing is to penalize the Z-values by the strength of 

the available evidence and number of statistical tests. The 

TSA program uses the law of iterated logarithms for this 

purpose. The law of the iterated logarithms states that if data 

are normally distributed, data divided by the logarithm of 

the logarithm of the number of observations will exist be-

tween –  2 and   2. This law is utilized to adjust the inflation 

of Type I errors due to repeated significance testing. 

The adjusted (penalized) Z-value, Zj*, is calculated as fol-

lows: 

Zj: the conventional Z-value at the j-th significance test 

Ij: the cumulative statistical information at the j-th signif-

icance test 

λ: constant control for maximum Type I error 

λ is constant to control for Type I errors, and various val-

ues have been suggested for various situations. For contin-

uous data meta-analysis, λ =  2 is known to control Type I 
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error at α =  5% for a two-sided test [23]. However, dichoto-

mous data and appropriate λ values are suggested differ-

ently according to the type of measure and Type I error [24] 

(Table 2).  

Effect measure 

For dichotomous data, the TSA program uses relative risk 

(RR), risk difference (RD), odds ratio (OR), and Peto’s odds 

ratio as the effect measure for meta-analysis. When events 

are rare, Peto’s odds ratio is the preferred effect measure 

for meta-analysis.

Table 3 presents the 2 ×  2 contingency tables for dichot-

omous data.  

In Table 3, the risk of an event in the experimental group 

(pT) is       , and the risk of an event in the control group (pC) 

is        . Therefore, the risk ratio (RR) is defined as 

RR =      =          =                 .  

RD, which is conceptually similar to the relative risk re-

duction used in TSA, is defined as 

RD =pT– pC =          –          .

Odds is defined as the                                         . As the pro-

portion of events in the experimental group (pT) is      , the 

odds in the experimental group (oddsT) will be

 =           =           =        =     . Odds in the control group (pC) 

will be    . Therefore, the OR was defined as

OR =            =      =          .

Table 2. Recommended λ Values for Penalizing Z-values for the Law of 
the Iterated Logarithmn

Effect measure
Type l error

α =  0.01 α =  0.025 α =  0.05

Risk difference λ =  3 λ =  1.5 λ =  1.5

Risk ratio λ =  3.5 λ =  2 λ =  2

Odds ratio λ =  3.5 λ =  2 λ =  2

Table 3. 2 × 2 Contingency Table

Number of event Number of non-event Total

Experimental group a b a + b

Control group c d c + d

Total a + c b + d a + b + c + d

The Peto odds ratio is defined as ORPeto = exp((eA-E(eA))/v, 

where eA is the expected number of events in intervention 

group A, and ν is the hypergeometric variance of eA. 

For continuous data, the TSA program uses mean differ-

ence as the effect measure to perform a meta-analysis. 

However, the TSA program does not support meta-analysis 

using the standardized mean difference. 

Model 

The TSA program provides four models to integrate ef-

fective sizes: 1) fixed effect model, and random effect mod-

els using the 2) DerSimonian–Laird (DL) method, 3) Sidik–

Jonkman (SJ) method, and 4) Biggerstaff–Tweedie (BT) 

method. 

The fixed effect model is applied based on the assump-

tion that the treatment effect is the same, and the variance 

between studies is only due to random errors. Thus, the 

fixed effect model can be used when the studies are con-

sidered homogeneous; namely, the same design, interven-

tion, and methodology are used in the combined studies, 

and the number of included studies is very small. In con-

trast, the random effect model assumes that the combined 

studies are heterogeneous, and the variance between stud-

ies is due to random error and between-study variability 

[5]. The random effect model may be used when the de-

sign, intervention, and methodology used in the included 

studies are different. TSA program provides three different 

methods to integrate the effect estimate. The DL method is 

the most commonly used and simplest random effect 

model and is the only option for Review Manager software 

(Nordic Cochrane Centre, Denmark). However, DL method 

tends to underestimate the between-trial variance. This 

can be overcome by the SJ method that applies a nonitera-

tive estimate of the variance based on re-parametrization 

[25]. SJ method reduces the risk of Type I error compared 

with DL method. In a meta-analysis with moderate or sub-

stantial heterogeneity, the false positive rate based on the 

SJ method was estimated to be close to the desired level 

(conventionally 5%), but the false positive rate based on 

the DL method increased from 8% to 20% [25]. However, 
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the SJ method has the risk of creating too wide a confi-

dence interval by overestimating the between-trial vari-

ance, especially in meta-analyses with mild heterogeneity. 

BT method incorporates the uncertainty of estimating the 

between-trial variance and minimizes the effect of the bias 

via appropriate weighting in large trials, especially when 

the size of the trials varied and small trials were biased [26]. 

