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Abstract

Motivation: Hi-C is a genome-wide technology for investigating 3D chromatin conformation

by measuring physical contacts between pairs of genomic regions. The resolution of Hi-C data

directly impacts the effectiveness and accuracy of downstream analysis such as identifying topo-

logically associating domains (TADs) and meaningful chromatin loops. High resolution Hi-C data

are valuable resources which implicate the relationship between 3D genome conformation and

function, especially linking distal regulatory elements to their target genes. However, high reso-

lution Hi-C data across various tissues and cell types are not always available due to the high

sequencing cost. It is therefore indispensable to develop computational approaches for enhancing

the resolution of Hi-C data.

Results: We proposed hicGAN, an open-sourced framework, for inferring high resolution Hi-C data

from low resolution Hi-C data with generative adversarial networks (GANs). To the best of our

knowledge, this is the first study to apply GANs to 3D genome analysis. We demonstrate that

hicGAN effectively enhances the resolution of low resolution Hi-C data by generating matrices that

are highly consistent with the original high resolution Hi-C matrices. A typical scenario of usage for

our approach is to enhance low resolution Hi-C data in new cell types, especially where the high

resolution Hi-C data are not available. Our study not only presents a novel approach for enhancing

Hi-C data resolution, but also provides fascinating insights into disclosing complex mechanism

underlying the formation of chromatin contacts.

Availability and implementation: We release hicGAN as an open-sourced software at https://

github.com/kimmo1019/hicGAN.

Contact: ruijiang@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromatin inside nucleus adopts an intricate three-dimensional

(3D) organization which is critical for regulating the genome func-

tion and nuclear processes such as DNA replication and transcrip-

tion. Previous studies have revealed that such a form of genome

organization is interconnected with nuclear architecture and highly

dynamic across different cell states (Quinodoz et al., 2018; Schmitt

et al., 2016; Uhler and Shivashankar, 2017).

In the past decade, the development of the chromosome conform-

ation capture (3C) technique (Dekker et al., 2002) and its derivatives

(Dostie et al., 2006; Simonis et al., 2006) have emerged as a proliferation

of data measuring towards genome architecture. The advent of Hi-C

technology (Lieberman-Aiden et al., 2009) has further enabled the meas-

urement of chromatin contacts genome wide. Hi-C technology has

greatly facilitated the discoveries of topologically associating domains

(TADs), chromatin loops and A/B compartment (Dixon et al., 2012;

Nora et al., 2012; Rao et al., 2014). Although both the experimental

and computational methodologies for 3D genome analysis have been

rapidly increased over the past few years, the current comprehension of

how the organization of genome influence cell function and fate in dis-

ease and physiology is still limited. One major concern is that our under-

standing of genome architecture remains relatively poor at kilobase pair

(Kbp) to megabase pair (Mbp) scale, which impedes the further analysis

of more refined chromatin structure. For an instance, the resolution of

Hi-C data is usually defined as the finest scale that one can reliably dis-

cern local features. It also refers to the bin size for dividing the genome

when constructing a Hi-C contact matrix. Most available Hi-C data

have relatively low resolution ranging from 25kb to 1Mb.
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On the one hand, high resolution Hi-C data that require massive

sequencing reads and high sequencing cost are only available in sev-

eral tissues or cell lines. On the other hand, the resolution of Hi-C

data largely affects the downstream analysis such as identifying

topologically associating domains (TADs) and chromatin loops

(Dixon et al., 2012; Rao et al., 2014; Sexton et al., 2012). Typically,

the deeper the sequencing depth is, the higher the resolution will be.

High resolution Hi-C data can not only help us identity more clear

TADs, but also makes it possible for uncovering sub-TADs or con-

tact domains at a finer genomic scale, which are believed to be more

variable across cell types and species (Phillips-Cremins et al., 2013;

Yu and Ren, 2017). Based on the above considerations, it is urgent

to develop computational approaches for enhancing Hi-C data reso-

lution by learning the mapping relationship between low resolution

Hi-C data and high resolution Hi-C data.

Recently, deep learning technologies have achieved unprecedent-

ed advancements in many fields, including but not limited to com-

puter vision (CV) and natural language processing (NLP) (LeCun

et al., 2015). In the field of computational biology, deep neural net-

works have been successfully applied to the prediction of functional

genomic sequence (Alipanahi et al., 2015; Li et al., 2019; Liu et al.,

2018; Min et al., 2017; Zhou and Troyanskaya, 2015), gene expres-

sion patterns (Singh et al., 2016) and protein structures (Heffernan

et al., 2015). Nevertheless, applications of deep learning technolo-

gies to 3D genome data analysis is still rare. HiCPlus is the first

work that applies a convolutional neural network in enhancing the

resolution of Hi-C data by minimizing the mean squared error

(MSE) between real high resolution Hi-C data and generated Hi-C

data (Zhang et al., 2018). However, it tends to generate Hi-C

images with limited dynamic details and can only predict Hi-C ma-

trix with fixed window size. Most importantly, it is very sensitive to

the sequencing depth of the Hi-C data.

