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Abstract: As a result of antibiotic overuse, bacterial antibiotic resistance has become a severe threat to
worldwide public health. The development of more effective antimicrobial therapies and alternative
antibiotic strategies is urgently required. The role played by bacterial membrane vesicles (BMVs)
in antibiotic resistance has become a current focus of research. BMVs are nanoparticles derived
from the membrane components of Gram-negative and Gram-positive bacteria and contain diverse
components originating from the cell envelope and cytoplasm. Antibiotic stress stimulates the
secretion of BMVs. BMVs promote and mediate antibiotic resistance by multiple mechanisms. BMVs
have been investigated as conceptually new antibiotics and drug-delivery vehicles. In this article, we
outline the research related to BMVs and antibiotic resistance as a reference for the intentional use of
BMVs to combat antibiotic resistance.

Keywords: bacterial membrane vesicles; BMVs; biogenesis; antibiotic resistance; conceptually new
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1. Introduction

Antibiotics are among the most important advancements in medicine. Since the
discovery of antibiotics, they have saved countless lives and contributed to the development
of a variety of health-related technologies [1]. However, antibiotic overuse and abuse,
bacterial evolution under antibiotic stress, and a few new antimicrobials in the pipelines of
the pharmaceutical industry have resulted in the emergence of multidrug-resistant (MDR)
bacteria [2–4]. As researchers become more aware of the varying degrees of MDR, terms
such as MDR, extensively drug-resistant (XDR), and pandrug-resistant (PDR) have been
introduced to characterize the different resistance patterns identified in resistant bacteria.
MDR was defined as acquired resistance to at least one agent in three or more antimicrobial
categories. XDR was defined as insensitivity to all other classes of antimicrobials other
than class 1–2 antimicrobials. PDR was defined as complete resistance to all agents in all
antimicrobial categories [5]. Because there are few effective treatments available, treating
infections brought on by MDR organisms can be extremely difficult. Antibiotic resistance
has become a serious clinical problem. More than 70% of pathogens causing hospital-
acquired infections have at least one resistance to currently commonly used anti-infective
drugs. Furthermore, antimicrobial resistance is projected to cause a USD 100 trillion decline
in the global gross domestic product (GDP) by 2050, making it a major global economic
threat [6].

To prevent a post-antibiotic era, the World Health Organization (WHO) has released
its first-ever list of “priority pathogens” that are resistant to antibiotics. According to WHO,
the list was developed in an effort to direct and promote the research and development
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of novel antibiotics. The WHO list is divided into three categories based on how urgently
new antibiotics are needed: critical, high, and medium priority [7].

In the context of WHO’s guidelines and the wide spread of antibiotic resistance,
scientists have performed extensive research. Recently, the role of bacterial membrane
vesicles (BMVs) in antimicrobial resistance attracted the interest of researchers. BMVs
are nanoparticles derived from the membrane components of Gram-negative and Gram-
positive bacteria. Antibiotic stress seems to stimulate BMVs synthesis and secretion, and
BMVs have an important role in the acquisition of resistance and bacterial survival in the
antibiotic environment. An improved understanding of the role of BMVs may lead to new
strategies for controlling antibiotic resistance.

In this paper, we review the discovery, the biogenesis of BMVs, the effect of antibiotics
on BMVs production, the mechanisms by which BMVs promote antibiotic resistance, and
the application of BMVs in the treatment of antibacterial.

2. Discovery of BMVs

BMVs are nanoparticles derived from bacterial membrane components. They contain
a wide range of bioactive compounds such as proteins, lipids, nucleic acids, metabolites,
etc. [8–12]. Commonly, BMVs that originate from Gram-negative bacteria are called “outer
membrane vesicles” (OMVs) and those that originate from Gram-positive bacteria or
archaea are referred to as “membrane vesicles” (MVs) [9,13–16] (Figure 1).
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OMVs in Gram-negative bacteria are spherical nanoparticles with sizes ranging from
10 to 300 nm. They bud from the outer membrane (OM) of the bacterial envelope [10,17,18],
wrapping around periplasmic material and pinching off without breaking the cell mem-
brane [11,19,20]. The discovery of OMVs dates back to the 1960s, when Knox et al. observed
that Escherichia coli produced spherical “particles” surrounding the bacteria. Knox et al.
proposed that these microscopic spherical structures were derived from the OM [17,21].