The choice of model should be based on a comprehen-

sive understanding of the strength and weaknesses of these 

models and should involve a sensitivity analysis for each 

model.  

Methods for handling zero-event trials  

The TSA program provides three methods for handling 

zero-event trials. Some studies with dichotomous data 

have zero events in the intervention or control groups. In 

this case, the estimate measures (RR and OR) of the inter-

vention effect are not meaningful [27]. To address this 

problem, continuity correction, where we add some con-

stant to the number of events and nonevents in the com-

pared groups, can be the statistical solution. 

In constant continuity correction, a constant is added to 

the number of events and nonevents in all groups. This 

method is simple and the most commonly used. The conti-

nuity correction factor commonly used in Review Manager 

software is 0.5. This method yields some problems, such as 

inaccurate estimation of intervention when the random-

ization ratio to groups are not equal or too narrow confi-

dence interval is induced [27]. 

In reciprocal of opposite intervention group continuity 

correction, also known as ‘treatment arm’ continuity cor-

rection, the number of events divided by total number of 

patients in each intervention group is added to the recipro-

cal intervention group. 

The intervention effect is estimated toward ‘the null ef-

fect’ (i.e., towards 1 for RR or OR and 0 for RD) in both cor-

rection methods. In contrast, empirical continuity correc-

tion is known to estimate the effect measure for meta-anal-

ysis results [27]. 

USING THE TSA PROGRAM 

The TSA shows the menu bars at the start of the program: 

File, Batch, and Review Manager. Under these menu bars, 

another row, namely Meta-analysis, Trials, TSA, Graphs, 

and Diversity, are located. We can start a new meta-analy-

sis project by clicking the New Meta-analysis sub-menu 

under the File menu bar. Then, a New Meta-analysis win-

dow will be created with a drop-box named Data Type, 

blanks named Name, Label for Group 1, Label for Group 2, 

and Comments, and check-box named Outcome type. By 

entering or selecting appropriate information in the New 

Meta-analysis window, we can create a new meta-analysis. 

Here, we can choose dichotomous or continuous Data 

Type drop-box and negative or positive in the Outcome 

type check-box. 

Meta-analysis tab 

When a new meta-analysis is created, the Meta-analysis 

tab will be activated, and the name of the new meta-analy-

sis will appear in the upper middle part of the window, the 

Set Effect Measure and Model, Set Zero Event Handling, 

and Set Confidence Intervals area will appear on the left 

side of the window, and the Meta-analysis Summary area 

will appear in the middle of the window. 

Within the Set Effect Measure and Model area, there are 

two drop-boxes named the Effect Measure and Model. In 

the Effect Measure drop-box, we can choose among Rela-

tive Risk, Risk Difference, Odds Ratio, and Peto Odds Ratio 

when the data type is dichotomous, and Mean Difference 

when the data type is continuous. A detailed description of 

the effect measure is provided in Effect measure section. 

We can choose Fixed Effect Model or Random Effect Mod-

els DL, SJ, and BT in the Model drop-box. A detailed de-

scription of the model is provided in Model section. 

When the data type is dichotomous, the Set Zero Event 

Handling area is activated. Within the Set Zero Event Han-

dling area, there are two drop-boxes named Method and 

Value and a check-box named Include trials with no events. 

We can choose among Constant, Reciprocal, Empirical op-

tions in the Method drop-box, and 1.0, 0.5, 0.1, and 0.01 in 

the Value drop-box. We can also choose whether to apply 

continuity correction or not using Include trials with no 

event check-box. A detailed description of the handling ze-

ro-event data is provided in Methods for handling ze-

ro-event trials section. Within the Set Confidence Intervals 

area, we can choose between Conventional (coverage) 

(with confidence intervals of 95%, 99%, and 99.5%) or α–

Spending adjusted CI check-box. For the adjusted signifi-

cance test boundaries (see detail in TSA tab section), α–

Spending adjusted CIs functions are available. When α–

Spending adjusted CI is checked, the select tab is activated. 
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Simultaneously, the Alpha-spending Boundary window 

will be activated, and we can choose from among the avail-

able options. 

Trials tab 

TSA programs provide the option to import meta-analy-

sis data saved in the Review Manager v.5 file (*.rm5) 

through RM5 Converter, shown in the menu bar of the TSA 

program. We can also add, edit, and delete trials using the 

Trials tab. When clicking on the Trials tab, Add Dichoto-

mous Trial or Add Continuous Trial according to the type 

of data, Edit/Delete Trial, and Ignore Trials area will ap-

pear on the left side of the window. 