Considering the limitations of previous work, we take advantage

of generative adversarial networks (GANs), a hot deep learning

technology that has attracted a lot of attention in producing high

quality synthesized images (Goodfellow et al., 2014). We present

hicGAN, as an open-sourced computational framework, for infer-

ring high resolution Hi-C data from low resolution Hi-C data with

generative adversarial networks (GANs). Instead of using a single

neural network for generating Hi-C data, hicGAN is composed of

two competitive neural networks and adopts an adversarial training

strategy. We demonstrate that hicGAN can effectively generate

matrices that are highly consistent to high resolution Hi-C matrices

while only adopts as few as 1/16 of original sequencing reads. We

systematically evaluate the quality of generated samples by hicGAN

through comparison between high resolution samples and generated

samples in several perspectives, including image similarity and iden-

tified chromatin interactions. After model training in one cell type,

hicGAN can even enhance the resolution of insufficient sequenced

Hi-C samples in other cell types, which implies that some local pat-

terns are shared across different cell types. We finally summarize

hicGAN, as an effective prediction tool for enhancing resolution of

Hi-C data, could shed light on the understanding of genome organ-

ization built on pair-wise interactions.

2 Materials and methods

2.1 Overview of hicGAN
The overall framework of hicGAN is illustrated in Figure 1A. The

design of hicGAN is inspired by Game Theory. Instead of using a

single neural network, hicGAN is composed of two competitive

neural networks, which are called the generator network (Fig. 1B)

and the discriminator network (Fig. 1C), respectively. The generator

takes low resolution Hi-C samples as input and tries to produce

pseudo high resolution Hi-C (or called super resolution) samples.

The discriminator works as a classifier to discern between real high

resolution Hi-C data and super resolution Hi-C data. After adversar-

ial training, the generator tends to generate real-like data underlying

almost the same distribution of high resolution Hi-C data. Given

paired low resolution and high resolution Hi-C samples, of which

low resolution data are usually obtained from 1/16 down sampled

sequencing reads of original high resolution Hi-C experiment,

hicGAN is able to conduct an adversarial training process. Then we

only use generator network for enhancing the resolution of Hi-C

data after training converges.

The generator network (Fig. 1B) adopts a novel dual-stream re-

sidual architecture which contains five inner residual blocks (RBs)

and an outer skip connection. Each residual block consists of two

convolutional layers with 3� 3 filters and 64 feature maps. Each

convolutional layer is followed up by a batch normalization layer,

which is proved to effectively prevent overfitting (Ioffe and Szegedy,

2015). Residual architecture has shown superior performance in

various computer vision tasks and has been proved to alleviate

Fig. 1. The overall schematic of hicGAN. (A) hicGAN consists of two competi-

tive networks. G tries to generate super resolution samples that are highly

similar to real high resolution samples while D tries to discriminate generated

super resolution samples from real high resolution Hi-C samples. Parameters

of G and D are updated through an adversarial training process. (B) The archi-

tecture of the generator network. Generator network adopts a novel dual-

stream residual architecture which contains five inner residual blocks (RBs)

and an outer skip connection. Rectangles with different colors represent dif-

ferent functional layers. Blue denotes convolutional layer, orange denotes

batch normalization layer and green denotes an operation of element-wise

summation of the previous layer’s output and the output of the skipped layer.

It outputs a super resolution Hi-C sample given an insufficient sequenced Hi-

C sample as input. (C) The architecture of discriminator network.

Discriminator network is a typical deep convolutional neural network. The

convolutional part has been modularized as three convolutional blocks. It out-

puts the estimated probability that the input is a high resolution Hi-C sample
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gradient vanishing problem as it contains additional shortcuts com-

pared to traditional deep convolutional neural networks (He et al.,

2016; Ledig et al., 2017). Note that the generator network is a typ-

ical fully convolutional network (without dense layer), thus can han-

dle any size of input low resolution Hi-C samples in a prediction

task. The discriminator network is a deep convolutional neural net-

work, which has been modularized as three convolutional blocks

(CBs). The size of input data will reduce by half when going through

each CB. High-level features after CBs will be flatted before entering

two dense layers and transformed by a sigmoid function. The

detailed hyper-parameters of both the generator and discriminator

networks can be found in Supplementary Tables S1 and S2.

2.2 Adversarial training
We apply an adversarial training strategy for training two competi-

tive neural network simultaneously. We define generator network as

Ghð�Þ, parametrized by h, which outputs the pseudo high resolution

sample (or super resolution) given an low resolution Hi-C sample.

We define discriminator as Dxð�Þ, parametrized by x, which outputs

the probability that the input of discriminator is a high resolution

Hi-C sample. We further denote the data distributions of low reso-

lution and high resolution Hi-C sample are PLR and PHR. Then the

training process can be regarded as an min-max problem:

min
h

max
x

ExHR�PHR
log Dx xHRð Þ
� �� �

þ ExLR�PLR
log 1�Dx GhðxLRÞð Þð Þ
� �

The general idea of the above formulation is to train a generative

model Ghð�Þ with the goal of generating samples to fool the discrim-

inator, which has the goal of discerning real high resolution samples

from super resolution samples. Towards this goal, generator net-

work gradually learns to generate samples that are highly similar to

real high resolution samples by learning the mapping relationship

from PLR to PHR. Different from HiCPlus (Zhang et al., 2018), we

do not consider minimizing any pixel-wise error measurements,

such as MSE, which is believed to generate over-smoothing results

(Xu et al., 2017). We finally summarize the detailed adversarial

training process in Table 1.