Subsequent studies found that OMVs can be produced by almost all Gram-negative
bacteria [22–28]. Furthermore, OMVs are released during all stages of bacterial culture
growth [29], although their numbers and compositions may differ slightly depending
on the growth conditions [30]. OMV secretion is a conserved trait across Gram-negative
bacteria, both pathogenic and non-pathogenic [31].

In addition to OMVs, Gram-negative bacteria can also release “Outer-inner membrane
vesicles” (OIMVs). Previously, Kadurugamuwa and Beveridge proposed a model to explain
the presence of certain cytoplasmic components in native and gentamicin-induced OMVs
from Pseudomonas aeruginosa. In this model, the peptidoglycan (PG) layer can be weakened
by autolysins such that the inner membrane protrudes into the periplasm. Cytoplasmic
components enter these vesicles and are pinched off from the cell surface along with the
surrounding outer membrane. Eventually, complex BMVs containing the outer membrane
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and inner membrane as well as cytoplasmic components such as DNA are formed [32].
In 2013, Pérez et al. first observed these complex BMVs composed of outer and inner
membranes secreted by the Antarctic bacterium Shewanella vesiculosa M7T and named them
OIMVs [33]. This new type of BMVs contains not only the cell’s outer membrane but also
its plasma membrane and cytoplasmic contents, thus possessing the ability to capture DNA.
This finding confirms the model proposed by Kadurugamuwa and Beveridge. With the
in-depth study of OIMVs, it was confirmed that OIMVs are also secreted by Gram-negative
bacteria such as Neisseria gonorrhoeae, P. aeruginosa PAO1, and Acinetobacter baumannii
AB41 [34]. This confirmation of OIMVs expands the so-far unified definition of BMVs in
Gram-negative bacteria. However, due to convention and for simplicity, we still refer to
BMVs released by Gram-negative bacteria as OMVs.

For decades, the idea of BMVs from Gram-positive bacteria was dismissed under
the assumption that the strong, thick cell walls of Gram-positive bacteria would hinder
the release of BMVs [35,36]. It was not until 2009 that Lee et al. demonstrated that
S. aureus could release BMVs [37]. According to subsequent in-depth studies of other Gram-
positive bacteria, BMVs production occurs in several species of Gram-positive bacteria,
such as Listeria monocytogenes, Enterococcus faecium, Mycobacterium ulcerans, Bacillus spp.,
and Streptococcus, and Lactobacillus spp. are widely conserved [38–47]. Gram-positive BMVs
are produced by protruding and selectively encapsulating various components from a
section of their cytoplasmic membrane [48,49]; hence, it was named cytoplasmic membrane
vesicles (CMVs). However, they are usually referred to as MVs [50].

3. Biogenesis of BMVs

BMV biogenesis is a physiological process. BMV biogenesis appears to follow main
pathways: single cell-based vesicle release, which results in classical OMVs via OM bleb-
bing, and cell lysis-mediated vesicle release, which results in the formation of OIMVs,
explosive outer membrane vesicles (EOMVs), and MVs [51–53]. In addition, gene control
also appears to be involved in MVs biogenesis, as shown in Figure 2.
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3.1. Biogenesis of OMVs