In both dichotomous and continuous trials, we can input 

the study name (Study) and publication year (Year), com-

ment on each trial (Comment) in the blank space, and se-

lect whether the study has low risk bias (Low Bias Risk 

check box). Further, we can input the number of events 

(Event) and total number of patients (Total) for each group 

in Add Dichotomous Trial and mean (Mean Response), 

standard deviation (Standard Deviation), and total number 

of patients (Group Size) for each group in Add Continuous 

Trial. 

The added trial will appear on the right side of the win-

dow, containing the Study, Bias Risk, Ignore, and Data col-

umns. The Study column contains the year (left and within 

parenthesis) and name of trial (right). The Bias Risk col-

umn contains the bias risk of corresponding trials (low [in 

green] or high [in red]), and the Data column contains data 

for each trial. We can also ignore the trials using the check 

box in the Ignore column. By clicking the “Edit Selected” or 

“Delete Selected” button in Edit/Delete Trial, we can edit 

or delete the trial, respectively. We can also select or ignore 

the low and high bias risk trials using the Low Bias Risk tri-

als, Hish Bias Risk trials, All or Ignore buttons in Ignore Tri-

als area. 

TSA tab 

When the TSA tab is activated, the Add area appears on 

the left upper side of the window. There are three buttons 

within the Add area: Conventional Test Boundary, Al-

pha-spending Boundaries, and Law of the Iterated Loga-

rithm, where we can apply the type of significance test. 

Clicking on the Conventional Test Boundary button acti-

vates the Add Conventional Test window, in which the 

name of test (Name) and Type I error (Type I error) can be 

specified and the Boundary type (one-sided upper, 

one-sided lower, and two-sided) can be selected. The TSA 

program provides a linear conventional test boundary ac-

cording to the boundary type and Type I error applied in 

the TSA graph. 

The alpha-spending Boundaries button activates the 

Add Dichotomous Alpha-spending Boundary or Add Di-

chotomous Alpha-spending Boundary window according 

to the data type. In both windows, there are Boundary 

Identifier, Hypothesis Testing, and RIS areas. The two win-

dows differ in terms of the RIS area. 

In the Boundary Identifier area, we can name the test ap-

plied (Name). In the Hypothesis Testing area, there are 

Boundary Type and Information Axis check-boxes and α–

spending Function drop-boxes. The Boundary Type en-

ables choosing the type of boundary (One-sided Upper, 

Ones-sided Lower, and Two-sided), and Information Axis 

allows choosing the type of information as the number of 

patients included (Sample Size), number of events (Event 

Size), or Statistical Information. We can also set the Type I 

error value and choose whether to apply the inner wedge 

using the Apply Inner Wedge check-box. The Apply Inner 

Wedge enables testing for futility by choosing the level of 

Type II error (Power) and β-spending Function. For both 

the α- and β-spending Function, only the O’Brien–Fleming 

function is available in the TSA program. 

In the RIS area for continuous data, we can specify the 

Type I error and Power and choose Information Size (User 

Defined and Estimate), Mean Difference (User Defined, 

Empirical, and Low Bias), Variance (User Defined, Empiri-

cal, and Low Bias), and Heterogeneity Correction (User 

Defined and Model Variance Based). In the RIS area for di-

chotomous data, we can specify the Type I error and Power 

and choose Information Size (User Defined and Estimate), 

Relative Risk Reduction (User Defined and Estimate), Inci-

dence in Intervention arm (User defined), and Heteroge-

neity Correction (User Defined and Model Variance 

Based). The RIS area can be left blank or available options 

for the RIS calculation can be selected. To estimate RIS, we 

can input any arbitrary number obtained under the User 

defined option. Then, the RIS can be automatically gener-

ated according to the type of information gathered. 

For continuous data, Mean Difference and Variance have 

three options: User Defined, Empirical, and Low Bias. 

When selecting User Defined, we use an arbitrary number. 

However, we can use pooled estimates of intervention from 
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all studies (under the option Empirical) and low-risk bias 

trials (under the option Low Bias). For dichotomous data, 

Relative Risk Reduction and Incidence in Intervention arm 

have the option User Defined and Low Bias Based. The 

definitions for these options are similar to those for contin-

uous data. 

The heterogeneity correction tab adjusts the ratio be-

tween the variance in the random effect model and fixed 

model (Model Variance Based) and predicts the heteroge-

neity based on prior studies (User defined) as the ratio of 

trial variations to the total variance. 

After making Alpha-spending Boundaries, we can add 

the timing of interim looks, namely when the meta-analy-

sis was performed, by selecting the trials in the interim 

analyses area on the right side of the window. 