We implement hicGAN algorithm with the TensorFlow frame-

work (Abadi et al., 2016) and all the computational experiments

were carried on a Linux platform equipped with 10 NVIDIA

GeForce RTX 2080 Ti GPU cards, which can significantly accelerate

the training process.

2.3 Data preparation and preprocessing
The high resolution Hi-C datasets across four cell types (GM12878,

K562, IMR90 and NHEK) were downloaded from the GEO data-

base with accession number GSE63525. For cell type that contains

multiple Hi-C experiments, we first pooled all the aligned Hi-C

reads together (Supplementary Table S3), then we used the Juicer

toolbox (Durand et al., 2016) for generating HIC file and further

extracted raw chromatin contacts for constructing Hi-C matrix.

Note that we only considered intra-chromosomal interactions and

removed chromosome X and Y for each cell type to eliminate sex ef-

fect. A ChIA-PET dataset with CTCF target from K562 cell type

was downloaded from https://4dgenome.research.chop.edu as

ground truth to verify the chromatin loops and interactions pre-

dicted by our model. Note that the ChIA-PET dataset has already

been processed and we directly used the ChIA-PET chromatin con-

tact text file. ChIP-seq data with CTCF target from K562 was down-

load from the ENCODE project (Consortium, 2012) with accession

number ENCSR000AKO. The narrowPeak file was used in Section

3.3 for generating background pairs of genomic regions.

Let Mchr1; . . . ;Mchr22 be the original raw contact Hi-C matrix. We

first normalized the sequencing depth by the following formulation:

~M
chrk ¼ log2ð1þMchrk�N=nchrkÞ k ¼ 1; . . . ; 22

where nchrk is the total aligned reads of chromosome k and

N ¼ maxfnchrkjk ¼ 1; . . . ; 22g. Then we further transformed the

normalized Hi-C matrix ~M
chrk

to the range [-1, 1] by performing

the linear transformation 2 ~M
chrk

=Nchrk � 1, where Nchrk ¼ max

f ~M
chrk

i;j jfor any i and jg. As for low resolution Hi-C data, we ran-

domly down-sampled the original aligned reads to 1/16 for simulat-

ing low resolution Hi-C data. Then we constructed Hi-C matrix

with the same bin size (e.g. 10 kb) and performed the 2-step data

normalization just the same as high resolution Hi-C data.

Before training hicGAN, we divided normalized high resolution and

low resolution Hi-C matrices into multiple non-overlapping small

patches with size 400� 400kb2. Each patch contains 40� 40 ¼ 1600

pixels with 10 kb resolution. Considering the fact that the average gen-

omic distance of TADs is usually less than 1 Mb, we only kept patches

of which genomic distance between two loci is less than 2Mb, thus fil-

tering too far off-diagonal patches as there are few meaningful contacts

outside 2Mb. Then, both high resolution and low resolution Hi-C

samples were fed to hicGAN for model training. Particularly, Hi-C sam-

ples extracted from chromosomes 1–17 were for training and Hi-C

samples extracted from chromosomes 18–22 were for testing.

In the process of prediction, there is no restriction on the input size

of low resolution Hi-C sample as the generator network is a fully convo-

lutional neural network. The generator network can make a prediction

given one or multiple insufficient sequenced Hi-C samples of arbitrary

size at one time. While the adversarial training process usually takes

hours, the prediction process is ultra-fast and usually done in seconds.

2.4 Model evaluation
We evaluate the quality of generated samples by hicGAN in multiple

perspectives. We first compare the pixel-wise error measurement

such as MSE between high resolution samples and super resolution

samples generated by generator network, which is calculated by

MSE ¼ 1

n2

Xn

i¼1

Xn

j¼1

ðXHR
i;j �XSR

i;j Þ
2

where XHR and XSR denote a high resolution Hi-C sample and a

super resolution Hi-C sample, respectively. n is the sample size

which is set to 40.

Table 1. The adversarial training of hicGAN model

Algorithm Adversarial training of hicGAN

Require: h0 for initial parameters of generator network, x0 for initial

parameters of discriminator network, batch size m and learning rate a.

While h has not converged, do

Sample fxðiÞHRg
m
i¼1 � PHR as a batch high resolution Hi-C data

Sample fxðiÞLRg
m
i¼1 � PLR as a batch low resolution Hi-C data

gx  rx
1
m

Pm
i¼1½logðDxðxðiÞHRÞÞ þ logð1�DxðGhðxðiÞLRÞÞÞ�

x xþ a � Adam x; gxð Þ
gh  rh

1
m

Pm
i¼1 logð1�DxðGhðxðiÞLRÞÞÞ

h hþ a � Adam h; ghð Þ
end while

Note: The default settings in all the experiments are as follows. We use

Adam optimizer for gradient descent and parameters updating. a ¼ 0:0001,

m ¼ 128, h0 and x0 are initialized with a normal distribution where mean

equals 0 and standard deviation equals 0.02.
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We then calculate the peak signal-to-noise ratio (PSNR) and

structure similarity index (SSIM) (Wang et al., 2004) which are two

commonly used metrics in natural images compression, synthesis

and super-resolution.

PSNR ¼ 20log10

MAXffiffiffiffiffiffiffiffiffiffiffi
MSE
p
� �

where MAX ¼ maxfXHR
i;j g �minfXHR

i;j g denotes the data range of

high resolution sample in our case.