The biogenesis of OMVs is now considered to be a fundamental, well-regulated, and
perhaps conserved process [17]. Kulp and Kuehn proposed three possible models for OMVs
biogenesis via the OM blebbing pathway (Figure 3) [17,54,55]. As the inner membrane
remains intact, cytoplasmic components have no direct access to these OMVs [51]. In
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addition to the OMVs biogenesis caused by OM blebbing, explosive cell lysis can also trigger
OMVs biogenesis (Figure 2) [51,53]. We will introduce them in Sections 3.1.1 and 3.1.2
below, respectively.
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Figure 3. Biogenesis of OMVs via OM blebbing. Step 1: Gram-negative bacterial-cell-enveloped
proteins are initially uniformly distributed. The outer membrane is linked with peptidoglycan.
Steps 2 and 3: Vesiculation is initiated when the connection between the outer membrane and the
peptidoglycan is lost due to the migration of connecting proteins or direct breakage. Models A, B, and
C demonstrate three possible mechanisms of OMVs generation. Model A depicts OMV production at
its most basic level. In model B, additional budding events can be generated by periplasmic protein
aggregation. The resulting OMVs are enriched with periplasm cargo. In model C, the accumulation
of curvature-inducing OM proteins causes OMVs to bud from the Gram-negative bacterium at
specific proteins on the envelope surface. The OMVs will be enriched with curvature-inducing
molecules and molecules associated with them (adapted from [55]). This figure is adapted with
copyright permission.

3.1.1. Trigger OM Curving

The localized elevation of several OM regions is an early step in the generation of
OMVs and may even be the first step [17,56]. Kulp and Kuehn proposed three possible
models for the biogenesis of OMVs via the OM blebbing pathway (Figure 3) [17,54,55].
The first model is the release of OMVs from the localized region where OM and PG layers
lose their connection, as shown in Model A of Figure 3 [17,56]. This model is the primary
mechanism for the generation of OMVs in “stress-free” environments, both as a type
0 secretion system (e.g., cytolysin A) and to support normal physiological processes such
as membrane renewal.

The second model is the release of OMVs through outward pressures on the OM
caused by the accumulation of periplasmic proteins or peptidoglycan fragments in the
periplasmic space between OM and PG, as shown in model B of Figure 3 [57–59]. In a study
of OMVs in Porphyromonas gingivalis, unbalanced PG turnovers in P. gingivalis periplasm
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led to an accumulation of cytosolic acids. Peptidoglycan and cytosolic acids then placed
outward pressure on the OM, resulting in bulges in the OM and the release of OMVs [18,60].

The third model is that when curvature-inducing molecules aggerate, OM-PG con-
nections may be broken or moved, resulting in the local bulging of OM, as in model C of
Figure 3. Mashburn and Whiteley discovered variations in the curvature of the OM that
contribute to the production of OMVs in P. aeruginosa [61]. Pseudomonas Quinolone Signal
(PQS), a quorum-sensing molecule, is also implicated in the formation of OMVs. Secreted
PQS interacts with the lipid A component of lipopolysaccharide (LPS) and accumulates
negative charges to generate repulsion. This causes changes in membrane curvature, which
are proportional to local PQS concentration, and ultimately leads to OMV formation [61–64].
Similar QS molecules have been found in the BMVs produced by Vibrio shilonii, Paracoccus
denitrificans, etc. [65,66].

3.1.2. Explosive Cell Lysis

Explosive cell lysis is triggered by phage-derived endolysin that degrades the peptido-
glycan cell walls [51] or can be caused by other damage to the peptidoglycan component.
Broken membrane fragments then aggregate and form EOMVs and OIMVs. In contrast to
OMVs formed by blebbing, EOMVs randomly contain cytoplasmic components. Turnbull
et al. revealed that P. aeruginosa explosive cell lysis forms vesicles by such vesiculation of
shattered membrane fragments [67]. In addition, explosive cell lysis can generate OIMVs.
Devos, S. et al. showed that treatment of multidrug-resistant Stenotrophomonas maltophilia
with ciprofloxacin resulted in the release of bacteriophages and phage tail-like particles,
cell lysis, and the formation of OIMVs that were enriched in cytosolic proteins [68].