The Law of the Iterated Logarithm button activates the 

Add Law of Iterated Logarithm window to perform the sig-

nificance test by penalizing the Z-curve. In this window, 

there are Boundary Identifier, Boundary Settings, and Pen-

alty areas. In the Boundary Identifier area, we can name 

the test applied. Boundary Settings include Boundary Type 

(One-sided Upper, Ones-sided Lower, and Two-sided) and 

Type I error rate. For λ we can use the numbers in Table 2. 

Detailed explanations for λ are described in the law of the 

iterated logarithm section. The Edit area, under the Add 

area, contains the Edit Selected and Delete Selected but-

tons to edit or delete the significance test, respectively. 

In the lower left corner are the Templates area, with the 

options for saving the constructed significance tests using 

Add-to-Templates button or loading the saved significance 

tests using the Manage templates button. The Information 

Axis (sample size, event size, and statistical information) 

checkbox is located on the left side of the window. 

To perform the analysis using TSA program, we use the 

Perform calculations button in the Calculations area. 

Graphs tab 

When the Graphs tab is checked, the Tests and Boundar-

ies Layout area, Set Graph Layout area, Print Current Graph 

button, and Generate TSA report button appear on the left 

side of the window. 

The Tests and Boundaries Layout allows changing the 

color, line type, line width, icon at each trial, icon size, font 

size, and font size in the graph. It also provides the option 

to show and hide the presented graph. 

The Set Graph Layout area has Trial Distance drop-boxes 

and Layout setting buttons. The Trial Distance drop-box 

allows setting the distance between boundaries and be-

tween the Z-values according to the amount of information 

(Scaled), or an equal distance is set between trials on the 

information axis (Equal). 

The Layout setting button activates the Graph Layout 

Settings window to adjust the line width and font size of 

the x- and y-axis, font type, and font size. 

In the middle of the window and above the TSA graph, 

there are two tabs: Adjusted Boundaries and Penalised 

Tests representing adjusted significance tests based on 

α-spending functions and law of the iterated logarithm 

penalties, respectively. The former represents the adjusted 

thresholds for the Z-curve, and the latter represents the ad-

justed test statistics in relation to the single-test signifi-

cance test threshold.  

Diversity tab 

The TSA program provides diversity estimates for the 

random effect models using the DL method (Random DL), 

SJ method (Random SJ), and BT method (Random BT). 

When diversity Tab is activated, each trial and its weight 

percentage for each model, fixed effect model, random DL, 

random SJ, and random BT models are displayed in the 

upper part of the window. 

In the left lower corner, various diversity types, I2 (esti-

mate of inconsistency) and 1/(1–I2) (heterogeneity correc-

tion for estimating inconsistency), D2 (estimating diversi-

ty), and 1/(1–D2) (heterogeneity correction for estimating 

diversity), and Tau (of between-trial variance) for the three 

random effect models are displayed. 

Criticism for TSA 

The use of TSA has increased recently [4,28] because it 

can reduce the probability of false positives and false nega-

tives owing to random errors and provide early detection of 

the acceptance or rejection of the intervention effect. How-

ever, TSA is criticized owing to some concerns [28,29]. 

Firstly, TSA is a complex statistical tool that is not easy to 

perform and can be misused as clinicians are not familiar 

with it. The Cochrane Scientific Committee Expert Panel is 

also against the routine use of TSA. Secondly, TSA is retro-

spective and observational, as in conventional meta-analy-

sis, and it thus has the risk of data-driven hypotheses. 

Therefore, to avoid this risk, the protocol for systematic re-
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view and TSA, including hypothesis, anticipated effect of 

intervention, proportion of outcome in the control group, 

heterogeneity, and meta-analytic model, should undergo 

either peer-review or be made publicly available on 

open-access platforms. Thirdly, we cannot adopt the re-

sults of TSA to finalized studies. In a single RCT, the interim 

analysis results, showing the benefits, harm, or no interven-

tion effects, affect the decision to continue or stop the trial. 

However, we cannot control those studies that have already 

been performed. Finally, TSA provides results that are too 

conservative in applying desired interventions in the clinical 

field. 

CONCLUSION 

Systematic review and meta-analysis rank highest in the 

evidence hierarchy and has been widely used recently. 

However, these involve too few studies and participants, 

resulting in spurious results. The adjusted significance lev-

el controlling for Type I and II errors with TSA, provides in-

formation on the precision and uncertainty of the me-

ta-analysis results. TSA also provides monitoring boundar-

ies or futility boundaries; therefore, providing information 

on whether ongoing trials are necessary, thus preventing 

unnecessary trials. However, as the principle behind TSA is 

complex, we are prone to misuse it. 

This article provides the basic principles, assumptions, 

and limitations to understand and interpret TSA. When 

TSA is properly performed and interpreted, it can be a 

powerful tool to clinicians, patients, and policymakers pro-

viding results that are only achieved by large-scale RCTs. 
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