SSIM is an overall measurement, which considers both the

brightness, contrast and structure similarity of the two comparing

images. SSIM ranges from 0 to 1. The closer to 1, the higher similar-

ity the two images have.

SSIM ¼ ð2lHRlSR þC1Þð2rHR;SR þ C2Þ
ðl2

HR þ l2
SR þ C1Þðr2

HR þ r2
SR þ C2Þ

where lHR and lSR denote the mean value of a high resolution Hi-C

sample and corresponding super resolution Hi-C sample, rHR and

rSR denote the standard deviation of a high resolution Hi-C sample

and corresponding super resolution Hi-C sample. rHR;SR denotes

covariance of a high resolution Hi-C sample and a super resolution

Hi-C sample. C1 and C2 are two constants which are set to

ð0:01�MAXÞ2 and ð0:02�MAXÞ2, respectively.

2.5 Evaluating pairs of genomic regions with Hi-C

chromatin loops
We proposed a strategy for scoring any pair of genomic regions with

existing Hi-C chromatin interactions to give an estimation of whether

the two genomic regions have contact with each other. Note that only

intra-chromosomal interactions are retained in Hi-C data. Assuming a

pair of genomic regions is denoted as chrom1;ð midpoint1Þ and

chrom2;midpoint2ð Þ. Hi-C chromatin interactions are represented as

fðchromðiÞ;midpoint
ðiÞ
1 Þ; ðchromðiÞ;midpoint

ðiÞ
2 Þ i ¼ 1; . . . ; ng. While

chrom1 ¼ chrom2, the estimated score is calculated as

score ¼ max
i¼l1 ;...;lm

fexpð�c
X2

k¼1
jmidpoint ið Þ

k �midpointkjÞg

where c is the decay parameter which is set to 0.0001 in our experi-

ments and l1; . . . ; lm are the indexes that ensure chrom1 ¼ chromðiÞ.

In other cases, score is set to 0. The higher the score is, the stronger

the estimated interaction strength will be.

2.6 Baseline models
In order to evaluate the performance of hicGAN, we designed a series

of systematical experiments and compared hicGAN to baseline models.

HiCPlus (Zhang et al., 2018) is a recent approach that applies a convo-

lutional neural network in enhancing Hi-C resolution. It was down-

loaded from https://github.com/zhangyan32/HiCPlus and the default

hyper-parameters were used in all experiments. Besides, we discuss in

detail the limitations of HiCPlus in Supplementary Note S1.

Another baseline model 2D Gaussian is an unsupervised approach

which applies a sliding Gaussian window for smoothing the input ma-

trix. To determine the best parameter of 2D Gaussian, the deviation

Sigma is finally set to 1 after performing a grid search strategy.

3 Results

3.1 hicGAN recovers high resolution Hi-C data from in-

sufficient sequenced samples
We first designed a series of systematical experiments to verify the

performance of hicGAN by multiple perspectives. We downloaded

high resolution datasets of GM12878 from GEO database with ac-

cession number GSE63525. 10 kb resolution Hi-C matrix was con-

structed by all the aligned sequencing reads. Then we randomly

down-sampled all the reads to 1/16 and constructed the interaction

Hi-C matrix with the same resolution. Note we only kept intra-

chromosomal interactions in a reasonable genomic distance and

then cropped the matrices into non-overlapping patches with size

400� 400kb2 (See Methods). Each patch was treated as an individ-

ual sample which contains 40� 40 ¼ 1600 pixels in the aspect of

image. We used Hi-C samples from chromosomes 1–17 for training

and Hi-C samples from chromosomes 18–22 for test. Then we com-

pared the samples generated by hicGAN to high resolution Hi-C

samples from test set in three different metrics (Fig. 2A–C). We

grouped the test samples based on the genomic distance of the diag-

onal interactions of a given sample. The three measurements show

the same trend that Hi-C samples containing closer interactions are

easier to be predicted. At the genomic distance of 0, Hi-C samples

were extracted from diagonal of original Hi-C matrix, hicGAN on

average achieves an MSE of 0.0078, a PSNR of 23.90 dB and an

SSIM of 0.731. At the genomic distance of 1.2 Mb, the performance

of hicGAN drops to an acceptable level with an MSE of 0.042, a

Fig. 2. Evaluation of Hi-C data generated by hicGAN in GM12878 cell type.

Model training was performed on chromosomes 1–17, model evaluation was

performed on chromosomes 18–22. (A-C) Mean squared error (MSE), peak

signal-to-noise ratio (PSNR) and structure similarity index (SSIM) measure-

ments between high resolution Hi-C samples and super resolution samples

generated by hicGAN. (D) The Pearson correlation coefficients (PCCs) be-

tween real Hi-C data and predicted Hi-C data under different genomic dis-

tance. hicGAN significantly outperforms other methods in different genomic

distance. (E) The distribution of interaction frequency within different genom-

ic ranges (e.g. 0–10 kb, 10–20 kb, etc.) observed from real high resolution Hi-C

data and Hi-C data predicted by hicGAN. The distribution of interaction fre-

quency captured by hicGAN is highly consistent with real Hi-C data. (F) An ex-

ample shows the low resolution Hi-C sample (left), Hi-C sample predicted by

hicGAN (middle) and high resolution Hi-C sample (right). Hi-C sample gener-

ated by hicGAN is highly similar to high resolution Hi-C sample
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PSNR of 13.07 dB and an SSIM of 0.209 on average. We also note

that hicGAN outperforms HiCPlus under the above three measure-

ments under different genomic distance by a large margin

(Supplementary Figs S1–S3).