3.2. Biogenesis of MVs

The biogenesis of MVs in Gram-positive bacteria differs from that of OMVs, and the
process is still unclear. Heat-inactivated bacteria have shown to be unable to synthesize
MVs when tested in MVs isolation experiments, implying that MV generation is dependent
on metabolically active cells. The fluidity of the cell membrane and the integrity of the cell
wall are key considerations in MVs release [69]. As shown in Figure 2, certain peptidoglycan
hydrolases of Gram-positive bacteria can weaken the PG layer, leading to the formation
of MVs across the cell wall [70]. The expression of an endolysin encoded by a defective
prophage trigger in Bacillus subtilis triggers pores in the peptidoglycan’s cell wall that allow
MVs to escape [71]. Gene control is also important for MVs generation [72], as evidenced
by the Gram-positive human pathogen Streptococcus pyogenes, also known as group A
streptococcus (GAS). It was discovered to be negatively regulated by the CovRS two-
component system [46]. The Pst/SenX3-RegX3 signaling pathway has also been found to
regulate the formation of MVs in Mycobacterium tuberculosis [37,73]. Rather than relying on
a small collection of genes, the synthesis of MVs relies on a complex network of genes [69].

In addition, researchers have found that the biogenesis of BMVs is closely related
to several stressful conditions. Previous research has demonstrated that BMV secretion
levels were affected by physiological or environmental stressors such as oxidative stress,
high temperature, and antibiotic treatment and that stressors can lead to changes in BMV
compositions [17,32,74,75].

4. Secretion of BMVs in Response to Antibiotic Stress

As discussed previously, the secretion and composition of BMVs are affected by and
can be manipulated through physiological and environmental stressors, such as antibiotic
treatment. The treatment of bacteria with sublethal concentrations of certain antibiotics
is a recognized trigger for the formation of BMVs. Antibiotic stress has been shown to
enhance BMVs secretion in studies [76,77]. As described in Figure 4, three pathways by
which antibiotic stress stimulates the formation of BMVs have been identified [51].
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4.1. Bacterial Envelope Stress Caused by Antibiotics

Antibiotic treatment can cause an increase in pressure on the bacterial envelope.
Antibiotics that cause this pressure, such as gentamicin and polymyxin, promote the
formation of OMVs by triggering OM blebbing, as shown in Figure 4A [51,78]. Gentamicin
is an aminoglycoside antibiotic that is supposed to kill bacteria by inhibiting protein
synthesis. However, this cationic antibiotic can also perturb the packing order of lipids,
which can lead to bilayered membrane instability. Gentamicin increases the release of
OMVs by 3 to 5-fold in P. aeruginosa [79]. Polymyxins exert detergent-like activity on
the cell wall. Bauwens et al. found that the antibiotics phosphomycin, meropenem, and
polymyxin B increased the production of Enterohemorrhagic E. coli (EHEC) OMVs by
acting as a source of bacterial envelope stress [74]. This result is consistent with previous
reports that OMVs are induced by meropenem in P. aeruginosa [80] and by imipenem in
Stenotrophomonas maltophilia [80,81].

4.2. Induction of SOS Response

The SOS response, which is an inducible DNA repair mechanism, is an important
protective mechanism for bacteria that is triggered by DNA damage [82–84]. Antibiotic
therapy sometimes exacerbates bacterial infections by inducing SOS response and increas-
ing BMVs secretion. Some DNA-damaging antibiotics, especially quinolones, such as
ciprofloxacin, can induce SOS response. The SOS response can in turn trigger the expres-
sion of endolysins encoded by prophages, resulting in lysis-stimulated vesicles formation,
as shown in Figure 4B [51].