We then compared hicGAN to three other approaches (HiCPlus,

2D Gaussian and baseline) by measuring the Pearson correlation at

different genomic distance. The interactions with the same genomic

distance were grouped and the Pearson correlation coefficient (PCC)

between real interactions and interactions predicted by different

methods are calculated (Fig. 2D). HiCPlus and 2D Gaussian are

described in Section 2. The baseline method is directly using interac-

tions from down-sampled Hi-C matrix and compared to the real

interactions from high resolution Hi-C matrix. Our hicGAN model

outperforms HiCPlus (P-values<10�8, Supplementary Table S4)

and other two methods at any genomic distance ranging from 0 to

1 Mb. At the genomic distance of 200 kb, hicGAN achieves a

Pearson correlation coefficient of 0.976, compared to 0.958 of

HiCPlus, 0.881 of 2D Gaussian and 0.705 of baseline. At the gen-

omic distance of 1 Mb, hicGAN outperforms HiCPlus by a large

margin (0.814 versus 0.732). We note that 2D Gaussian shows a de-

cent performance as it can effectively reduce the noise level by a

smoothing process.

To verify whether hicGAN can effectively capture the interaction

frequency at different genomic distance, we compared the distribu-

tion of interaction frequency within different genomic ranges, such

as 0–kb, 100–200 kb, etc. We first transformed the predicted nor-

malized Hi-C data into interaction frequency count. Then we

observed that the interaction frequency predicted by hicGAN has

highly similar distribution as real Hi-C data (Fig. 2E). In the aspect

of a visualized image, samples generated by hicGAN tend to have

domain boundaries as clear as high resolution Hi-C data. We dem-

onstrated vivid examples of visualized Hi-C samples generated by

hicGAN model (Fig. 2F and Supplementary Fig. S4). Leveraging

only a small fraction of the original sequencing reads, hicGAN cap-

tures the features of high resolution Hi-C data across chromosomes.

3.2 hicGAN recovers high resolution Hi-C data across

different cell types
In the previous section, hicGAN has demonstrated the powerful

ability of recovering super resolution Hi-C data that are highly simi-

lar to real high resolution data. We then ask whether hicGAN can

be used for enhancing the resolution of Hi-C matrix across different

cell types. Towards this goal, we downloaded Hi-C data across 4

cell types (GM12878, K562, IMR90 and NHEK) from GEO data-

base with accession number GSE63525. The same data preprocess-

ing was performed to each cell type. With the hicGAN model

trained in GM12878 in the previous section, we then applied it to

enhance insufficient sequenced Hi-C matrices in three test cell types.

We selected a genomic region (chr17: 70.5–75.75 Mb) that contains

highly dynamic chromatin contacts across three test cell types,

experiments show that hicGAN can well capture the differences of

domain boundaries across different cell types and generate super

resolution Hi-C samples that are highly similar to original high reso-

lution Hi-C samples (Fig. 3A).

To further verify our observation, we then designed an experi-

ment in which we trained hicGAN model in different cell types

while predicting the same Hi-C sample. We first trained hicGAN on

chromosomes 1–17 of K562, IMR90 and NHEK, respectively. Then

we used trained hicGAN model to make a prediction given the same

insufficient sequenced Hi-C sample from GM12878 (chr21: 26–

28 M). The results predicted by hicGAN model across three test cell

types show high consistence to the high resolution Hi-C sample in

GM12878 (Fig. 3B). We further evaluated the cross-cell-type gener-

ated Hi-C samples by measuring the Pearson correlation similar to

the previous section. We trained four hicGAN models on chromo-

somes 1–17 of GM12878, K562, IMR90 and NHEK, respectively.

Then we used the four trained hicGAN model to predict Hi-C sam-

ples on chromosomes 18–22 of GM12878. 2D Gaussian applies a

Gaussian smoothing to insufficient sequenced Hi-C samples on

Chromosomes 18–22 of GM12878. The baseline directly shows the

Pearson correlation coefficient (PCC) between insufficient

sequenced Hi-C samples and high resolution Hi-C samples on chro-

mosomes 18–22 of GM12878. Compared to training and test in the

same cell type, the performance of cross-cell-type experiments only

Fig. 3. Cross-cell-type experiments by hicGAN. Training data is obtained from

chromosomes 1–17 and test data is obtained from chromosomes 18–22. (A)

hicGAN model trained in GM12878 cell type was used for generating super

resolution Hi-C samples (chr17: 70.5–72.75Mb) in three other cell types (K562,

IMR90 and NHEK). The generated Hi-C samples are highly similar to the high

resolution Hi-C samples in the corresponding cell type. (B) hicGAN model

was trained in three cell types (K562, IMR90 and NHEK), respectively. Then

the trained hicGAN model in each cell type was used for predicted in the

same genomic region of GM12878 (chr21: 26–28 Mb). No matter which cell

type the hicGAN was trained in, it can generate Hi-C sample that is highly

consistent to the original high resolution Hi-C sample in GM12878. (C) We

trained four hicGAN models on chromosomes 1–17 of GM12878, K562,

IMR90 and NHEK, respectively. Then we used the four trained hicGAN model

to predict Hi-C samples on chromosomes 18–22 of GM12878. The perform-

ance of model trained in K562, IMR90 and NHEK drops slightly compared to

model trained in GM12878. The four hicGAN models outperform 2D

Gaussian and baseline by a large margin. (D) We pooled the Hi-C samples on

chromosomes 1–17 of four cell types (K562, IMR90, GM12878 and NHEK) to-

gether and trained a hicGAN with the constructed assembled Hi-C dataset.

For comparison, we trained a baseline hicGAN model on chromosomes 1–17

of K562 cell types. We used the above two hicGAN models to predict Hi-C

samples on chromosomes 18–22 of K562 cell type. Model trained in

assembled cell types achieves slightly lower mean squared error and lower

variance, especially at long genomic distance
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decreases slightly (Fig. 3C). At the genomic distance of 200 kb,

hicGAN trained in GM12878 achieves a Pearson correlation coeffi-

cient of 0.976, compared to 0.961 in K562, 0.952 in IMR90 and

0.967 in NHEK. The performance of four hicGAN models outperform

2D Gaussian and baseline model by a large margin (P-values<10�16,

Supplementary Table S5). The superior results of cross-cell-type experi-

ments suggest that different cell types may share some local patterns in

the 3D genome contacts map so hicGAN can borrow information of

local patterns in one cell type when making prediction in another cell

type.

We further investigate whether hicGAN can borrow information

from multiple cell types. We first pooled all the Hi-C samples from

chromosomes 1–17 of four cell types together to construct an

assembled training set. We then trained hicGAN model under the

assembled training data and compared the performance to another

hicGAN model trained on chromosomes 1–17 of K562 cell type. We

finally used the above trained hicGAN model to make a prediction on

chromosomes 18–22 of K562 cell type (Fig. 3D). The hicGAN model

trained in assembled cell types has a slightly better performance than

the model trained in a single cell type at different genomic distance

(P-values<10�5, Supplementary Table S6). At the genomic distance

of 400 kb, hicGAN trained in assembled cell types can reduce the

mean squared error (MSE) by 0.0039. Moreover, hicGAN model

trained in assembled cell types tends to be more robust at a long gen-

omic distance as achieves obviously lower variance. The standard devi-

ation of MSE achieved by hicGAN with assembled training cell types

at 800 kb is 0.0117, compared to 0.0156 of single cell type trained

hicGAN model. This experiment again suggests that the local patterns

or features among different cell types may have some common proper-

ties. Once a hicGAN model is trained in one or multiple cell types, it

can be applied to make prediction in new cell types.

3.3 hicGAN facilitates identifying meaningful chromatin

interactions
Previous experiments have demonstrated that hicGAN is able to

enhance the resolution of insufficient sequenced Hi-C samples.

We then investigated that whether hicGAN can help facilitate the

identification of chromatin contacts or chromatin loops. Towards

this purpose, we applied Fit-Hi-C software (Ay et al., 2014), as a

chromatin loop caller, for identifying the significant chromatin

loops given high resolution Hi-C data and predicted Hi-C data.

Similar to the previous experiments, we first trained a hicGAN

model on chromosomes 1–17 of GM12878 cell type, then we used

the trained hicGAN model to predict Hi-C samples on chromosomes

18–22. As not all the chromatin interactions are of equal import-

ance, what really made us interested is the interactions that are

enriched for regulatory elements, such as promoters and enhancers.

We applied the Fit-Hi-C tool to predicted Hi-C data and real high

resolution Hi-C data in GM12878 cell type for calling significant

chromatin loops with a strict threshold (q-value<1e�06), respect-

ively. Then we filtered the called chromatin loops and only kept sig-

nificant chromatin loops within the genomic distance from 30 to

300 kb, which resulted in 124 321 significant chromatin loops of

high resolution Hi-C data and 147 890 significant chromatin loops

of hicGAN predicted Hi-C data. We observed that 90.86% of the

significant chromatin loops from high resolution Hi-C data were

successfully recovered by hicGAN. 76.34% of the significant chro-

matin loops from hicGAN predicted Hi-C data were also identified

in high resolution Hi-C data (Fig. 4A). We also noticed that down-

sampled Hi-C matrix can only recover 13.36% of the significant

chromatin loops from the high resolution Hi-C data, which suggests

that hicGAN can effectively promote the identification of significant

chromatin loops give insufficient sequenced Hi-C samples. We also

conducted similar experiments in other cell lines to further support

our conclusion (Supplementary Fig. S5).

Next, we introduced another type of chromatin contacts data

from ChIA-PET, a technique that incorporates chromatin immuno-

precipitation (ChIP)-based enrichment, paired-end tagging and high-

throughput sequencing (Wei et al., 2006). ChIA-PET can accurately

help us identity de novo long-range chromatin interactions genome-

wide with targeted protein. We downloaded ChIA-PET datasets of

K562 cell type with CTCF target, a key transcription factor that

involves in the regulation of chromatin architecture (Phillips and

Corces, 2009). We first investigated whether hicGAN can recover

CTCF chromatin interaction from ChIA-PET data. Similar to the

experiments settings previously, we used Fit-Hi-C for identifying sig-

nificant chromatin loops from high resolution Hi-C data, down-

sampled Hi-C data and Hi-C data predicted by hicGAN with a strict

threshold (q-value<1e�06) in K562 cell type. We then calculated

how many CTCF chromatin interactions were covered by significant

Hi-C chromatin loops. We observed that high resolution Hi-C data

and Hi-C data predicted by hicGAN model can recover 62.87% and

61.16% of the ChIA-PET chromatin interactions, respectively.