The mechanisms of bacterial-induced SOS response induced by E. coli and P. aeruginosa
are described below. During the normal growth of bacteria, the LexA deterrent protein
suppresses SOS gene expression. However, when DNA damage is significant, replication
pauses, and the amount of single-stranded damaged regions in DNA increases. RecA binds
to single-stranded DNA (ssDNA) induced by DNA-damaging agents and mediates the
autocatalytic cleavage and the inactivation of the LexA blocker protein. Then the inhibition
is derepressed, the SOS gene is triggered, and the SOS response is activated [83,84]. Thus,
antibiotic therapy sometimes exacerbates bacterial infections by inducing SOS response
and increasing BMV secretion.

The formation of BMVs has been linked to SOS response by several studies. Maredia
et al. used ciprofloxacin to treat both wild-type and LexA non-cleavable (LexAN) P. aerug-
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inosa strains (without induction of SOS response). Under ciprofloxacin treatments, wild-
type strains secreted considerably more OMVs than LexAN strains. This implies that the
antibiotic-induced SOS response is involved in the generation of BMVs [84]. Ciprofloxacin
and mitomycin C as SOS response inducers greatly increased OMV production in EHEC
O104:H4 and O157:H7 and delivered Shiga toxin 2a (Stx 2a) through OMVs. Furthermore,
the synthesis of Stx 2a is associated with the induction of Stx prophages carrying toxin
genes. Therefore, antibiotics that induce SoS response not only induce Stx production
but also trigger explosive cell lysis that disperses toxins through OMVs [74]. Andreoni
et al. showed that mitomycin C induced an SOS response in Gram-positive bacteria,
triggering the formation of MVs in lysogenic S. aureus strains but not in phage-devoid
counterparts [76]. All these findings suggest that the antibiotic-induced SOS response plays
an important role in the biogenesis of BMVs [84].

4.3. Inhibition of Bacterial Cell Wall Biosynthesis

β-lactam antibiotics stimulate the formation of BMVs by weakening and generating
pores in the PG layer, as shown in Figure 4C [85,86]. After treatment with β-lactam
antibiotics, the cytoplasmic membrane and content protruded into the extracellular space
and released MVs [71,87,88]. For example, Andreoni et al. exposed S. aureus strains to 10
times the minimum inhibitory concentration (MIC) of the β-lactam antibiotics flucloxacillin
and ceftazidime and found a significant increase in the secretion of MVs [76].

5. BMVs-Mediated Antibiotic Resistance

Antibiotic resistance has become an increasingly serious concern as a result of antibiotic
abuse. BMVs are implicated in virulence, pathogenicity, cell–cell communication, biofilm
formation, and antibiotic resistance, among other bacterial biological processes [8,50,89,90].
Studies have shown that Peptidylarginine deiminases (PADs) inhibitors can be used to
effectively reduce BMVs release, both in Gram-negative and Gram-positive bacteria. Im-
portantly, this resulted in enhanced antibiotic sensitivities of both E. coli and S. aureus to
a range of antibiotics tested. This implies that BMVs play a significant role in antibiotic
resistance [91].

As illustrated in Figure 5 [50,90,92], BMVs can mediate antibiotic resistance in a variety
of ways. First, BMVs can act as decoys to bind antibiotic compounds or isolate antibiotics.
Second, BMVs can enhance drug effluxes and translocate antibiotics out of the cell. Third,
BMVs are also encapsulated with antibiotic-degrading enzymes that can hydrolyze or
chelate antibiotics extracellularly. Finally, BMVs can carry resistance genes that promote
the spread of drug resistance by transferring and disseminating these resistance genes.
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5.1. As “Decoys” to Bind Antibiotics or “Barriers” to Isolate Antibiotics

Bacterial membranes are the major component of BMVs. BMVs bind and uptake
antibiotics and toxins because of the affinity of these compounds for bacterial membranes,
as illustrated in Figure 5A [19,92]. OMVs released by E. coli and P. aeruginosa can act as
decoy receptors for antimicrobial drugs such as colistin and polymyxin B, allowing bacteria
to survive would-be lethal doses [29,87,93].