While the down-sampled low resolution Hi-C data can only recover

31.16% of the ChIA-PET chromatin interactions (Fig. 4B), which

implicated that hicGAN can significantly help recover ChIA-PET

chromatin loops given down-sampled low resolution Hi-C data.

We further investigated whether significant Hi-C loops can help

discriminate ChIA-PET chromatin loops from random pairs of gen-

omic regions. We treated ChIA-PET chromatin interactions with

CTCF target as ground truth or true positives, then we selected the

Fig. 4. Evaluation of significant chromatin loop inferred from Hi-C data pre-

dicted by hicGAN model. (A) The Venn plot of the significant chromatin loops

from high resolution Hi-C data and Hi-C data predicted by hicGAN model in

GM12878 cell type using Fit-Hi-C software with a strict threshold (q-value<

1e�06). More than 90 percent of the significant chromatin loops from real high

resolution Hi-C data can be also identified in Hi-C data predicted by hicGAN. (B)

High resolution Hi-C data and Hi-C data predicted recovers comparable percent-

age of ChIA-PET chromatin loops while down-sampled low resolution Hi-C data

recovers much less ChIA-PET chromatin loops. (C) The receiver operating char-

acteristic (ROC) curve in discerning ChIA-PET chromatin loops from random

pairs of CTCF ChIP-seq peaks. High resolution H-C data and Hi-C data predicted

by hicGAN model achieve comparable results with the areas under ROC curve

(auROCs) 0.844 versus 0.837, which outperform 2D Gaussian and down-

sampled low resolution Hi-C. (D) The precision-recall curve in discerning ChIA-

PET chromatin loops from random pairs of CTCF ChIP-seq peaks. The areas

under precision-recall curve (auPRs) implicates the consistent conclusion
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same number of random pairs from CTCF ChIP-seq peaks, which

have no overlaps with any of the ChIA-PET chromatin loops, as

negative samples. Finally, we used Hi-C chromatin interactions to

score each of the above positive and negative samples (see

Methods). It showed that Hi-C chromatin interactions from high

resolution Hi-C data and Hi-C data predicted by hicGAN can dis-

cern ChIA-PET chromatin loops from random pairs of CTCF ChIP-

seq peaks at a comparable level (Fig. 4C–D). Using high resolution

Hi-C data achieves an auROC of 0.844, compared to 0.837 of

hicGAN, 0.798 of 2D Gaussian and 0.764 of using down-sampled

low resolution Hi-C data. The precision-recall curves also showed

that the high resolution Hi-C data and hicGAN predicted Hi-C data

can achieve similar performance, which outperform 2D Gaussian

and down-sampled low resolution Hi-C data by a relatively large

margin.

The above results demonstrate that the chromatin loops enriched

in down-sampled low resolution Hi-C data are only a small portion

of the chromatin loops from high resolution Hi-C data. However,

with our powerful hicGAN model, one can significantly improve the

number of enriched chromatin loops, thus reaching a comparable

level with the high resolution Hi-C data.

3.4 hicGAN facilitates identifying cell-type specific

contact domain boundaries
We finally applied hicGAN in inferring super resolution Hi-C data in

two differential cell types GM12878 and K562 with a hicGAN model

trained in NHEK cell type. Previous experiments have demonstrated

the ability of cross-cell-type prediction of hicGAN. We now focus on

the exploring the relationship between domain boundaries inferred

from Hi-C data and the implicating functions. We extracted a 1 Mbp

genomic region (chr9: 36.5–37.5 M), which contains Pax5, a master

regulator of B cell development (Medvedovic et al., 2011). At the

same time, we collected several annotation tracks using WU

Epigenome Browser (Zhou et al., 2011).We note that Pax5 regulator

was only expressed in GM12878 cell type according to the RNA-seq

annotation track. The down-sampled low resolution Hi-C data across

two cell types contained blurry contact domain boundaries while Hi-

C data predicted by hicGAN showed as clear TADs or sub-TADs as

high resolution Hi-C data (Fig. 5A–B). Interestingly, hicGAN identi-

fied several promoter-enhancer interactions which are consistent with

the annotations by two histone modifications. Compared to K562 cell

type, GM12878 contains more sub-domain boundaries, which are

enriched in signals from two histone modifications and ChIA-PET

with CTCF. More importantly, except for the common contact do-

main boundaries (yellow dots), we also observed that GM12878 con-

tained cell type specific domain boundaries (blue dots) that were not

discovered in K562 cell types. Previous studies have shown that such

cell type specific domain boundaries are crucial to the relevant chro-

matin architecture and the underlying gene regulations (Smith et al.,

2016). A great portion of the cell type specific contact domain boun-

daries may not be uncovered in insufficient sequenced Hi-C data.

With the powerful hicGAN model, one can significantly enhance the

resolution of Hi-C data and identity more refined contact domain

boundaries.