S. aureus secretes MVs enriched with penicillin-binding proteins that ordinarily bind to
β-lactam drugs and cause methicillin resistance in Gram-positive bacteria [37]. In vitro and
in whole blood, Andreoni discovered that isolated MVs of S. aureus protected the bacteria
against death by the membrane-targeted antibiotic daptomycin. Thus, antibiotic-induced
MVs are considered to act as decoys, helping bacteria to survive [76].

Furthermore, OMVs can also function as barriers to provide interbacterial glue to form
nearly impenetrable multicellular structures, such as biofilms, which confers resistance
to antibiotics and other antibacterials [56]. P. aeruginosa OMVs with β-lactamase activity
produce a biofilm in the lungs of cystic fibrosis patients, shielding the bacteria underneath
from medications [94]. OMVs purified from E. coli MG1655 protected P. aeruginosa and
A. baumannii from death by the membrane-active antibiotic colistin and melittin but not
from other antibiotics with different mechanisms of action, such as ciprofloxacin, strep-
tomycin, and trimethoprim [18,29,87]. Colistin was isolated by the OMVs, and melittin
was degraded by the OMVs’ protein components. This implies two different mechanisms
for resistance to membrane-active antimicrobials [87]. The OMVs of Antarctic bacterium
Pseudomonas syringae Lz4W provided similar protections by scavenging the membrane-
active antibiotics colistin and melittin, rendering their growth inhibition ineffective against
the strain [95].

5.2. Transport of Antibiotics to the Outside of the Cell

Many bacteria can expel antimicrobial medications out of the intracellular compart-
ment, leaving the intracellular drug concentration insufficient for antimicrobial action and
resulting in drug resistance [96–98]. As shown in Figure 5B, OMVs appear to promote the
short-lived survival of susceptible bacteria in the antibiotic environment by removing the
antibiotic from the bacterial cell and not allowing it to accumulate in sufficient concentra-
tions required for an inhibitory effect. Vesicles produced by a ciprofloxacin-resistant mutant
of the mycoplasma Acholeplasma laidlawii have been found to contain ciprofloxacin [96].
McBroom et al. have shown that high temperatures stimulate the formation of OMVs
in E. coli, resulting in the removal of misfolded proteins induced by heat stress through
packages moved into OMVs [57]. This is another mechanism by which OMVs transport
harmful substances outside the cell to protect the parental bacterium.

5.3. Enzymes Carried by BMVs

BMVs produced by Gram-negative and Gram-positive bacteria can carry enzymes that
degrade antibiotics, leading to antibiotic resistance [99,100], as shown in Figure 5C. Several
studies have shown that BMVs carrying β-lactamases can provide temporary antibiotic
resistance by degrading β-lactam antibiotics [8,29,99]. According to Kim et al., OMVs from
β-lactam-resistant E. coli directly degraded β-lactam antibiotics, protecting susceptible
E. coli strains from β-lactam antibiotic-induced growth suppression [101].

Protective effects can extend to the surrounding microbial community, such as when
Salmonella spp. (Sal26B) and Edwardsiella tarda (ED45) conferred transient antibiotic resis-
tance to neighboring species [102,103]. In the human respiratory tract, BMVs containing
β-lactamase are protective not only of parental bacteria but also of some other coexisting
bacteria [100,104]. OMVs carrying β-lactamases produced by Bacteroides spp., which con-
stitute the majority of the human colonic microbiota, can protect commensal bacteria and
enteric pathogens (such as Salmonella typhimurium) from β-lactam antibiotics [103].
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Gram-positive bacteria use the same strategies. Blaz, a β-lactamase protein, can be
released by S. aureus via MVs. Ampicillin-sensitive Gram-negative and Gram-positive
bacteria can survive in the presence of ampicillin thanks to these MVs [105].

5.4. Drug-Resistance Genes Carried by BMVs

BMVs promote the development of long-term adaptive resistance to antibiotics through
the horizontal gene transfer (HGT) of resistance genes, as depicted in Figure 5D [8]. OMVs
isolated from the food-borne pathogen E. coli O157:H7 helped transfer genes to the recipient
S.enterica serovar Enteritidis, imparting cytotoxicity and antibiotic resistance to recipient
cells [106,107]. Carbapenem-resistant A. baumannii strains can secrete the plasmid-borne
blaOXA-24 gene via OMVs and protect susceptible A. baumannii strains from the toxicity of
antibiotics [108]. Fulsunder et al. noted the movement of DNA from the cytoplasm of the
donor bacteria Acinetobacter baylyi JV26 to the periplasm, then into the OMV, and finally into
the recipient bacteria E. coli DH5 and A. baylyi JV26 [109]. Recent research has shown that
avian pathogenic E. coli (APEC) OMVs that produce CTX-M-55-type extended-spectrum
β-lactamase (ESBL) can mediate the horizontal transfer of the blaCTX-M-55 gene [48]. The
essential role of OMVs in HGT suggests that OMVs can deliver their DNA cargo into the
bacterial cytoplasmic matrix [110]. However, it is unknown whether the OMV-mediated
horizontal transfer of antibiotic resistance genes is prevalent.

Despite the presence of DNA in Gram-positive bacteria MVs, little is known about
their role in HGT. Klieve et al. found that MV-mediated HGT was able to restore the
ability of Ruminococcus spp. strain YE71 mutant to degrade crystalline cellulose. And this
property was stable and heritable in subsequent bacterial generations. However, YE71
vesicles were unable to transform the hemicellulolytic ruminal bacterium B. fibrisolvens
AR5. This suggests a possible mechanism for species-selective transformation [111]. It
was later found that MVs could also facilitate gene transfer by mediating phage infection.
In Bacillus subtilis, phage-resistant cells can gain phage sensitivity by acquiring phage
receptors carried by MVs produced by susceptible bacteria [112]. However, further studies
in other Gram-positive species are needed to confirm these findings.

6. Prospects and Directions for the Application of BMVs in Antibacterial

New drugs and strategies for fighting bacterial infection are urgently needed in the
face of the widespread prevalence of antibiotic resistance. The therapeutic potential of
BMVs in the treatment of bacterial antibiotic resistance has generated interest in recent years.
BMVs are strain-secreted products that cannot grow or reproduce, and they can contain
exogenous materials, so they can be developed as antibacterial therapeutic tools [113].
Recent breakthroughs in the use of BMVs in antibacterial applications are discussed here.

6.1. BMVs as Conceptually New Antibiotics

Kadurugamuwa and Beveridge found that both native (n-OMVs) and gentamycin-
induced OMVs (g-OMVs) from P. aeruginosa contained a periplasmic 26-kDa autolysin
(peptidoglycan hydrolase). Autolysins are a class of endogenous enzymes that hydrolyze
different peptidoglycan linkages, impairing the integrity of the murein sacculus or cell
wall in the process [114,115]. n-OMVs were able to kill gentamicin-resistant P. aeruginosa
cultures. This suggests that the fusion of n-OMVs with the OM releases autolysins into
the periplasm, where they degrade peptidoglycan and lyse cells. g-OMVs were more
effective at lysing these resistant bacteria than n-OMVs or free antibiotics. Because they
contain low levels of gentamicin in addition to autolysins, and they release gentamicin and
autolysin into these resistant cells. In the context of increasing antibiotic resistance, these
“predatory” OMVs could have other profound effects. They may be bacteriolytically active
against both Gram-positive and Gram-negative pathogens [32]. The findings could help
develop a conceptually new group of antibiotics designed to be effective against hard-to-kill
bacteria [116].
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6.2. BMVs as Antibiotic Drug Delivery Vehicles