3.5 Hyperparameter settings for hicGAN
As hicGAN contains two neural networks with complicated archi-

tectures, we modularized both generator network and discriminator

Fig. 5. Three types of Hi-C data extracted from a differential genomic region (chr9: 36.5–37.5 M) between GM12878 and K562 cell type. Several annotation tracks,

including RNA-seq, ChIP-seq with CTCF, ChIP-seq with two histone modifications and ChIA-PET with CTCF target across two cell types were also shown below

the Hi-C data. The high resolution Hi-C data and Hi-C data predicted by hicGAN have significantly clearer chromatin contact boundaries compared to down-

sampled low resolution Hi-C data. We observed that a B cell important regulator, Pax5, only expressed in GM12878 cell type. Hi-C data also reveals promoter-en-

hancer interactions which is highly consistent with the signals from the two histone markers (a promoter P and three potential enhancers E1-E3 were denoted in

GM12878). More importantly, we noticed that the above two cell types contain common contact domain boundaries and cell-type specific contact domain boun-

daries (GM12878 specific contact boundaries were shown with blue dots and the common domain boundaries were shown with yellow dots). (A) Hi-C maps and

annotation tracks in GM12878 cell type. (B) Hi-C maps and annotation tracks in K562 cell type
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network into functional layers or blocks, which makes it easy for us

to determine the best hyperparameters. We considered learning rate

a, batch size m, the number of residual blocks (RBs) and the number

of convolutional blocks (CBs) as the major tuning hyperparameters.

We directly used a grid search strategy for the best combination of

the above four hyperparameters. The learning rate a was chosen

from {0.001, 0.0001, 0.00001}, batch size m was chosen from {32,

64, 128}, the number of RBs was chosen from {1, 5, 10} and the

number of CBs was chosen from {1, 2, 3, 4}. The best hyperpara-

meters were finally determined as described in Supplementary Table

S1 and S2.

We also evaluated whether the batch normalization will help im-

prove the performance of hicGAN. We tried adding batch normal-

ization after each convolutional layer and removing batch

normalization layer of both generative network and discriminator

network. Interestingly, batch normalization can indeed help improve

the performance of generative network, but we did not observe dif-

ference when applying to discriminator network. We implemented

hicGAN with the best hyperparameters we have obtained so far in

the software.

4 Discussion

We proposed hicGAN, an open-sourced computational framework,

for inferring high resolution Hi-C data from low resolution Hi-C data

with adversarial generative networks (GANs). To the best of our

knowledge, hicGAN is the first work to apply GANs in the generation

of 3D genome data. We designed a series of systematical experiments

to verify the quality of generated Hi-C samples by hicGAN model

given insufficient sequenced Hi-C samples. Experimental results show

that Hi-C samples generated by hicGAN (super resolution Hi-C sam-

ples) are highly similar to the original high resolution Hi-C data. With

the powerful learning ability, hicGAN effectively enhances the reso-

lution of low resolution Hi-C data, which is typically constructed by

down-sampling the original aligned sequencing reads to as few as 1/

16. More importantly, hicGAN can help us identify significant chro-

matin interactions or loops where a portion of the boundary informa-

tion is already missing in the low resolution Hi-C data. A typical

scenario of using hicGAN is applying it to low resolution Hi-C sam-

ples where the corresponding high resolution Hi-C data is not avail-

able. Some meaningful interactions such as promoters-enhancers

might not be detected in the low resolution Hi-C data, but we have

the potential to recover such interactions with our hicGAN model.

We expect to see wide application of hicGAN to both public or in-

house Hi-C data in the identification of chromatin interactions across

various cell types.

The cross-cell-type experiments implicate that Hi-C datasets

consist of many local patterns that are shared across different cell

types. The information of local structures or patterns can be bor-

rowed when making a prediction in other cell types. However, due

to the ‘black box’ property of neural network model, it is still some-

how tough to interpret the learned features. One thing for sure is

that the features should be highly related to the crucial functions of

3D genome organization, such as TADs, sub-TADs and contact do-

main. So a major future task is for us to visualize and interpret the

features learned in hicGAN. Perhaps we can investigate the kernel

weights in the convolutional layers to see if they contain low-level

structure information that corresponds to chromatin boundaries.

Another possible improvement of our work is to consider the po-

tential noise in Hi-C data. Although we regard high resolution Hi-C

data as the gold standard, it still contains multiple sources of noises

such as the random ligations generated by Hi-C protocol (Lajoie

et al., 2015). So variations exist even between high resolution Hi-C

data from two biological replicates (Dixon et al., 2012). One feas-

ible solution might be modifying hicGAN model by using random

noise as input and low resolution Hi-C data as prior information.

More experiments need to be conducted to validate our assumption

and shed light on how to further improve the performance of current

model. The current evaluation of generated Hi-C data mainly

focusses on image-based measurements. We can further take Hi-C

specialized measurement, such as HiCRep (Yang et al., 2017), into

consideration.

Theoretically, hicGAN can be applies to any type of chromatin

interaction data such as Capture Promoter Hi-C and ChIA-PET.

But the current public datasets are not as abundant as Hi-C datasets.

We can investigate the performance of hicGAN applied in other

types of chromatin interaction data as more datasets across various

tissues or cell types become available.

To sum up, hicGAN presents an end-to-end solution for enhanc-

ing the resolution of insufficient sequenced Hi-C data. Our study

not only provides a novel approach for inferring high resolution

Hi-C data, but also implies fascinating insights into deciphering

complex mechanism underlying the 3D genome organization.
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