Due to their satisfactory drug loading, and targeting ability, BMVs may be suitable as
functional carriers for antibiotic drug delivery [117,118]. BMVs have at least the following
advantages as natural drug delivery vehicles: (1) they fuse with target cells, particularly
Gram-negative bacteria cell membranes; (2) they can be used for targeted drug delivery
because they are naturally loaded biomolecules; (3) they are readily generated from parental
bacteria and circulate in the blood for a long period of time [119,120]. Using BMVs for
cell-specific medication delivery appears to be a viable option. The part of BMVs as drug
delivery vehicles will be discussed in two parts: the delivery of endogenous encapsulation
antibiotics and the delivery of exogenously added antibiotics.

6.2.1. Delivery of Endogenous Encapsulation Antibiotics

One advantage of BMVs as delivery vehicles for endogenous encapsulation antibiotics
is the delivery of molecules to the cytoplasm of target bacteria by bypassing the outer mem-
brane barrier of antibiotic uptake by Gram-negative bacteria. OMVs have now been shown
to deliver cargo across the Gram-negative cell envelope. This indicates that medication
encapsulation within OMVs may lessen transport issues that limit the efficacy of many
antibiotics against Gram-negative bacteria [110]. Moreover, the ability of OMVs to remove
unwanted chemicals from cells has been used to load antibiotics into OMVs. This loading
method is the incorporation of drugs into OMVs during their biological generation through
parental bacteria. Antibiotic-containing OMVs can be created based on this [110,121].

Huang et al. identified an interesting antibiotic efflux mechanism mediated by
multidrug-resistant A. baumannii OMVs and then designed novel antibiotic-loaded OMVs
using this mechanism to protect against intestinal bacterial infection. They induced
A. baumannii OMVs containing levofloxacin with sub-MIC concentrations of levofloxacin.
Under this treatment, antibiotic stress resulted in the encapsulation of numerous intracellu-
lar components into OMVs by highly expressing efflux pumps in the bacteria. They discov-
ered that OMVs containing levofloxacin were effective in killing enterotoxin-producing
E. coli (ETEC), K. pneumoniae, and P. aeruginosa. In a mouse model of ETEC infection, they
administered low-dose oral antibiotic-loaded OMVs to mice. They then found that OMVs
containing levofloxacin were more effective than the free drug. Furthermore, antibiotics
contained in OMVs do not travel fast to other uninfected organs, causing harm. Instead,
the drugs accumulate in the small intestine, where they can be effectively delivered at the
site of intestinal infection [122].

6.2.2. Delivery of Exogenously Added Antibiotics

The current successful development of several active incorporation techniques, such as
electroporation and sonication, enhanced the incorporation of drugs and other therapeutics
into BMVs. Although these techniques have not been specifically used to load antibiotics
into BMVs, they also demonstrate the potential of BMVs as antimicrobials through this
approach [110].

7. Summary and Outlook

In this paper, we highlighted five important topics related to BMVs: their discovery,
biogenesis, their response to antibiotics, mechanisms mediating antibiotic resistance, and
their application as antimicrobials.

BMVs serve as a survival mechanism for bacteria in the face of adversity, such as
antibiotic exposure. Antibiotic stress stimulates the production of BMVs. BMVs can then
mediate antibiotic resistance by multiple mechanisms. BMVs hold promise for combating
antibiotic resistance and treating MDR bacterial infections. Through genetic engineering
and membrane modification, BMVs have been developed as drug delivery vehicles. In
addition, studies have demonstrated that BMVs can serve as conceptually new antibiotics.

However, many aspects of the biology and potential utility of BMVs remain unclear.
Although many studies have shown that BMVs can protect bacteria from antibiotics, it
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is unclear whether this protection is specific. The potential of BMVs as antibacterial
therapeutic agents is still being explored. More in-depth investigations of BMVs and their
relationship with antibiotics will certainly help address the challenge of antibiotic resistance
in the future.
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